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amodule Define Augmented and Parameterized Modules

Description

amodule is a wrapper around module and changes the default environment to which the module
connects. In contrast to module the top enclosing environment here is always baseenv. The second
important difference is that the environment in which a module is created has meaning: all objects
are made available to the module scope. This is what is meant by augmented or parameterized.
Best practice for the use of this behavior is to return these modules from functions.

Usage

amodule(expr = { }, envir = parent.frame(), enclos = baseenv(),
class = NULL)

Arguments

expr (expression) a module declaration, same as module

envir (environment) environment used to detect ’parameters’

enclos (environment) the top enclosing environment of the module scope.

class (character) the module can have a class attribute for consistency. If you rely on
S3 dispatch, e.g. to override the default print method, you should set this value
explicitly.

Examples

Constructor <- function(dependency) {
amodule({

fun <- function(...) dependency(...)
})

}
instance <- Constructor(identity)
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instance$fun(1)

as.module Coercion for Modules

Description

Interfaces to and from modules.

Usage

as.module(x, ...)

## S3 method for class 'character'
as.module(x, topEncl = baseenv(), reInit = TRUE,
..., envir = parent.frame())

## S3 method for class 'module'
as.module(x, reInit = TRUE, ...)

Arguments

x something which can be coerced into a module. character are interpreted as
file / folder names.

... arguments passed to parse

topEncl (environment) the root of the local search path. It is tried to find a good default
via autoTopEncl.

reInit (logical) if a module should be re-initialized

envir (environment) the environment from where module is called. Used to determine
the top level environment and should not be supplied by the use.

Examples

# as.module is used by 'use' so see the vignette for examples:
## Not run:
vignette("modulesInR", "modules")

## End(Not run)
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depend Declare dependencies of modules

Description

This function will check for a dependency and tries to make it available if it is not. This is a generic
function. Currently only a default method exists which assumes a package name as argument. If a
package is not installed depend tries to install it.

Usage

depend(on, ...)

## Default S3 method:
depend(on, version = "any", libPath = NULL, ...)

Arguments

on (character) a package name

... arguments passed to install.packages

version (character) a version, defaults to ’any’

libPath (character | NULL) a path to the library (folder where packages are installed)

Value

TRUE if dependency is available or successfully installed. An error if dependency can not be installed
and is not available.

Examples

# Depend on certain R version
depend("base", "3.0.0")
# Depend on package version
depend("modules", "0.6.0")

export Export mechanism for modules

Description

You can declare exports very much like the export mechanism in R packages: you define which
objects from the module you make available to a user. All other objects are kept private, local, to
the module.
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Usage

export(..., where = parent.frame())

Arguments

... (character, or unquoted expression) names to export from module. A character
of length 1 with a leading "^" is interpreted as regular expression.

where (environment) typically the calling environment. Should only be relevant for
testing.

Details

A module can have several export declarations, e.g. directly in front of each function definition.
That means: exports stack up. When you supply a regular expression, however, only one export
pattern should be declared. A regular expression is denoted, as a convention, as character vector of
length one with a leading "^".

Examples

module({
export("foo")
foo <- function() "foo"
bar <- function() "bar"

})

module({
export("foo")
foo <- function() "foo"
export("bar")
bar <- function() "bar"

})

module({
export("foo", "bar")
foo <- function() "foo"
bar <- function() "bar"

})

module({
export("^f.*$")
foo <- function() "foo"
bar <- function() "bar"

})
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expose Expose module contents

Description

Use expose to copy the exported member of a module to the calling environment. This is useful for
a simple reexport of member functions and generally for object composition.

Usage

expose(module, ..., reInit = TRUE, where = parent.frame())

Arguments

module (character | module) a module as file or folder name or a list representing a
module.

... (character, or unquoted expression) elements to be exposed. Defaults to all.

reInit (logical) whether to re-initialize module. This is only relevant if a module has
state which can be changed. This argument is passed to as.module.

where (environment) typically the calling environment. Should only be relevant for
testing.

Details

You call this function for its side effects. It is a variation of use where instead of returning a module
as return value, the elements are copied to the calling environment.

