
Package ‘modeltime’
July 3, 2020

Title The Tidymodels Extension for Time Series Modeling

Version 0.0.2

Description The time series forecasting framework for use with the 'tidymodels' ecosystem.
Models include ARIMA, Exponential Smoothing, and additional time series models
from the 'forecast' and 'prophet' packages. Refer to ``Forecasting Principles & Practice, Sec-
ond edition''
(<https://otexts.com/fpp2/>).
Refer to ``Prophet: forecasting at scale''
(<https://research.fb.com/blog/2017/02/prophet-forecasting-at-scale/>.).

URL https://github.com/business-science/modeltime

BugReports https://github.com/business-science/modeltime/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports timetk (>= 2.1.0), parsnip (>= 0.1.2), dials, yardstick,
workflows, hardhat, rlang (>= 0.1.2), glue, plotly, reactable,
gt, ggplot2, tibble, tidyr, dplyr, purrr, stringr, forcats,
scales, janitor, progressr, magrittr, forecast, xgboost,
prophet, methods

Suggests tidymodels, recipes, rsample, tune, tidyverse, lubridate,
testthat, roxygen2, kernlab, earth, randomForest, tidyquant,
knitr, rmarkdown

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation no

Author Matt Dancho [aut, cre],
Business Science [cph]

Maintainer Matt Dancho <mdancho@business-science.io>

Repository CRAN

Date/Publication 2020-07-03 20:10:02 UTC

1

https://github.com/business-science/modeltime
https://github.com/business-science/modeltime/issues

2 R topics documented:

R topics documented:
arima_boost . 3
Arima_fit_impl . 8
arima_params . 9
Arima_predict_impl . 10
arima_reg . 11
arima_workflow_tuned . 15
arima_xgboost_fit_impl . 16
arima_xgboost_predict_impl . 18
auto_arima_fit_impl . 18
auto_arima_xgboost_fit_impl . 19
create_xreg_recipe . 22
default_forecast_accuracy_metric_set . 24
ets_fit_impl . 25
ets_predict_impl . 25
exp_smoothing . 26
exp_smoothing_params . 29
get_arima_description . 30
get_model_description . 31
modeltime_accuracy . 32
modeltime_calibrate . 33
modeltime_forecast . 35
modeltime_refit . 38
modeltime_table . 40
new_modeltime_bridge . 41
parse_index . 42
plot_modeltime_forecast . 43
prophet_boost . 45
prophet_fit_impl . 50
prophet_params . 51
prophet_predict_impl . 52
prophet_reg . 53
prophet_xgboost_fit_impl . 56
prophet_xgboost_predict_impl . 59
recipe_helpers . 60
seasonal_decomp . 61
stlm_arima_fit_impl . 65
stlm_arima_predict_impl . 66
stlm_ets_fit_impl . 66
stlm_ets_predict_impl . 67
table_modeltime_accuracy . 67
time_series_params . 70
type_sum.mdl_time_tbl . 71
xgboost_impl . 71
xgboost_predict . 72

Index 73

arima_boost 3

arima_boost General Interface for "Boosted" ARIMA Regression Models

Description

arima_boost() is a way to generate a specification of a time series model that uses boosting to
improve modeling errors (residuals) on Exogenous Regressors. It works with both "automated"
ARIMA (auto.arima) and standard ARIMA (arima). The main algorithms are:

• Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)

• ARIMA + XGBoost Errors (engine = arima_xgboost)

Usage

arima_boost(
mode = "regression",
seasonal_period = NULL,
non_seasonal_ar = NULL,
non_seasonal_differences = NULL,
non_seasonal_ma = NULL,
seasonal_ar = NULL,
seasonal_differences = NULL,
seasonal_ma = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

non_seasonal_differences

The order of integration for non-seasonal differencing. Often denoted "d" in
pdq-notation.

4 arima_boost

non_seasonal_ma

The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

seasonal_differences

The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (xgboost only).

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (xgboost
only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (xgboost only).

loss_reduction A number for the reduction in the loss function required to split further (xgboost
only).

sample_size A number for the number (or proportion) of data that is exposed to the fitting
routine. For xgboost, the sampling is done at at each iteration while C5.0 sam-
ples once during training.

stop_iter The number of iterations without improvement before stopping (xgboost only).

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For arima_boost(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "auto_arima_xgboost" (default) - Connects to forecast::auto.arima() and xgboost::xgb.train

• "arima_xgboost" - Connects to forecast::Arima() and xgboost::xgb.train

Main Arguments
The main arguments (tuning parameters) for the ARIMA model are:

• seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_differences: The order of integration for non-seasonal differencing.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

• seasonal_differences: The order of integration for seasonal differencing.

arima_boost 5

• seasonal_ma: The order of the seasonal moving average (SMA) terms.

The main arguments (tuning parameters) for the model XGBoost model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the
tree models.

• trees: The number of trees contained in the ensemble.

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

• tree_depth: The maximum depth of the tree (i.e. number of splits).

• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.

• loss_reduction: The reduction in the loss function required to split further.

• sample_size: The amount of data exposed to the fitting routine.

• stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

Model 1: ARIMA:

modeltime forecast::auto.arima forecast::Arima
seasonal_period ts(frequency) ts(frequency)
non_seasonal_ar, non_seasonal_differences, non_seasonal_ma max.p, max.d, max.q order = c(p,d,q)
seasonal_ar, seasonal_differences, seasonal_ma max.P, max.D, max.Q seasonal = c(P,D,Q)

Model 2: XGBoost:

modeltime xgboost::xgb.train
tree_depth max_depth
trees nrounds
learn_rate eta
mtry colsample_bytree
min_n min_child_weight
loss_reduction gamma
sample_size subsample

Other options can be set using set_engine().

auto_arima_xgboost (default engine)

6 arima_boost

Model 1: Auto ARIMA (forecast::auto.arima):

function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1,
start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",
"bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,
test = c("kpss", "adf", "pp"), test.args = list(), seasonal.test = c("seas",
"ocsb", "hegy", "ch"), seasonal.test.args = list(), allowdrift = TRUE,
allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,
num.cores = 2, x = y, ...)

Parameter Notes:

• All values of nonseasonal pdq and seasonal PDQ are maximums. The auto.arima will select
a value using these as an upper limit.

• xreg - This should not be used since XGBoost will be doing the regression

Model 2: XGBoost (xgboost::xgb.train):

function (params = list(), data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,
maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL,
callbacks = list(), ...)

Parameter Notes:

• XGBoost uses a params = list() to capture. Parsnip / Modeltime automatically sends any
args provided as ... inside of set_engine() to the params = list(...).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1) or seasonal (e.g. seasonal_period = 12
or seasonal_period = "12 months"). There are 3 ways to specify:

1. seasonal_period = "auto": A period is selected based on the periodicity of the data (e.g. 12
if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

arima_boost 7

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

• XY Interface: fit_xy(x = data[,"date"],y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_boost() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

• fit_xy(data[,c("date","month.lbl")],y = data$y) will pass x, where x is a data frame
containing month.lbl and the date feature. Only month.lbl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(tidyverse)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

MODEL SPEC ----

Set engine and boosting parameters
model_spec <- arima_boost(

ARIMA args

8 Arima_fit_impl

seasonal_period = 12,
non_seasonal_ar = 0,
non_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1,

XGBoost Args
tree_depth = 6,
learn_rate = 0.1

) %>%
set_engine(engine = "arima_xgboost")

FIT ----

Not run:
Boosting - Happens by adding numeric date and month features
model_fit_boosted <- model_spec %>%

fit(value ~ date + as.numeric(date) + month(date, label = TRUE),
data = training(splits))

model_fit_boosted

End(Not run)

Arima_fit_impl Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

Arima_fit_impl(
x,
y,
period = "auto",
p = 0,
d = 0,
q = 0,
P = 0,
D = 0,
Q = 0,
...

)

arima_params 9

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.

p The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

d The order of integration for non-seasonal differencing. Often denoted "d" in
pdq-notation.

q The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation.

P The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

D The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.

Q The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

... Additional arguments passed to forecast::Arima

arima_params Tuning Parameters for ARIMA Models

Description

Tuning Parameters for ARIMA Models

Usage

non_seasonal_ar(range = c(0L, 5L), trans = NULL)

non_seasonal_differences(range = c(0L, 2L), trans = NULL)

non_seasonal_ma(range = c(0L, 5L), trans = NULL)

seasonal_ar(range = c(0L, 2L), trans = NULL)

seasonal_differences(range = c(0L, 1L), trans = NULL)

seasonal_ma(range = c(0L, 2L), trans = NULL)

10 Arima_predict_impl

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

The main parameters for ARIMA models are:

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_differences: The order of integration for non-seasonal differencing.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

• seasonal_differences: The order of integration for seasonal differencing.

• seasonal_ma: The order of the seasonal moving average (SMA) terms.

