
Package ‘modelsummary’
August 1, 2020

Type Package

Title Summary Tables and Plots for Statistical Models and Data: Beautiful,
Customizable, and Publication-Ready

Description Create beautiful and customizable tables to summarize several
statistical models side-by-side. Draw coefficient plots, multi-level
cross-tabs, dataset summaries, balance tables (a.k.a. ``Table 1s''), and
correlation matrices. This package supports dozens of statistical models,
and it can produce tables in HTML, LaTeX, Word, Markdown, PDF, PowerPoint,
Excel, RTF, JPG, or PNG. Tables can easily be embedded in 'Rmarkdown' or
'knitr' dynamic documents.

Version 0.5.1

URL https://vincentarelbundock.github.io/modelsummary

BugReports https://github.com/vincentarelbundock/modelsummary/issues

Depends R (>= 3.4.0),
tables

Imports broom,
checkmate,
dplyr,
generics,
ggplot2,
gt (>= 0.2.0),
Hmisc,
kableExtra,
knitr (>= 1.16),
magrittr,
purrr,
rmarkdown (>= 1.6.0),
stringr,
tibble,
tidyr (>= 1.0.0)

Suggests broom.mixed,
covr,
estimatr,
fabricatr,
flextable,
huxtable,
lmtest,

1

https://vincentarelbundock.github.io/modelsummary
https://github.com/vincentarelbundock/modelsummary/issues

2 datasummary

MASS,
officer,
randomizr,
sandwich,
testthat

License GPL-3

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

R topics documented:
datasummary . 2
datasummary_correlation . 5
datasummary_skim . 6
extract . 7
factory . 9
glance_custom . 10
gof_map . 10
modelplot . 11
modelsummary . 12
msummary . 15
sanity_ds_right_handed_formula . 18
tidy_custom.default . 18

Index 19

datasummary Create summary tables using 2-sided formulae: crosstabs, frequen-
cies, table 1s and more.

Description

Create summary tables using 2-sided formulae: crosstabs, frequencies, table 1s and more.

Usage

datasummary(
formula,
data,
output = "default",
fmt = "%.2f",
title = NULL,
notes = NULL,
align = NULL,
add_columns = NULL,
add_rows = NULL,
sparse_header = TRUE

)

datasummary 3

Arguments

formula A two-sided formula to describe the table: rows ~ columns. See the Examples
section for a mini-tutorial and the Details section for more resources.

data A data.frame (or tibble)

output filename or object type (string)

• Supported filename extensions: .html, .tex, .md, .txt, .png, .jpg.
• Supported object types: "default", "html", "markdown", "latex", "data.frame",

"gt", "kableExtra", "huxtable", "flextable".
• When a file name is supplied to the ‘output‘ argument, the table is written

immediately to file. If you want to customize your table by post-processing
it with functions provided by the ‘gt‘ or ‘kableExtra‘ packages, you need to
choose a different output format (e.g., "gt", "latex", "html", "markdown"),
and you need to save the table after post-processing using the ‘gt::gtsave‘,
‘kable::save_kable‘, or ‘cat‘ functions.

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

title string

notes list or vector of notes to append to the bottom of the table.

align A character string of length equal to the number of columns in the table. "lcr"
means that the first column will be left-aligned, the 2nd column center-aligned,
and the 3rd column right-aligned.

add_columns a data.frame (or tibble) with the same number of rows as your main table.

add_rows a data.frame (or tibble) with the same number of columns as your main table.
By default, rows are appended to the bottom of the table. You can define a
"position" attribute of integers to set the row positions. See examples.

sparse_header TRUE or FALSE. TRUE eliminates column headers which have a unique label
across all columns, except for the row immediately above the data. FALSE keeps
all headers. The order in which terms are entered in the formula determines the
order in which headers appear. For example, ‘x~mean*z‘ will print the ‘mean‘-
related header above the ‘z‘-related header.‘

Details

Visit the ’modelsummary’ website for more usage examples: https://vincentarelbundock.github.io/modelsummary

The ’datasummary’ function is a thin wrapper around the ’tabular’ function from the ’tables’ pack-
age. More details about table-making formulas can be found in the ’tables’ package documentation:
?tables::tabular

Hierarchical or "nested" column labels are only available for these output formats: kableExtra, gt,
html, rtf, and LaTeX. When saving tables to other formats, nested labels will be combined to a "flat"
header.