Examples

m1 <- module({
foo <- function() "foo"

})
m2 <- module({

bar <- function() "bar"
})
# Now we create a module with 'foo' and 'bar' as member functions.
m3 <- module({

expose(m1)
expose(m2)

})
m3$foo()
m3$bar()
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extend Extend existing module definitions

Description

extend can be used to extend an existing module definition. This can be very useful to write unit
tests when they need to have access to private member functions of the module. This function
breaks encapsulation of modules and should be used with great care. As a mechanism for reuse
consider ’composition’ using expose and use.

Usage

extend(module, with)

Arguments

module (character | module) a module as file or folder name or a list representing a
module.

with (expression) an expression to add to the module definition.

Details

A module can be characterized by its source code, the top enclosing environment and the envi-
ronment the module has been defined in. extend will keep the latter two intact and only change
the source code. That means that the new module will have the same scope as the module to be
extended. import, use, and export declarations can be added as needed.

This approach gives access to all implementation details of a module and breaks encapsulation.
Possible use cases are: unit tests, and hacking the module system when necessary. For general
reuse of modules, consider using expose and use which are safer to use.

Since extend will alter the source code, the state of the module is ignored and will not be present
in the new module. A fresh instance of that new module is returned and can in turn be extended
and/or treated like any other module.

Examples

m1 <- module({
foo <- function() "foo"

})
m2 <- extend(m1, {

bar <- function() "bar"
})
m1$foo()
m2$foo()
m2$bar()
# For unit tests consider using:
extend(m1, {

stopifnot(foo() == "foo")
})



8 import

getSearchPath Get the search path of an environment

Description

Returns a list with the environments or names of the environments on the search path. These
functions are used for testing, use search instead.

Usage

getSearchPath(where = parent.frame())

getSearchPathNames(where = parent.frame())

getSearchPathContent(where = parent.frame())

getSearchPathDuplicates(where = parent.frame())

Arguments

where (environment | module | function) the object for the search path should be inves-
tigated. If we supply a list with functions (e.g. a module), the environment of
the first function in that list is used.

Examples

getSearchPath()
getSearchPathNames()
getSearchPathContent()

m <- module({
export("foo")
import("stats", "median")
foo <- function() "foo"
bar <- function() "bar"

})

getSearchPathContent(m)

import Import mechanism for modules

Description

You can declare imports similar to what we would do in a R package: we list complete packages or
single function names from a package. These listed imports are made available inside the module
scope.
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Usage

import(from, ..., attach = TRUE, where = parent.frame())

Arguments

from (character, or unquoted expression) a package name

... (character, or unquoted expression) names to import from package.

attach (logical) whether to attach the imports to the search path.

where (environment) typically the calling environment. Should only be relevant for
testing.

Details

import and use can replace library and attach. However they behave differently and are only de-
signed to be used within modules. Both will work when called in the .GlobalEnv but here they
should only be used for development and debugging of modules.

import adds a layer to a local search path. More precisely to the calling environment, which is the
environment supplied by where. It will alter the state of the calling environment. This is very similar
to how the library function and the search path are constructed in base R. Noticeable differences are
that we can choose to only import particular functions instead of complete packages. Further we
do not have to mutate the calling environment by setting attach to FALSE. Regardless of the attach
argument, import will return an environment with the imports and can be bound to a name. library
will also load packages in the ’Depends’ field of a package, this is something import will not do.

Only one import declaration per package is allowed. A second call to import will remove the
previous one from the search path. Then the new import layer is added. If several smaller import
declarations are desirable, use attach = FALSE and bind the return value of import to a name.

Value

An environment is returned invisibly comprising the imports.

Examples

m <- module({
# Single object from package
import("stats", "median")
# Complete package
import("stats")
# Without side-effects
stats <- import("stats", attach = FALSE)
median <- function(x) stats$median(x)

})
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module Define Modules in R

Description

Use module to define self contained organisational units. Modules have their own search path.
import can be used to import packages. use can be used to import other modules. Use export
to define which objects to export. expose can be used to reuse function definitions from another
module.