Examples

non_seasonal_ar()

non_seasonal_differences()

non_seasonal_ma()

Arima_predict_impl Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

Arima_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

arima_reg 11

arima_reg General Interface for ARIMA Regression Models

Description

arima_reg() is a way to generate a specification of an ARIMA model before fitting and allows the
model to be created using different packages. Currently the only package is forecast.

Usage

arima_reg(
mode = "regression",
seasonal_period = NULL,
non_seasonal_ar = NULL,
non_seasonal_differences = NULL,
non_seasonal_ma = NULL,
seasonal_ar = NULL,
seasonal_differences = NULL,
seasonal_ma = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

non_seasonal_differences

The order of integration for non-seasonal differencing. Often denoted "d" in
pdq-notation.

non_seasonal_ma

The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

seasonal_differences

The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

12 arima_reg

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For arima_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "auto_arima" (default) - Connects to forecast::auto.arima()

• "Arima" - Connects to forecast::Arima()

Main Arguments
The main arguments (tuning parameters) for the model are:

• seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_differences: The order of integration for non-seasonal differencing.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

• seasonal_differences: The order of integration for seasonal differencing.

• seasonal_ma: The order of the seasonal moving average (SMA) terms.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

modeltime forecast::auto.arima forecast::Arima
seasonal_period ts(frequency) ts(frequency)
non_seasonal_ar, non_seasonal_differences, non_seasonal_ma max.p, max.d, max.q order = c(p,d,q)
seasonal_ar, seasonal_differences, seasonal_ma max.P, max.D, max.Q seasonal = c(P,D,Q)

Other options can be set using set_engine().

auto_arima (default engine)
The engine uses forecast::auto.arima().

Function Parameters:

function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1,
start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",
"bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,

arima_reg 13

test = c("kpss", "adf", "pp"), test.args = list(), seasonal.test = c("seas",
"ocsb", "hegy", "ch"), seasonal.test.args = list(), allowdrift = TRUE,
allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,
num.cores = 2, x = y, ...)

The MAXIMUM nonseasonal ARIMA terms (max.p, max.d, max.q) and seasonal ARIMA terms
(max.P, max.D, max.Q) are provided to forecast::auto.arima() via arima_reg() parameters.
Other options and argument can be set using set_engine().

Parameter Notes:

• All values of nonseasonal pdq and seasonal PDQ are maximums. The forecast::auto.arima()
model will select a value using these as an upper limit.

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

arima

The engine uses forecast::Arima().

Function Parameters:

function (y, order = c(0, 0, 0), seasonal = c(0, 0, 0), xreg = NULL, include.mean = TRUE,
include.drift = FALSE, include.constant, lambda = model$lambda, biasadj = FALSE,
method = c("CSS-ML", "ML", "CSS"), model = NULL, x = y, ...)

The nonseasonal ARIMA terms (order) and seasonal ARIMA terms (seasonal) are provided to
forecast::Arima() via arima_reg() parameters. Other options and argument can be set using
set_engine().

Parameter Notes:

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

• method - The default is set to "ML" (Maximum Likelihood). This method is more robust at
the expense of speed and possible selections may fail unit root inversion testing. Alternatively,
you can add method = "CSS-ML" to evaluate Conditional Sum of Squares for starting values,
then Maximium Likelihood.

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

14 arima_reg

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

• XY Interface: fit_xy(x = data[,"date"],y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

• fit_xy(data[,c("date","month.lbl")],y = data$y) will pass x, where x is a data frame
containing month.lbl and the date feature. Only month.lbl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

arima_workflow_tuned 15

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- AUTO ARIMA ----

Model Spec
model_spec <- arima_reg() %>%

set_engine("auto_arima")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- STANDARD ARIMA ----

Model Spec
model_spec <- arima_reg(

seasonal_period = 12,
non_seasonal_ar = 3,
non_seasonal_differences = 1,
non_seasonal_ma = 3,
seasonal_ar = 1,
seasonal_differences = 0,
seasonal_ma = 1

) %>%
set_engine("arima")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

arima_workflow_tuned Example ARIMA Tuning Results

Description

These objects are the results of an analysis of the M750 data set, which came from the M4 Forecast
Competition.

Usage

arima_workflow_tuned

Format

An object of class tune_results (inherits from time_series_cv, rset, tbl_df, tbl, data.frame)
with 2 rows and 4 columns.

16 arima_xgboost_fit_impl

Value

This is the output of tune_grid() for an ARIMA model created with arima_reg().

Examples

arima_workflow_tuned

arima_xgboost_fit_impl

Bridge ARIMA-XGBoost Modeling function

Description

Bridge ARIMA-XGBoost Modeling function

Usage

arima_xgboost_fit_impl(
x,
y,
period = "auto",
p = 0,
d = 0,
q = 0,
P = 0,
D = 0,
Q = 0,
include.mean = TRUE,
include.drift = FALSE,
include.constant,
lambda = model$lambda,
biasadj = FALSE,
method = c("CSS-ML", "ML", "CSS"),
model = NULL,
max_depth = 6,
nrounds = 15,
eta = 0.3,
colsample_bytree = 1,
min_child_weight = 1,
gamma = 0,
subsample = 1,
validation = 0,
early_stop = NULL,
...

)

arima_xgboost_fit_impl 17

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.

p The order of the non-seasonal auto-regressive (AR) terms.

d The order of integration for non-seasonal differencing.

q The order of the non-seasonal moving average (MA) terms.

P The order of the seasonal auto-regressive (SAR) terms.

D The order of integration for seasonal differencing.

Q The order of the seasonal moving average (SMA) terms.

include.mean Should the ARIMA model include a mean term? The default is TRUE for undif-
ferenced series, FALSE for differenced ones (where a mean would not affect the
fit nor predictions).

include.drift Should the ARIMA model include a linear drift term? (i.e., a linear regression
with ARIMA errors is fitted.) The default is FALSE.

include.constant

If TRUE, then include.mean is set to be TRUE for undifferenced series and
include.drift is set to be TRUE for differenced series. Note that if there is
more than one difference taken, no constant is included regardless of the value
of this argument. This is deliberate as otherwise quadratic and higher order
polynomial trends would be induced.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is
automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood.

model Output from a previous call to Arima. If model is passed, this same model is
fitted to y without re-estimating any parameters.

max_depth An integer for the maximum depth of the tree.

nrounds An integer for the number of boosting iterations.

eta A numeric value between zero and one to control the learning rate.
colsample_bytree

Subsampling proportion of columns.
min_child_weight

A numeric value for the minimum sum of instance weights needed in a child to
continue to split.

18 auto_arima_fit_impl

gamma A number for the minimum loss reduction required to make a further partition
on a leaf node of the tree

subsample Subsampling proportion of rows.

validation A positive number. If on [0, 1) the value, validation is a random proportion
of data in x and y that are used for performance assessment and potential early
stopping. If 1 or greater, it is the number of training set samples use for these
purposes.

early_stop An integer or NULL. If not NULL, it is the number of training iterations without
improvement before stopping. If validation is used, performance is base on
the validation set; otherwise the training set is used.

... Additional arguments passed to xgboost::xgb.train

arima_xgboost_predict_impl

Bridge prediction Function for ARIMA-XGBoost Models

Description

Bridge prediction Function for ARIMA-XGBoost Models

Usage

arima_xgboost_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to predict.xgb.Booster()

auto_arima_fit_impl Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

auto_arima_xgboost_fit_impl 19

Usage

auto_arima_fit_impl(
x,
y,
period = "auto",
max.p = 5,
max.d = 2,
max.q = 5,
max.P = 2,
max.D = 1,
max.Q = 2,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.

max.p The maximum order of the non-seasonal auto-regressive (AR) terms.

max.d The maximum order of integration for non-seasonal differencing.

max.q The maximum order of the non-seasonal moving average (MA) terms.

max.P The maximum order of the seasonal auto-regressive (SAR) terms.

max.D The maximum order of integration for seasonal differencing.

max.Q The maximum order of the seasonal moving average (SMA) terms.

... Additional arguments passed to forecast::auto.arima

auto_arima_xgboost_fit_impl

Bridge ARIMA-XGBoost Modeling function

Description

Bridge ARIMA-XGBoost Modeling function

Usage

auto_arima_xgboost_fit_impl(
x,
y,
period = "auto",
max.p = 5,

20 auto_arima_xgboost_fit_impl

max.d = 2,
max.q = 5,
max.P = 2,
max.D = 1,
max.Q = 2,
max.order = 5,
d = NA,
D = NA,
start.p = 2,
start.q = 2,
start.P = 1,
start.Q = 1,
stationary = FALSE,
seasonal = TRUE,
ic = c("aicc", "aic", "bic"),
stepwise = TRUE,
nmodels = 94,
trace = FALSE,
approximation = (length(x) > 150 | frequency(x) > 12),
method = NULL,
truncate = NULL,
test = c("kpss", "adf", "pp"),
test.args = list(),
seasonal.test = c("seas", "ocsb", "hegy", "ch"),
seasonal.test.args = list(),
allowdrift = TRUE,
allowmean = TRUE,
lambda = NULL,
biasadj = FALSE,
max_depth = 6,
nrounds = 15,
eta = 0.3,
colsample_bytree = 1,
min_child_weight = 1,
gamma = 0,
subsample = 1,
validation = 0,
early_stop = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.

auto_arima_xgboost_fit_impl 21

max.p The maximum order of the non-seasonal auto-regressive (AR) terms.

max.d The maximum order of integration for non-seasonal differencing.

max.q The maximum order of the non-seasonal moving average (MA) terms.

max.P The maximum order of the seasonal auto-regressive (SAR) terms.

max.D The maximum order of integration for seasonal differencing.

max.Q The maximum order of the seasonal moving average (SMA) terms.

max.order Maximum value of p+q+P+Q if model selection is not stepwise.

d Order of first-differencing. If missing, will choose a value based on test.