Examples

Not run:
The left-hand side of the formula describes rows, and the right-hand side
describes columns. This table uses the "mpg" variable as a row and the "mean"

4 datasummary

function as a column:

datasummary(mpg ~ mean, data = mtcars)

This table uses the "mean" function as a row and the "mpg" variable as a column:

datasummary(mean ~ mpg, data = mtcars)

Display several variables or functions of the data using the "+"
concatenation operator. This table has 2 rows and 2 columns:

datasummary(hp + mpg ~ mean + sd, data = mtcars)

Nest variables or statistics inside a "factor" variable using the "*" nesting
operator. This table shows the mean of "hp" and "mpg" for each value of
"cyl":

mtcars$cyl <- as.factor(mtcars$cyl)
datasummary(hp + mpg ~ cyl * mean, data = mtcars)

If you don't want to convert your original data
to factors, you can use the 'Factor()'
function inside 'datasummary' to obtain an identical result:

datasummary(hp + mpg ~ Factor(cyl) * mean, data = mtcars)

You can nest several variables or statistics inside a factor by using
parentheses. This table shows the mean and the standard deviation for each
subset of "cyl":

datasummary(hp + mpg ~ cyl * (mean + sd), data = mtcars)

Summarize all numeric variables with 'All()'
datasummary(All(mtcars) ~ mean + sd, data = mtcars)

Define custom summary statistics. Your custom function should accept a vector
of numeric values and return a single numeric or string value:

minmax <- function(x) sprintf("[%.2f, %.2f]", min(x), max(x))
mean_na <- function(x) mean(x, na.rm = TRUE)

datasummary(hp + mpg ~ minmax + mean_na, data = mtcars)

To handle missing values, you can pass arguments to your functions using
'*Arguments()'

datasummary(hp + mpg ~ mean * Arguments(na.rm = TRUE), data = mtcars)

For convenience, 'modelsummary' supplies several convenience functions
with the argument `na.rm=TRUE` by default: Mean, Median, Min, Max, SD, Var,
P0, P25, P50, P75, P100, NUnique, Histogram

datasummary(hp + mpg ~ Mean + SD + Histogram, data = mtcars)

These functions also accept a 'fmt' argument which allows you to
round/format the results

datasummary_correlation 5

datasummary(hp + mpg ~ Mean * Arguments(fmt = "%.3f") + SD * Arguments(fmt = "%.1f"), data = mtcars)

Save your tables to a variety of output formats:
f <- hp + mpg ~ Mean + SD
datasummary(f, data = mtcars, output = 'table.html')
datasummary(f, data = mtcars, output = 'table.tex')
datasummary(f, data = mtcars, output = 'table.md')
datasummary(f, data = mtcars, output = 'table.docx')
datasummary(f, data = mtcars, output = 'table.pptx')
datasummary(f, data = mtcars, output = 'table.jpg')
datasummary(f, data = mtcars, output = 'table.png')

Display human-readable code
datasummary(f, data = mtcars, output = 'html')
datasummary(f, data = mtcars, output = 'markdown')
datasummary(f, data = mtcars, output = 'latex')

Return a table object to customize using a table-making package
datasummary(f, data = mtcars, output = 'gt')
datasummary(f, data = mtcars, output = 'kableExtra')
datasummary(f, data = mtcars, output = 'flextable')
datasummary(f, data = mtcars, output = 'huxtable')

add_rows
new_rows <- data.frame(a = 1:2, b = 2:3, c = 4:5)
attr(new_rows, 'position') <- c(1, 3)
datasummary(mpg + hp ~ mean + sd, data = mtcars, add_rows = new_rows)

End(Not run)

datasummary_correlation

Generate a correlation table for all numeric variables in your dataset.