Usage

module(expr = { }, topEncl = autoTopEncl(envir),
envir = parent.frame())

autoTopEncl(where)

Arguments

expr an expression

topEncl (environment) the root of the local search path. It is tried to find a good default
via autoTopEncl.

envir, where (environment) the environment from where module is called. Used to determine
the top level environment and should not be supplied by the use.

Details

topEncl is the environment where the search of the module ends. autoTopEncl handles the differ-
ent situations. In general it defaults to the base environment or the environment from which module
has been called. If you are using use or expose referring to a module in a file, it will always be the
base environment. When identical(topenv(parent.frame()), globalenv()) is false it (most
likely) means that the module is part of a package. In that case the module defines a sub unit within
a package but has access to the packages namespace. This is relevant when you use the function
module explicitly. When you define a nested module the search path connects to the environment
of the enclosing module.

The use of library, attach, and source are discouraged within modules. They change the global state
of an R session, the .GlobalEnv, and may not have the intended effect within modules. import and
use can replace calls to library and attach. Both will work when called in the .GlobalEnv but here
they should only be used for development and debugging of modules. source often is used to load
additional user code into a session. This is what use is designed to do within modules. use will
except files and folders to be used.

export will never export a function with a leading "." in its name.

expose is similar to use but instead of attaching a module it will copy all elements into the calling
environment. This means that exposed functions can be (re-)exported.

extend can be used to extend an existing module definition. This feature is meant to be used by the
module author. This can be very useful to write unit tests when they need to have access to private
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member functions of the module. It is not safe as a user of a module to use this feature: it breaks
encapsulation. When you are looking for mechanisms for reuse expose and use should be favoured.

Examples

## Not run:
vignette("modulesInR", "modules")

## End(Not run)

m <- module({
fun <- function(x) x

})

m$fun(1)

m <- module({

import("stats", "median")
export("fun")

fun <- function(x) {
## This is an identity function
## x (ANY)
x

}

})

m$fun
m

use Use a module as dependency

Description

Use and/or register a module as dependency. The behaviour of use is similar to import but instead
of importing from packages, we import from a module. A module can be defined in a file, or be an
object.

Usage

use(module, ..., attach = FALSE, reInit = TRUE,
where = parent.frame())
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Arguments

module (character, module) a file or folder name, or an object that can be interpreted as
a module: any list-like object would do.

... (character, or unquoted expression) names to use from module.

attach (logical) whether to attach the module to the search path.

reInit (logical) we can use a module as is, or reinitialize it. The default is to reinitialize.
This is only relevant should the module be state-full.

where (environment) typically the calling environment. Should only be relevant for
testing.

Details

import and use can replace library and attach. However they behave differently and are only de-
signed to be used within modules. Both will work when called in the .GlobalEnv but here they
should only be used for development and debugging of modules.

use adds a layer to a local search path if attach is TRUE. More precisely to the calling environment,
which is the environment supplied by where. Regardless of the attach argument, use will return
the module invisibly.

use supplies a special mechanism to find the argument module: generally you can supply a file
name or folder name as character. You can also reference objects/names which ’live’ outside the
module scope. If names are not found within the scope of the module, they are searched for in
the environment in which the module has been defined. This happens during initialization of the
module, when the use function is called.

Modules can live in files. use should be used to load them. A module definition in a file does not
need to use the module constructor explicitly. Any R script can be used as the body of a module.

When a folder is referenced in use it is transformed into a list of modules. This is represented as a
nested list mimicking the folder structure. Each file in that folder becomes a module.

Examples

m1 <- module({
foo <- function() "foo"

})
m2 <- module({

use(m1, attach = TRUE)
bar <- function() "bar"
m1foo <- function() foo()

})
m2$m1foo()
m2$bar()

## Not run:
someFile <- tempfile(fileext = ".R")
writeLines("foo <- function() 'foo'", someFile)
m3 <- use(someFile)
m3$foo()
otherFile <- tempfile(fileext = ".R")
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writeLines("bar <- function() 'bar'", otherFile)
m4 <- use(otherFile)
m4$bar()
m5 <- use(tempdir())
m5

## End(Not run)
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