D Order of seasonal-differencing. If missing, will choose a value based on season.test.

start.p Starting value of p in stepwise procedure.

start.q Starting value of q in stepwise procedure.

start.P Starting value of P in stepwise procedure.

start.Q Starting value of Q in stepwise procedure.

stationary If TRUE, restricts search to stationary models.

seasonal If FALSE, restricts search to non-seasonal models.

ic Information criterion to be used in model selection.

stepwise If TRUE, will do stepwise selection (faster). Otherwise, it searches over all mod-
els. Non-stepwise selection can be very slow, especially for seasonal models.

nmodels Maximum number of models considered in the stepwise search.

trace If TRUE, the list of ARIMA models considered will be reported.

approximation If TRUE, estimation is via conditional sums of squares and the information crite-
ria used for model selection are approximated. The final model is still computed
using maximum likelihood estimation. Approximation should be used for long
time series or a high seasonal period to avoid excessive computation times.

method fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood. Can be abbreviated.

truncate An integer value indicating how many observations to use in model selection.
The last truncate values of the series are used to select a model when truncate
is not NULL and approximation=TRUE. All observations are used if either truncate=NULL
or approximation=FALSE.

test Type of unit root test to use. See ndiffs for details.

test.args Additional arguments to be passed to the unit root test.

seasonal.test This determines which method is used to select the number of seasonal differ-
ences. The default method is to use a measure of seasonal strength computed
from an STL decomposition. Other possibilities involve seasonal unit root tests.

seasonal.test.args

Additional arguments to be passed to the seasonal unit root test. See nsdiffs
for details.

allowdrift If TRUE, models with drift terms are considered.

22 create_xreg_recipe

allowmean If TRUE, models with a non-zero mean are considered.
lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is

automatically selected using BoxCox.lambda. The transformation is ignored if
NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

max_depth An integer for the maximum depth of the tree.
nrounds An integer for the number of boosting iterations.
eta A numeric value between zero and one to control the learning rate.
colsample_bytree

Subsampling proportion of columns.
min_child_weight

A numeric value for the minimum sum of instance weights needed in a child to
continue to split.

gamma A number for the minimum loss reduction required to make a further partition
on a leaf node of the tree

subsample Subsampling proportion of rows.
validation A positive number. If on [0, 1) the value, validation is a random proportion

of data in x and y that are used for performance assessment and potential early
stopping. If 1 or greater, it is the number of training set samples use for these
purposes.

early_stop An integer or NULL. If not NULL, it is the number of training iterations without
improvement before stopping. If validation is used, performance is base on
the validation set; otherwise the training set is used.

... Additional arguments passed to xgboost::xgb.train

create_xreg_recipe Developer Tools for preparing XREGS (Regressors)

Description

These functions are designed to assist developers in extending the modeltime package. create_xregs_recipe()
makes it simple to automate conversion of raw un-encoded features to machine-learning ready fea-
tures.

Usage

create_xreg_recipe(
data,
prepare = TRUE,
clean_names = TRUE,
dummy_encode = TRUE,
one_hot = FALSE

)

create_xreg_recipe 23

Arguments

data A data frame

prepare Whether or not to run recipes::prep() on the final recipe. Default is to pre-
pare. User can set this to FALSE to return an un prepared recipe.

clean_names Uses janitor::clean_names() to process the names and improve robustness
to failure during dummy (one-hot) encoding step.

dummy_encode Should factors (categorical data) be

one_hot If dummy_encode = TRUE, should the encoding return one column for each fea-
ture or one less column than each feature. Default is FALSE.

Details

The default recipe contains steps to:

1. Remove date features

2. Clean the column names removing spaces and bad characters

3. Convert ordered factors to regular factors

4. Convert factors to dummy variables

5. Remove any variables that have zero variance

Value

A recipe in either prepared or un-prepared format.

Examples

library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%
filter(id == "M750") %>%
select(-value) %>%
mutate(month = month(date, label = TRUE))

predictors

Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)

24 default_forecast_accuracy_metric_set

default_forecast_accuracy_metric_set

Forecast Accuracy Metrics Sets

Description

This is a wrapper for metric_set() with several common forecast / regression accuracy metrics
included. These are the default time series accuracy metrics used with modeltime_accuracy().

Usage

default_forecast_accuracy_metric_set()

Details

The primary purpose is to use the default accuracy metrics to calculate the following forecast accu-
racy metrics using modeltime_accuracy():

• MAE - Mean absolute error, mae()

• MAPE - Mean absolute percentage error, mape()

• MASE - Mean absolute scaled error, mase()

• SMAPE - Symmetric mean absolute percentage error, smape()

• RMSE - Root mean squared error, rmse()

• RSQ - R-squared, rsq()

Examples

library(tibble)
library(dplyr)
library(timetk)

set.seed(1)
data <- tibble(

time = tk_make_timeseries("2020", by = "sec", length_out = 10),
y = 1:10 + rnorm(10),
y_hat = 1:10 + rnorm(10)

)

Default Metric Specification
default_forecast_accuracy_metric_set()

Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set()

Apply the metric summarizer to new data
calc_default_metrics(data, y, y_hat)

ets_fit_impl 25

ets_fit_impl Low-Level Exponential Smoothing function for translating modeltime
to forecast

Description

Low-Level Exponential Smoothing function for translating modeltime to forecast

Usage

ets_fit_impl(
x,
y,
period = "auto",
error = "auto",
trend = "auto",
season = "auto",
damping = "auto",
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.

error The form of the error term: "auto", "additive", or "multiplicative". If the error is
multiplicative, the data must be non-negative.

trend The form of the trend term: "auto", "additive", "multiplicative" or "none".

season The form of the seasonal term: "auto", "additive", "multiplicative" or "none"..

damping Apply damping to a trend: "auto", "damped", or "none".

... Additional arguments passed to forecast::ets

ets_predict_impl Bridge prediction function for Exponential Smoothing models

Description

Bridge prediction function for Exponential Smoothing models

26 exp_smoothing

Usage

ets_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::ets()

exp_smoothing General Interface for Exponential Smoothing State Space Models

Description

exp_smoothing() is a way to generate a specification of an Exponential Smoothing model before
fitting and allows the model to be created using different packages. Currently the only package is
forecast.

Usage

exp_smoothing(
mode = "regression",
seasonal_period = NULL,
error = NULL,
trend = NULL,
season = NULL,
damping = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

error The form of the error term: "auto", "additive", or "multiplicative". If the error is
multiplicative, the data must be non-negative.

trend The form of the trend term: "auto", "additive", "multiplicative" or "none".

season The form of the seasonal term: "auto", "additive", "multiplicative" or "none"..

damping Apply damping to a trend: "auto", "damped", or "none".

exp_smoothing 27

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For exp_smoothing(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "ets" (default) - Connects to forecast::ets()

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

modeltime forecast::ets
seasonal_period() ts(frequency)
error(), trend(), season() model
damping() damped

Other options can be set using set_engine().

ets (default engine)
The engine uses forecast::ets().

Function Parameters:

function (y, model = "ZZZ", damped = NULL, alpha = NULL, beta = NULL, gamma = NULL,
phi = NULL, additive.only = FALSE, lambda = NULL, biasadj = FALSE,
lower = c(rep(1e-04, 3), 0.8), upper = c(rep(0.9999, 3), 0.98), opt.crit = c("lik",
"amse", "mse", "sigma", "mae"), nmse = 3, bounds = c("both", "usual",
"admissible"), ic = c("aicc", "aic", "bic"), restrict = TRUE, allow.multiplicative.trend = FALSE,
use.initial.values = FALSE, na.action = c("na.contiguous", "na.interp",
"na.fail"), ...)

The main arguments are model and damped are defined using:

• error() = "auto", "additive", and "multiplicative" are converted to "Z", "A", and "M"

• trend() = "auto", "additive", "multiplicative", and "none" are converted to "Z","A","M" and
"N"

• season() = "auto", "additive", "multiplicative", and "none" are converted to "Z","A","M" and
"N"

• damping() - "auto", "damped", "none" are converted to NULL, TRUE, FALSE

By default, all arguments are set to "auto" to perform automated Exponential Smoothing using
in-sample data following the underlying forecast::ets() automation routine.