Description

Generate a correlation table for all numeric variables in your dataset.

Usage

datasummary_correlation(
data,
output = "default",
fmt = "%.2f",
title = NULL,
notes = NULL

)

Arguments

data A data.frame (or tibble)

output filename or object type (string)

6 datasummary_skim

• Supported filename extensions: .html, .tex, .md, .txt, .png, .jpg.
• Supported object types: "default", "html", "markdown", "latex", "data.frame",

"gt", "kableExtra", "huxtable", "flextable".
• When a file name is supplied to the ‘output‘ argument, the table is written

immediately to file. If you want to customize your table by post-processing
it with functions provided by the ‘gt‘ or ‘kableExtra‘ packages, you need to
choose a different output format (e.g., "gt", "latex", "html", "markdown"),
and you need to save the table after post-processing using the ‘gt::gtsave‘,
‘kable::save_kable‘, or ‘cat‘ functions.

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

title string
notes list or vector of notes to append to the bottom of the table.

datasummary_skim Quick overview of numeric or categorical variables

Description

Quick overview of numeric or categorical variables

Usage

datasummary_skim(
data,
type = "numeric",
output = "default",
fmt = "%.1f",
histogram = FALSE,
title = NULL,
notes = NULL,
align = NULL,
...

)

Arguments

data A data.frame (or tibble)
type of variables to summarize: "numeric" or "categorical" (character)
output filename or object type (string)

• Supported filename extensions: .html, .tex, .md, .txt, .png, .jpg.
• Supported object types: "default", "html", "markdown", "latex", "data.frame",

"gt", "kableExtra", "huxtable", "flextable".
• When a file name is supplied to the ‘output‘ argument, the table is written

immediately to file. If you want to customize your table by post-processing
it with functions provided by the ‘gt‘ or ‘kableExtra‘ packages, you need to
choose a different output format (e.g., "gt", "latex", "html", "markdown"),
and you need to save the table after post-processing using the ‘gt::gtsave‘,
‘kable::save_kable‘, or ‘cat‘ functions.

extract 7

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

histogram TRUE to include a unicode character histogram (boolean)

title string

notes list or vector of notes to append to the bottom of the table.

align A character string of length equal to the number of columns in the table. "lcr"
means that the first column will be left-aligned, the 2nd column center-aligned,
and the 3rd column right-aligned.

... all other arguments are passed to the ‘tidy‘ method used to extract estimates
from the model. For example, this allows users to set ‘exponentiate=TRUE‘ to
exponentiate logistic regression coefficients.

extract Extract and combine estimates and goodness-of-fit statistics from sev-
eral statistical models.

Description

Extract and combine estimates and goodness-of-fit statistics from several statistical models.

Usage

extract(
models,
statistic = "std.error",
statistic_override = NULL,
statistic_vertical = TRUE,
conf_level = 0.95,
coef_map = NULL,
coef_omit = NULL,
gof_map = modelsummary::gof_map,
gof_omit = NULL,
stars = FALSE,
fmt = "%.3f",
estimate = "estimate",
...

)

Arguments

models a single model object or a (potentially named) list of models to summarize

statistic string name of the statistic to include in parentheses

• Typical values: "conf.int", "std.error", "statistic", "p.value"
• Alternative values: any column name produced by ‘broom::tidy(model)‘

statistic_override

manually override the uncertainy estimates. This argument accepts three types
of input:

8 extract

• a function or list of functions of length(models) which produce variance-
covariance matrices with row and column names equal to the names of
your coefficient estimates. For example, ‘R‘ supplies the ‘vcov‘ function,
and the ‘sandwich‘ package supplies ‘vcovHC‘, ‘vcovHAC‘, etc.

• a list of length(models) variance-covariance matrices with row and column
names equal to the names of your coefficient estimates.