Other options and argument can be set using set_engine().

Parameter Notes:

• xreg - This model is not set up to use exogenous regressors. Only univariate models will be
fit.

28 exp_smoothing

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or seasonal (e.g. seasonal_period
= 12 or seasonal_period = "12 months"). There are 3 ways to specify:

1. seasonal_period = "auto": A period is selected based on the periodicity of the data (e.g. 12
if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate:
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

• XY Interface: fit_xy(x = data[,"date"],y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
This model is not set up for use with exogenous regressors.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- AUTO ETS ----

Model Spec - The default parameters are all set
to "auto" if none are provided
model_spec <- exp_smoothing() %>%

exp_smoothing_params 29

set_engine("ets")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- STANDARD ETS ----

Model Spec
model_spec <- exp_smoothing(

seasonal_period = 12,
error = "multiplicative",
trend = "additive",
season = "multiplicative"

) %>%
set_engine("ets")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

exp_smoothing_params Tuning Parameters for Exponential Smoothing Models

Description

Tuning Parameters for Exponential Smoothing Models

Usage

error(values = c("additive", "multiplicative"))

trend(values = c("additive", "multiplicative", "none"))

season(values = c("additive", "multiplicative", "none"))

damping(values = c("damped", "none"))

Arguments

values A character string of possible values.

30 get_arima_description

Details

The main parameters for Exponential Smoothing models are:

• error: The form of the error term: additive", or "multiplicative". If the error is multiplicative,
the data must be non-negative.

• trend: The form of the trend term: "additive", "multiplicative" or "none".

• season: The form of the seasonal term: "additive", "multiplicative" or "none"..

• damping: Apply damping to a trend: "damped", or "none".

Examples

error()

trend()

season()

get_arima_description Get model descriptions for Arima objects

Description

Get model descriptions for Arima objects

Usage

get_arima_description(object, padding = FALSE)

Arguments

object Objects of class Arima

padding Whether or not to include padding

Source

• Forecast R Package, forecast:::arima.string()

Examples

library(forecast)

arima_fit <- forecast::Arima(1:10)

get_arima_description(arima_fit)

get_model_description 31

get_model_description Get model descriptions for parsnip, workflows & modeltime objects

Description

Get model descriptions for parsnip, workflows & modeltime objects

Usage

get_model_description(object, indicate_training = FALSE, upper_case = TRUE)

Arguments

object Parsnip or workflow objects

indicate_training

Whether or not to indicate if the model has been trained

upper_case Whether to return upper or lower case model descriptions

Examples

library(dplyr)
library(timetk)
library(parsnip)
library(modeltime)

Model Specification ----

arima_spec <- arima_reg() %>%
set_engine("auto_arima")

get_model_description(arima_spec, indicate_training = TRUE)

Fitted Model ----

m750 <- m4_monthly %>% filter(id == "M750")

arima_fit <- arima_spec %>%
fit(value ~ date, data = m750)

get_model_description(arima_fit, indicate_training = TRUE)

32 modeltime_accuracy

modeltime_accuracy Calculate Accuracy Metrics

Description

This is a wrapper for yardstick that simplifies time series regression accuracy metric calculations
from a fitted workflow (trained workflow) or model_fit (trained parsnip model).

Usage

modeltime_accuracy(
object,
new_data = NULL,
metric_set = default_forecast_accuracy_metric_set(),
quiet = TRUE,
...

)

Arguments

object A fitted model object that is either (1) a workflow that has been fit by fit.workflow()
or (2) a parsnip model that has been fit using fit.model_spec()

new_data A tibble containing future information (timestamps and actual values).

metric_set A metric_set() that is used to summarize one or more forecast accuracy (re-
gression) metrics.

quiet Hide errors (TRUE, the default), or display them as they occur?

... Additional arguments passed to modeltime_forecast().

Details

The following accuracy metrics are included by default via default_forecast_accuracy_metric_set():

• MAE - Mean absolute error, mae()

• MAPE - Mean absolute percentage error, mape()

• MASE - Mean absolute scaled error, mase()

• SMAPE - Symmetric mean absolute percentage error, smape()

• RMSE - Root mean squared error, rmse()

• RSQ - R-squared, rsq()

Value

A tibble with accuracy estimates.

modeltime_calibrate 33

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%

set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_arima

)

---- ACCURACY ----

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_accuracy(

metric_set = metric_set(mae, rmse, rsq)
)

modeltime_calibrate Preparation for forecasting

Description

Calibration sets the stage for accuracy and forecast confidence by computing predictions and resid-
uals from out of sample data.

Usage

modeltime_calibrate(object, new_data, quiet = TRUE, ...)

34 modeltime_calibrate

Arguments

object A fitted model object that is either:

1. A modeltime table that has been created using modeltime_table()

2. A workflow that has been fit by fit.workflow() or
3. A parsnip model that has been fit using fit.model_spec()

new_data A test data set tibble containing future information (timestamps and actual
values).

quiet Hide errors (TRUE, the default), or display them as they occur?

... Additional arguments passed to modeltime_forecast().

Details

The results of calibration are used for:

• Forecast Confidence Interval Estimation: The out of sample residual data is used to calcu-
late the confidence interval. Refer to modeltime_forecast().

• Accuracy Calculations: The out of sample actual and prediction values are used to calculate
performance metrics. Refer to modeltime_accuracy()

The calibration steps include:

1. If not a Modeltime Table, objects are converted to Modeltime Tables internally

2. Two Columns are added:

• .type: Indicates the sample type. Only "Test" is currently available.

• .calibration_data: Contains a tibble with Timestamps, Actual Values, Predictions and
Residuals calculated from new_data (Test Data)

Value

A Modeltime Table (mdl_time_tbl) with nested .calibration_data added

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----

modeltime_forecast 35

model_fit_arima <- arima_reg() %>%
set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_arima

)

---- CALIBRATE ----

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- ACCURACY ----

calibration_tbl %>%
modeltime_accuracy()

---- FORECAST ----

calibration_tbl %>%
modeltime_forecast(

new_data = testing(splits),
actual_data = m750

)

modeltime_forecast Forecast future data

Description

The goal of modeltime_forecast() is to simplify the process of forecasting future data.

Usage

modeltime_forecast(
object,
new_data = NULL,
h = NULL,
actual_data = NULL,
conf_interval = 0.95,
...

)

36 modeltime_forecast

Arguments

object A Modeltime Table that has been calibrated with modeltime_calibrate()

new_data A tibble containing future information to forecast. If NULL, forecasts the cali-
bration data.

h The forecast horizon (can be used instead of new_data for time series with no
exogenous regressors). Extends the calibration data h periods into the future.

actual_data Reference data that is combined with the output tibble and given a .key = "actual"

conf_interval An estimated confidence interval based on the in-sample residuals
... Not currently used

Details

The key parameters are (controlled by new_data or h) and combining with existing data (controlled
by actual_data) in preparation for visualization with plot_modeltime_forecast().

Specifying New Data or Horizon (h)
When forecasting you can specify future data using:

1. new_data: This is a future tibble with date column and columns for xregs extending the trained
dates and exogonous regressors (xregs) if used.

• Forecasting Evaluation Data: By default, the new_data will use the .calibration_data
if new_data is not provided. This is the equivalent of using rsample::testing() for
getting test data sets.

• Forecasting Future Data: See future_frame() for creating future tibbles.
• Xregs: Can be used with this method

2. h: This is a phrase like "1 year", which extends the .calibration_data into the future.
• Forecasting Future Data: All forecasts using h are extended after the calibration data,

which is desirable after refitting with modeltime_refit(). Internally, a call is made to
future_frame() to expedite creating new data using the date feature.

• Xregs: Cannot be used because future data must include new xregs.

Actual Data
This is reference data that contains the true values of the time-stamp data. It helps in visualizing the
performance of the forecast vs the actual data.

Confidence Interval Estimation
Confidence intervals (.conf_lo, .conf_hi) are estimated based on the normal estimation of the
testing errors (out of sample) from modeltime_calibrate(). The out-of-sample error estimates
are then carried through and applied to applied to any future forecasts.

The confidence interval can be adjusted with the conf_interval parameter. An 80% confidence
interval estimates a normal (Gaussian distribution) that assumes that 80% of the future data will fall
within the upper and lower confidence limits.

The confidence interval is mean-adjusted, meaning that if the mean of the residuals is non-zero, the
confidence interval is adjusted to widen the interval to capture the difference in means.

Refitting has no affect on the confidence interval since this is calculated independently of the refitted
model (on data with a smaller sample size). New observations typically improve future accuracy,
which in most cases makes the out-of-sample confidence intervals conservative.

modeltime_forecast 37

Value

A tibble with predictions and time-stamp data. For ease of plotting and calculations, the column
names are transformed to:

• .key: Values labeled either "prediction" or "actual"

• .index: The timestamp index.

• .value: The value being forecasted.

• .conf_lo: The lower limit of the confidence interval.

• .conf_hi: The upper limit of the confidence interval.

Additional descriptive columns are included:

• .model_id: Model ID from the Modeltime Table

• .model_desc: Model Description from the Modeltime Table

Unnecessary columns are dropped to save space:

• .model

• .calibration_data

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%

set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_arima

)

---- CALIBRATE ----

38 modeltime_refit

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- ACCURACY ----

calibration_tbl %>%
modeltime_accuracy()

---- FORECAST ----

calibration_tbl %>%
modeltime_forecast(

new_data = testing(splits),
actual_data = m750

)

modeltime_refit Refit one or more trained models to new data

Description

This is a wrapper for fit() that takes a Modeltime Table and retrains each model on new data
re-using the parameters and preprocessing steps used during the training process.

Usage

modeltime_refit(object, data, control = NULL, ...)

Arguments

object A Modeltime Table

data A tibble that contains data to retrain the model(s) using.

control Either control_parsnip() or control_workflow() depending on the object.
If NULL, created automatically.

... Additional arguments passed to fit().

Details

Refitting is an important step prior to forecasting time series models. The modeltime_refit()
function makes it easy to recycle models, retraining on new data.

Recycling Parameters
Parameters are recycled during retraining using the following criteria:

• Automated models (e.g. "auto arima") will have parameters recalculated.

• Non-automated models (e.g. "arima") will have parameters preserved.

• All preprocessing steps will be reused on the data

modeltime_refit 39

Refit
The modeltime_refit() function is used to retrain models trained with fit().

Refit XY
The XY format is not supported at this time.

Value

A Modeltime Table containing one or more re-trained models.

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

model_fit_auto_arima <- arima_reg() %>%
set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_auto_arima

)

---- CALIBRATE ----
- Calibrate on training data set

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- REFIT ----
- Refit on full data set

refit_tbl <- calibration_tbl %>%
modeltime_refit(m750)

40 modeltime_table

modeltime_table Scale forecast analysis with a Modeltime Table

Description

Designed to perform forecasts at scale using models created with modeltime, parsnip, workflows,
and regression modeling extensions in the tidymodels ecosystem.

Usage

modeltime_table(...)

Arguments

... Fitted parsnip model or workflow objects

Details

This function:

1. Creates a table of models

2. Validates that all objects are models (parsnip or workflows objects) and all models have been
fitted (trained)

3. Provides an ID and Description of the models

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%

set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

new_modeltime_bridge 41

models_tbl <- modeltime_table(
model_fit_arima

)

---- CALIBRATE ----

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- ACCURACY ----

calibration_tbl %>%
modeltime_accuracy()

---- FORECAST ----

calibration_tbl %>%
modeltime_forecast(

new_data = testing(splits),
actual_data = m750

)

new_modeltime_bridge Constructor for creating modeltime models

Description

These functions are used to construct new modeltime bridge functions that connect the tidymodels
infrastructure to time-series models containing date or date-time features.

Usage

new_modeltime_bridge(class, models, data, extras = NULL, desc = NULL)

Arguments

class A class name that is used for creating custom printing messages

models A list containing one or more models

data A data frame (or tibble) containing 4 columns: (date column with name that
matches input data), .actual, .fitted, and .residuals.

extras An optional list that is typically used for transferring preprocessing recipes to
the predict method.

desc An optional model description to appear when printing your modeltime objects

42 parse_index

Examples

library(stats)
library(tidyverse)
library(lubridate)
library(timetk)

lm_model <- lm(value ~ as.numeric(date) + hour(date) + wday(date, label = TRUE),
data = taylor_30_min)

data = tibble(
date = taylor_30_min$date, # Important - The column name must match the modeled data
These are standardized names: .actual, .fitted, .residuals
.actual = taylor_30_min$value,
.fitted = lm_model$fitted.values %>% as.numeric(),
.residuals = lm_model$residuals %>% as.numeric()

)

new_modeltime_bridge(
class = "lm_time_series_impl",
models = list(model_1 = lm_model),
data = data,
extras = NULL

)

parse_index Developer Tools for parsing date and date-time information

Description

These functions are designed to assist developers in extending the modeltime package.

Usage

parse_index_from_data(data)

parse_period_from_index(data, period)

Arguments

data A data frame

period A period to calculate from the time index. Numeric values are returned as-is.
"auto" guesses a numeric value from the index. A time-based phrase (e.g. "7
days") calculates the number of timestamps that typically occur within the time-
based phrase.

plot_modeltime_forecast 43

Value

• parse_index_from_data(): Returns a tibble containing the date or date-time column.

• parse_period_from_index(): Returns the numeric period from a tibble containing the index.

Examples

library(dplyr)
library(timetk)

predictors <- m4_monthly %>%
filter(id == "M750") %>%
select(-value)

index_tbl <- parse_index_from_data(predictors)
index_tbl

period <- parse_period_from_index(index_tbl, period = "1 year")
period

plot_modeltime_forecast

Interactive Forecast Visualization

Description

This is a wrapper for plot_time_series() that generates an interactive (plotly) or static (ggplot2)
plot with the forecasted data.

Usage

plot_modeltime_forecast(
.data,
.conf_interval_show = TRUE,
.conf_interval_fill = "grey20",
.conf_interval_alpha = 0.2,
.legend_show = TRUE,
.legend_max_width = 40,
.title = "Forecast Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
...

)

44 plot_modeltime_forecast

Arguments

.data A tibble that is the output of modeltime_forecast()

.conf_interval_show

Logical. Whether or not to include the confidence interval as a ribbon.
.conf_interval_fill

Fill color for the confidence interval
.conf_interval_alpha

Fill opacity for the confidence interval. Range (0, 1).

.legend_show Logical. Whether or not to show the legend. Can save space with long model
descriptions.

.legend_max_width

Numeric. The width of truncation to apply to the legend text.

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.color_lab Legend label if a color_var is used.

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly date range slider.

... Additional arguments passed to timetk::plot_time_series().

Value

A static ggplot2 plot or an interactive plotly plot containing a forecast

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%

set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

prophet_boost 45

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_arima

)

---- FORECAST ----

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_forecast(

new_data = testing(splits),
actual_data = m750

) %>%
plot_modeltime_forecast(.interactive = FALSE)

prophet_boost General Interface for Boosted PROPHET Time Series Models

Description

prophet_boost() is a way to generate a specification of a Boosted PROPHET model before fitting
and allows the model to be created using different packages. Currently the only package is prophet.

Usage

prophet_boost(
mode = "regression",
growth = NULL,
num_changepoints = NULL,
season = NULL,
prior_scale_changepoints = NULL,
prior_scale_seasonality = NULL,
prior_scale_holidays = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

46 prophet_boost

growth String ’linear’ or ’logistic’ to specify a linear or logistic trend.
num_changepoints

Number of potential changepoints to include for modeling trend.

season ’additive’ (default) or ’multiplicative’.
prior_scale_changepoints

Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

prior_scale_seasonality

Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality.

prior_scale_holidays

Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (xgboost only).

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (xgboost
only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (xgboost only).

loss_reduction A number for the reduction in the loss function required to split further (xgboost
only).

sample_size A number for the number (or proportion) of data that is exposed to the fitting
routine. For xgboost, the sampling is done at at each iteration while C5.0 sam-
ples once during training.

stop_iter The number of iterations without improvement before stopping (xgboost only).

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For prophet_boost(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "prophet_xgboost" (default) - Connects to prophet::prophet() and xgboost::xgb.train()

Main Arguments
The main arguments (tuning parameters) for the PROPHET model are:

• growth: String ’linear’ or ’logistic’ to specify a linear or logistic trend.

• num_changepoints: Number of potential changepoints to include for modeling trend.

• season: ’additive’ (default) or ’multiplicative’.

prophet_boost 47

• prior_scale_changepoints: Parameter modulating the flexibility of the automatic change-
point selection. Large values will allow many changepoints, small values will allow few
changepoints.

• prior_scale_seasonality: Parameter modulating the strength of the seasonality model.
Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the
seasonality.

• prior_scale_holidays: Parameter modulating the strength of the holiday components model,
unless overridden in the holidays input.

The main arguments (tuning parameters) for the model XGBoost model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the
tree models.

• trees: The number of trees contained in the ensemble.

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

• tree_depth: The maximum depth of the tree (i.e. number of splits).

• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.

• loss_reduction: The reduction in the loss function required to split further.

• sample_size: The amount of data exposed to the fitting routine.

• stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

Model 1: PROPHET:

modeltime prophet
growth growth
num_changepoints n.changepoints
season seasonality.mode
prior_scale_changepoints changepoint.prior.scale
prior_scale_seasonality seasonality.prior.scale
prior_scale_holidays holidays.prior.scale

Model 2: XGBoost:

modeltime xgboost::xgb.train
tree_depth max_depth

48 prophet_boost

trees nrounds
learn_rate eta
mtry colsample_bytree
min_n min_child_weight
loss_reduction gamma
sample_size subsample

Other options can be set using set_engine().

prophet_xgboost

Model 1: PROPHET (prophet::prophet):

function (df = NULL, growth = "linear", changepoints = NULL, n.changepoints = 25,
changepoint.range = 0.8, yearly.seasonality = "auto", weekly.seasonality = "auto",
daily.seasonality = "auto", holidays = NULL, seasonality.mode = "additive",
seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
mcmc.samples = 0, interval.width = 0.8, uncertainty.samples = 1000,
fit = TRUE, ...)

Parameter Notes:

• df: This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manu-
ally). See Fit Details (below).

• holidays: A data.frame of holidays can be supplied via set_engine()

• uncertainty.samples: The default is set to 0 because the prophet uncertainty intervals are
not used as part of the Modeltime Workflow. You can override this setting if you plan to use
prophet’s uncertainty tools.

Limitations:

• prophet::add_seasonality() is not currently implemented. It’s used to specify non-standard
seasonalities using fourier series. An alternative is to use step_fourier() and supply custom
seasonalities as Extra Regressors.

Model 2: XGBoost (xgboost::xgb.train):

function (params = list(), data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,
maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL,
callbacks = list(), ...)

Parameter Notes:

• XGBoost uses a params = list() to capture. Parsnip / Modeltime automatically sends any
args provided as ... inside of set_engine() to the params = list(...).

prophet_boost 49

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Univariate (No Extra Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

• XY Interface: fit_xy(x = data[,"date"],y = data$y) will ignore xreg’s.

Multivariate (Extra Regressors)
Extra Regressors parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

• fit_xy(data[,c("date","month.lbl")],y = data$y) will pass x, where x is a data frame
containing month.lbl and the date feature. Only month.lbl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

50 prophet_fit_impl

m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- PROPHET ----

Model Spec
model_spec <- prophet_boost(

learn_rate = 0.1
) %>%

set_engine("prophet_xgboost")

Fit Spec
Not run:
model_fit <- model_spec %>%

fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE),
data = training(splits))

model_fit

End(Not run)

prophet_fit_impl Low-Level PROPHET function for translating modeltime to
PROPHET

Description

Low-Level PROPHET function for translating modeltime to PROPHET

Usage

prophet_fit_impl(
x,
y,
growth = "linear",
n.changepoints = 25,
seasonality.mode = "additive",
changepoint.prior.scale = 0.05,
seasonality.prior.scale = 10,
holidays.prior.scale = 10,
...

)

prophet_params 51

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

growth String ’linear’ or ’logistic’ to specify a linear or logistic trend.

n.changepoints Number of potential changepoints to include. Not used if input ‘changepoints‘
is supplied. If ‘changepoints‘ is not supplied, then n.changepoints potential
changepoints are selected uniformly from the first ‘changepoint.range‘ propor-
tion of df$ds.

seasonality.mode

’additive’ (default) or ’multiplicative’.

changepoint.prior.scale

Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

seasonality.prior.scale

Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality. Can be specified for individual seasonalities using add_seasonality.

holidays.prior.scale

Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

... Additional arguments passed to prophet::prophet

prophet_params Tuning Parameters for Prophet Models

Description

Tuning Parameters for Prophet Models

Usage

growth(values = c("linear", "logistic"))

num_changepoints(range = c(0L, 50L), trans = NULL)

prior_scale_changepoints(range = c(-3, 2), trans = log10_trans())

prior_scale_seasonality(range = c(-3, 2), trans = log10_trans())

prior_scale_holidays(range = c(-3, 2), trans = log10_trans())

52 prophet_predict_impl

Arguments

values A character string of possible values.

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

The main parameters for Prophet models are:

• growth: The form of the trend: "linear", or "logistic".

• num_changepoints: The number of trend changepoints allowed in modeling the trend

• season:

– The form of the seasonal term: "additive" or "multiplicative".
– See season().

• "Prior Scale": Controls flexibility of

– Changepoints: prior_scale_changepoints
– Seasonality: prior_scale_seasonality
– Holidays: prior_scale_holidays
– The log10_trans() converts priors to a scale from 0.001 to 100, which effectively

weights lower values more heavily than larger values.

Examples

growth()

num_changepoints()

season()

prior_scale_changepoints()

prophet_predict_impl Bridge prediction function for PROPHET models

Description

Bridge prediction function for PROPHET models

Usage

prophet_predict_impl(object, new_data, ...)

prophet_reg 53

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to prophet::predict()

prophet_reg General Interface for PROPHET Time Series Models

Description

prophet_reg() is a way to generate a specification of a PROPHET model before fitting and allows
the model to be created using different packages. Currently the only package is prophet.

Usage

prophet_reg(
mode = "regression",
growth = NULL,
num_changepoints = NULL,
season = NULL,
prior_scale_changepoints = NULL,
prior_scale_seasonality = NULL,
prior_scale_holidays = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

growth String ’linear’ or ’logistic’ to specify a linear or logistic trend.
num_changepoints

Number of potential changepoints to include for modeling trend.

season ’additive’ (default) or ’multiplicative’.
prior_scale_changepoints

Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

prior_scale_seasonality

Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality.

prior_scale_holidays

Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

54 prophet_reg

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For prophet_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "prophet" (default) - Connects to prophet::prophet()

Main Arguments
The main arguments (tuning parameters) for the model are:

• growth: String ’linear’ or ’logistic’ to specify a linear or logistic trend.

• num_changepoints: Number of potential changepoints to include for modeling trend.

• season: ’additive’ (default) or ’multiplicative’.

• prior_scale_changepoints: Parameter modulating the flexibility of the automatic change-
point selection. Large values will allow many changepoints, small values will allow few
changepoints.

• prior_scale_seasonality: Parameter modulating the strength of the seasonality model.
Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the
seasonality.

• prior_scale_holidays: Parameter modulating the strength of the holiday components model,
unless overridden in the holidays input.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

modeltime prophet
growth growth
num_changepoints n.changepoints
season seasonality.mode
prior_scale_changepoints changepoint.prior.scale
prior_scale_seasonality seasonality.prior.scale
prior_scale_holidays holidays.prior.scale

Other options can be set using set_engine().

prophet

The engine uses prophet::prophet().

Function Parameters:

prophet_reg 55

function (df = NULL, growth = "linear", changepoints = NULL, n.changepoints = 25,
changepoint.range = 0.8, yearly.seasonality = "auto", weekly.seasonality = "auto",
daily.seasonality = "auto", holidays = NULL, seasonality.mode = "additive",
seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
mcmc.samples = 0, interval.width = 0.8, uncertainty.samples = 1000,
fit = TRUE, ...)

Parameter Notes:

• df: This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manu-
ally). See Fit Details (below).

• holidays: A data.frame of holidays can be supplied via set_engine()

• uncertainty.samples: The default is set to 0 because the prophet uncertainty intervals are
not used as part of the Modeltime Workflow. You can override this setting if you plan to use
prophet’s uncertainty tools.

Limitations:

• prophet::add_seasonality() is not currently implemented. It’s used to specify non-standard
seasonalities using fourier series. An alternative is to use step_fourier() and supply custom
seasonalities as Extra Regressors.

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Univariate (No Extra Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

• XY Interface: fit_xy(x = data[,"date"],y = data$y) will ignore xreg’s.

Multivariate (Extra Regressors)
Extra Regressors parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

56 prophet_xgboost_fit_impl

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

• fit_xy(data[,c("date","month.lbl")],y = data$y) will pass x, where x is a data frame
containing month.lbl and the date feature. Only month.lbl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- PROPHET ----

Model Spec
model_spec <- prophet_reg() %>%

set_engine("prophet")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

prophet_xgboost_fit_impl

Low-Level PROPHET function for translating modeltime to Boosted
PROPHET

Description

Low-Level PROPHET function for translating modeltime to Boosted PROPHET

prophet_xgboost_fit_impl 57

Usage

prophet_xgboost_fit_impl(
x,
y,
df = NULL,
growth = "linear",
changepoints = NULL,
n.changepoints = 25,
changepoint.range = 0.8,
yearly.seasonality = "auto",
weekly.seasonality = "auto",
daily.seasonality = "auto",
holidays = NULL,
seasonality.mode = "additive",
seasonality.prior.scale = 10,
holidays.prior.scale = 10,
changepoint.prior.scale = 0.05,
mcmc.samples = 0,
interval.width = 0.8,
uncertainty.samples = 1000,
fit = TRUE,
max_depth = 6,
nrounds = 15,
eta = 0.3,
colsample_bytree = 1,
min_child_weight = 1,
gamma = 0,
subsample = 1,
validation = 0,
early_stop = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

df (optional) Dataframe containing the history. Must have columns ds (date type)
and y, the time series. If growth is logistic, then df must also have a column cap
that specifies the capacity at each ds. If not provided, then the model object will
be instantiated but not fit; use fit.prophet(m, df) to fit the model.

growth String ’linear’ or ’logistic’ to specify a linear or logistic trend.

changepoints Vector of dates at which to include potential changepoints. If not specified,
potential changepoints are selected automatically.

n.changepoints Number of potential changepoints to include. Not used if input ‘changepoints‘
is supplied. If ‘changepoints‘ is not supplied, then n.changepoints potential

58 prophet_xgboost_fit_impl

changepoints are selected uniformly from the first ‘changepoint.range‘ propor-
tion of df$ds.

changepoint.range

Proportion of history in which trend changepoints will be estimated. Defaults to
0.8 for the first 80 ‘changepoints‘ is specified.

yearly.seasonality

Fit yearly seasonality. Can be ’auto’, TRUE, FALSE, or a number of Fourier
terms to generate.

weekly.seasonality

Fit weekly seasonality. Can be ’auto’, TRUE, FALSE, or a number of Fourier
terms to generate.

daily.seasonality

Fit daily seasonality. Can be ’auto’, TRUE, FALSE, or a number of Fourier
terms to generate.

holidays data frame with columns holiday (character) and ds (date type)and optionally
columns lower_window and upper_window which specify a range of days around
the date to be included as holidays. lower_window=-2 will include 2 days prior
to the date as holidays. Also optionally can have a column prior_scale specify-
ing the prior scale for each holiday.

seasonality.mode

’additive’ (default) or ’multiplicative’.
seasonality.prior.scale

Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality. Can be specified for individual seasonalities using add_seasonality.

holidays.prior.scale

Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

changepoint.prior.scale

Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

mcmc.samples Integer, if greater than 0, will do full Bayesian inference with the specified num-
ber of MCMC samples. If 0, will do MAP estimation.

interval.width Numeric, width of the uncertainty intervals provided for the forecast. If mcmc.samples=0,
this will be only the uncertainty in the trend using the MAP estimate of the ex-
trapolated generative model. If mcmc.samples>0, this will be integrated over all
model parameters, which will include uncertainty in seasonality.

uncertainty.samples

Number of simulated draws used to estimate uncertainty intervals. Settings this
value to 0 or False will disable uncertainty estimation and speed up the calcula-
tion.

fit Boolean, if FALSE the model is initialized but not fit.

max_depth An integer for the maximum depth of the tree.

nrounds An integer for the number of boosting iterations.

prophet_xgboost_predict_impl 59

eta A numeric value between zero and one to control the learning rate.

colsample_bytree

Subsampling proportion of columns.

min_child_weight

A numeric value for the minimum sum of instance weights needed in a child to
continue to split.

gamma A number for the minimum loss reduction required to make a further partition
on a leaf node of the tree

subsample Subsampling proportion of rows.

validation A positive number. If on [0, 1) the value, validation is a random proportion
of data in x and y that are used for performance assessment and potential early
stopping. If 1 or greater, it is the number of training set samples use for these
purposes.

early_stop An integer or NULL. If not NULL, it is the number of training iterations without
improvement before stopping. If validation is used, performance is base on
the validation set; otherwise the training set is used.

... Additional arguments passed to xgboost::xgb.train

prophet_xgboost_predict_impl

Bridge prediction function for Boosted PROPHET models

Description

Bridge prediction function for Boosted PROPHET models

Usage

prophet_xgboost_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to prophet::predict()

60 recipe_helpers

recipe_helpers Developer Tools for processing XREGS (Regressors)

Description

Wrappers for using recipes::bake and recipes::juice to process data returning data in either
data frame or matrix format (Common formats needed for machine learning algorithms).

Usage

juice_xreg_recipe(recipe, format = c("tbl", "matrix"))

bake_xreg_recipe(recipe, new_data, format = c("tbl", "matrix"))

Arguments

recipe A prepared recipe
format One of:

• tbl: Returns a tibble (data.frame)
• matrix: Returns a matrix

new_data Data to be processed by a recipe

Value

Data in either the tbl (data.frame) or matrix formats

Examples

library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%
filter(id == "M750") %>%
select(-value) %>%
mutate(month = month(date, label = TRUE))

predictors

Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)

seasonal_decomp 61

seasonal_decomp General Interface for Seasonal Decomposition Regression Models

Description

seasonal_decomp() is a way to generate a specification of an Seasonal Decomposition model
before fitting and allows the model to be created using different packages. Currently the only
package is forecast.

Usage

seasonal_decomp(
mode = "regression",
seasonal_period_1 = NULL,
seasonal_period_2 = NULL,
seasonal_period_3 = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period_1

(required) The primary seasonal frequency. Uses "auto" by default. A character
phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-
time variable is provided. See Fit Details below.

seasonal_period_2

(optional) A second seasonal frequency. Is NULL by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided. See Fit Details below.

seasonal_period_3

(optional) A third seasonal frequency. Is NULL by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided. See Fit Details below.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For seasonal_decomp(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stlm_ets" (default) - Connects to forecast::stlm(), method = "ets"

• "stlm_arima" (default) - Connects to forecast::stlm(), method = "arima"

62 seasonal_decomp

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

seasonal_decomp 63

modeltime forecast::stlm
seasonal_period_1, seasonal_period_2, seasonal_period_3 msts(seasonal.periods)

Other options can be set using set_engine().

The engines use forecast::stlm().

Function Parameters:

function (y, s.window = 13, robust = FALSE, method = c("ets", "arima"),
modelfunction = NULL, model = NULL, etsmodel = "ZZN", lambda = NULL,
biasadj = FALSE, xreg = NULL, allow.multiplicative.trend = FALSE, x = y,
...)

stlm_ets (default engine)

• Method: Uses method = "ets", which by default is auto-ETS.

• Xregs: Cannot accept Exogenous Regressors (xregs). Xregs are ignored.

stlm_arima

• Method: Uses method = "arima", which by default is auto-ARIMA.

• Xregs: Can accept Exogenous Regressors (xregs).

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

• XY Interface: fit_xy(x = data[,"date"],y = data$y) will ignore xreg’s.

64 seasonal_decomp

Multivariate (xregs, Exogenous Regressors)

• The stlm_ets engine cannot accept Xregs.

• The stlm_arima engine can accept Xregs

The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the seasonal_decomp() using
fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

• fit_xy(data[,c("date","month.lbl")],y = data$y) will pass x, where x is a data frame
containing month.lbl and the date feature. Only month.lbl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
taylor_30_min

Split Data 80/20
splits <- initial_time_split(taylor_30_min, prop = 0.8)

---- STLM ETS ----

Model Spec
model_spec <- seasonal_decomp() %>%

set_engine("stlm_ets")

stlm_arima_fit_impl 65

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- STLM ARIMA ----

Model Spec
model_spec <- seasonal_decomp() %>%

set_engine("stlm_arima")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

stlm_arima_fit_impl Low-Level stlm function for translating modeltime to forecast

Description

Low-Level stlm function for translating modeltime to forecast

Usage

stlm_arima_fit_impl(
x,
y,
period_1 = "auto",
period_2 = NULL,
period_3 = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period_1 (required) First seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided.

period_2 (optional) First seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided.

66 stlm_ets_fit_impl

period_3 (optional) First seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided.

... Additional arguments passed to forecast::stlm()

stlm_arima_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

stlm_arima_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

stlm_ets_fit_impl Low-Level stlm function for translating modeltime to forecast

Description

Low-Level stlm function for translating modeltime to forecast

Usage

stlm_ets_fit_impl(
x,
y,
period_1 = "auto",
period_2 = NULL,
period_3 = NULL,
...

)

stlm_ets_predict_impl 67

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period_1 (required) First seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided.

period_2 (optional) First seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided.

period_3 (optional) First seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided.

... Additional arguments passed to forecast::stlm()

stlm_ets_predict_impl Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

stlm_ets_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

table_modeltime_accuracy

Interactive Accuracy Tables

Description

Converts results from modeltime_accuracy() into either interactive (reactable) or static (gt)
tables.

68 table_modeltime_accuracy

Usage

table_modeltime_accuracy(
.data,
.round_digits = 2,
.sortable = TRUE,
.show_sortable = TRUE,
.searchable = TRUE,
.filterable = FALSE,
.expand_groups = TRUE,
.title = "Accuracy Table",
.interactive = TRUE,
...

)

Arguments

.data A tibble that is the output of modeltime_accuracy()

.round_digits Rounds accuracy metrics to a specified number of digits. If NULL, rounding is
not performed.

.sortable Allows sorting by columns. Only applied to reactable tables. Passed to
reactable(sortable).

.show_sortable Shows sorting. Only applied to reactable tables. Passed to reactable(showSortable).

.searchable Adds search input. Only applied to reactable tables. Passed to reactable(searchable).

.filterable Adds filters to table columns. Only applied to reactable tables. Passed to
reactable(filterable).

.expand_groups Expands groups dropdowns. Only applied to reactable tables. Passed to
reactable(defaultExpanded).

.title A title for static (gt) tables.

.interactive Return interactive or static tables. If TRUE, returns reactable table. If FALSE,
returns static gt table.

... Additional arguments passed to reactable::reactable() or gt::gt() (de-
pending on .interactive selection).

Details

Groups

The function respects dplyr::group_by() groups and thus scales with multiple groups.

Reactable Output

A reactable() table is an interactive format that enables live searching and sorting. When .interactive
= TRUE, a call is made to reactable::reactable().

table_modeltime_accuracy() includes several common options like toggles for sorting and search-
ing. Additional arguments can be passed to reactable::reactable() via

GT Output

table_modeltime_accuracy 69

A gt table is an HTML-based table that is "static" (e.g. non-searchable, non-sortable). It’s com-
monly used in PDF and Word documents that does not support interactive content.

When .interactive = FALSE, a call is made to gt::gt(). Arguments can be passed via

Table customization is implemented using a piping workflow (%>%). For more information, refer
to the GT Documentation.

Value

A static gt table or an interactive reactable table containing the accuracy information.

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%

set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_arima

)

---- ACCURACY ----

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_accuracy() %>%
table_modeltime_accuracy()

https://gt.rstudio.com/index.html

70 time_series_params

time_series_params Tuning Parameters for Time Series (ts-class) Models

Description

Tuning Parameters for Time Series (ts-class) Models

Usage

seasonal_period(values = c("none", "daily", "weekly", "yearly"))

Arguments

values A time-based phrase

Details

Time series models (e.g. Arima() and ets()) use stats::ts() or forecast::msts() to apply
seasonality. We can do the same process using the following general time series parameter:

• period: The periodic nature of the seasonality.

It’s usually best practice to not tune this parameter, but rather set to obvious values based on the
seasonality of the data:

• Daily Seasonality: Often used with hourly data (e.g. 24 hourly timestamps per day)

• Weekly Seasonality: Often used with daily data (e.g. 7 daily timestamps per week)

• Yearly Seasonalty: Often used with weekly, monthly, and quarterly data (e.g. 12 monthly
observations per year).

However, in the event that users want to experiment with period tuning, you can do so with seasonal_period().

Examples

seasonal_period()

type_sum.mdl_time_tbl 71

type_sum.mdl_time_tbl Succinct summary of Modeltime Tables

Description

type_sum controls how objects are shown when inside tibble columns.

Usage

S3 method for class 'mdl_time_tbl'
type_sum(x)

Arguments

x A mdl_time_tbl object to summarise.

Value

A character value.

xgboost_impl Wrapper for parsnip::xgb_train

Description

Wrapper for parsnip::xgb_train

Usage

xgboost_impl(
x,
y,
max_depth = 6,
nrounds = 15,
eta = 0.3,
colsample_bytree = 1,
min_child_weight = 1,
gamma = 0,
subsample = 1,
validation = 0,
early_stop = NULL,
...

)

72 xgboost_predict

Arguments

x A data frame or matrix of predictors

y A vector (factor or numeric) or matrix (numeric) of outcome data.

max_depth An integer for the maximum depth of the tree.

nrounds An integer for the number of boosting iterations.

eta A numeric value between zero and one to control the learning rate.
colsample_bytree

Subsampling proportion of columns.
min_child_weight

A numeric value for the minimum sum of instance weights needed in a child to
continue to split.

gamma A number for the minimum loss reduction required to make a further partition
on a leaf node of the tree

subsample Subsampling proportion of rows.

validation A positive number. If on [0, 1) the value, validation is a random proportion
of data in x and y that are used for performance assessment and potential early
stopping. If 1 or greater, it is the number of training set samples use for these
purposes.

early_stop An integer or NULL. If not NULL, it is the number of training iterations without
improvement before stopping. If validation is used, performance is base on
the validation set; otherwise the training set is used.

... Other options to pass to xgb.train.

xgboost_predict Wrapper for xgboost::predict

Description

Wrapper for xgboost::predict

Usage

xgboost_predict(object, newdata, ...)

Arguments

object a model object for which prediction is desired.

newdata New data to be predicted

... additional arguments affecting the predictions produced.

Index

∗ datasets
arima_workflow_tuned, 15

arima_boost, 3
Arima_fit_impl, 8
arima_params, 9
Arima_predict_impl, 10
arima_reg, 11
arima_reg(), 16
arima_workflow_tuned, 15
arima_xgboost_fit_impl, 16
arima_xgboost_predict_impl, 18
auto_arima_fit_impl, 18
auto_arima_xgboost_fit_impl, 19

bake_xreg_recipe (recipe_helpers), 60

control_parsnip(), 38
control_workflow(), 38
create_xreg_recipe, 22

damping (exp_smoothing_params), 29
default_forecast_accuracy_metric_set,

24
default_forecast_accuracy_metric_set(),

32

error (exp_smoothing_params), 29
ets_fit_impl, 25
ets_predict_impl, 25
exp_smoothing, 26
exp_smoothing_params, 29

fit(), 38
fit.model_spec(), 7, 14, 28, 32, 34, 49, 56,

64
fit.workflow(), 32, 34
forecast::Arima(), 4, 12, 13
forecast::auto.arima(), 4, 12, 13
forecast::ets(), 27
forecast::msts(), 70

future_frame(), 36

get_arima_description, 30
get_model_description, 31
growth (prophet_params), 51
gt::gt(), 68, 69

juice_xreg_recipe (recipe_helpers), 60

mae(), 24, 32
mape(), 24, 32
mase(), 24, 32
metric_set(), 24, 32
modeltime_accuracy, 32
modeltime_accuracy(), 24, 34, 67, 68
modeltime_calibrate, 33
modeltime_calibrate(), 36
modeltime_forecast, 35
modeltime_forecast(), 32, 34, 44
modeltime_refit, 38
modeltime_refit(), 36
modeltime_table, 40
modeltime_table(), 34

ndiffs, 21
new_modeltime_bridge, 41
non_seasonal_ar (arima_params), 9
non_seasonal_differences

(arima_params), 9
non_seasonal_ma (arima_params), 9
nsdiffs, 21
num_changepoints (prophet_params), 51

parse_index, 42
parse_index_from_data (parse_index), 42
parse_period_from_index (parse_index),

42
plot_modeltime_forecast, 43
plot_modeltime_forecast(), 36
plot_time_series(), 43

73

74 INDEX

prior_scale_changepoints
(prophet_params), 51

prior_scale_holidays (prophet_params),
51

prior_scale_seasonality
(prophet_params), 51

prophet::prophet(), 46, 54
prophet_boost, 45
prophet_fit_impl, 50
prophet_params, 51
prophet_predict_impl, 52
prophet_reg, 53
prophet_xgboost_fit_impl, 56
prophet_xgboost_predict_impl, 59

reactable::reactable(), 68
recipe_helpers, 60
rmse(), 24, 32
rsq(), 24, 32

season (exp_smoothing_params), 29
season(), 52
seasonal_ar (arima_params), 9
seasonal_decomp, 61
seasonal_differences (arima_params), 9
seasonal_ma (arima_params), 9
seasonal_period (time_series_params), 70
set_engine(), 7, 14, 28, 49, 56, 64
smape(), 24, 32
stats::ts(), 70
stlm_arima_fit_impl, 65
stlm_arima_predict_impl, 66
stlm_ets_fit_impl, 66
stlm_ets_predict_impl, 67

table_modeltime_accuracy, 67
time_series_params, 70
timetk::plot_time_series(), 44
trend (exp_smoothing_params), 29
type_sum.mdl_time_tbl, 71

xgboost::xgb.train, 4
xgboost::xgb.train(), 46
xgboost_impl, 71
xgboost_predict, 72

	arima_boost
	Arima_fit_impl
	arima_params
	Arima_predict_impl
	arima_reg
	arima_workflow_tuned
	arima_xgboost_fit_impl
	arima_xgboost_predict_impl
	auto_arima_fit_impl
	auto_arima_xgboost_fit_impl
	create_xreg_recipe
	default_forecast_accuracy_metric_set
	ets_fit_impl
	ets_predict_impl
	exp_smoothing
	exp_smoothing_params
	get_arima_description
	get_model_description
	modeltime_accuracy
	modeltime_calibrate
	modeltime_forecast
	modeltime_refit
	modeltime_table
	new_modeltime_bridge
	parse_index
	plot_modeltime_forecast
	prophet_boost
	prophet_fit_impl
	prophet_params
	prophet_predict_impl
	prophet_reg
	prophet_xgboost_fit_impl
	prophet_xgboost_predict_impl
	recipe_helpers
	seasonal_decomp
	stlm_arima_fit_impl
	stlm_arima_predict_impl
	stlm_ets_fit_impl
	stlm_ets_predict_impl
	table_modeltime_accuracy
	time_series_params
	type_sum.mdl_time_tbl
	xgboost_impl
	xgboost_predict
	Index