• a list of length(models) vectors with names equal to the names of your
coefficient estimates. Numeric vectors are formatted according to ‘fmt‘
and placed in brackets, character vectors printed as given.

statistic_vertical

TRUE if statistics should be printed below estimates. FALSE if statistics should
be printed beside estimates.

conf_level confidence level to use for confidence intervals

coef_map named character vector. Names refer to the original variable names. Values
refer to the variable names that will appear in the table. Coefficients which are
omitted from this vector will be omitted from the table. The table will be ordered
in the same order as this vector.

coef_omit string regular expression. Omits all matching coefficients from the table (using
‘stringr::str_detect‘).

gof_map data.frame with four columns: ‘raw‘, ‘clean‘, ‘fmt‘, and ‘omit‘. See ‘model-
summary::gof_map‘

gof_omit string regular expression. Omits all matching gof statistics from the table (using
‘stringr::str_detect‘).

stars to indicate statistical significance

• FALSE (default): no significance stars.

• TRUE: *=.1, **=.05, ***=.01

• Named numeric vector for custom stars such as ‘c(’*’ = .1, ’+’ = .05)‘

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

estimate character name of the estimate to display. Must be a column name in the
data.frame produced by ‘tidy(model)‘. In the vast majority of cases, the default
value of this argument should not be changed.

... all other arguments are passed to the ‘tidy‘ method used to extract estimates
from the model. For example, this allows users to set ‘exponentiate=TRUE‘ to
exponentiate logistic regression coefficients.

Value

tibble

factory 9

factory Factory to create tables in different output formats using standardized
inputs.

Description

Factory to create tables in different output formats using standardized inputs.

Usage

factory(
tab,
align = NULL,
fmt = "%.3f",
hrule = NULL,
notes = NULL,
output = NULL,
title = NULL,
add_rows = NULL,
add_columns = NULL,
...

)

Arguments

tab table body (data.frame)

align A character string of length equal to the number of columns in the table. "lcr"
means that the first column will be left-aligned, the 2nd column center-aligned,
and the 3rd column right-aligned.

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

hrule position of horizontal rules (integer vector)

notes list or vector of notes to append to the bottom of the table.

output filename or object type (string)

• Supported filename extensions: .html, .tex, .md, .txt, .png, .jpg.
• Supported object types: "default", "html", "markdown", "latex", "data.frame",

"gt", "kableExtra", "huxtable", "flextable".
• When a file name is supplied to the ‘output‘ argument, the table is written

immediately to file. If you want to customize your table by post-processing
it with functions provided by the ‘gt‘ or ‘kableExtra‘ packages, you need to
choose a different output format (e.g., "gt", "latex", "html", "markdown"),
and you need to save the table after post-processing using the ‘gt::gtsave‘,
‘kable::save_kable‘, or ‘cat‘ functions.

title string

add_rows a data.frame (or tibble) with the same number of columns as your main table.
By default, rows are appended to the bottom of the table. You can define a
"position" attribute of integers to set the row positions. See examples.

10 gof_map

add_columns a data.frame (or tibble) with the same number of rows as your main table.

... all other arguments are passed to the ‘tidy‘ method used to extract estimates
from the model. For example, this allows users to set ‘exponentiate=TRUE‘ to
exponentiate logistic regression coefficients.

glance_custom Extract custom information from a model object and turn it into a tidy
tibble with a single row.

Description

glance_custom methods always return either a one-row data frame (except on ‘NULL‘, which re-
turns an empty data frame). This

Usage

glance_custom(x)

Arguments

x model or other R object to convert to single-row data frame

Methods

No methods found in currently loaded packages.

gof_map Data.frame used to clean up and format goodness-of-fit statistics

Description

By default, this data frame is passed to the ’gof_map’ argument of the ’msummary’ or ’modelsum-
mary’ functions. Users can modify this data frame to customize the list of statistics to display and
their format. See example below.

Usage

gof_map

Format

data.frame with 4 columns of character data: raw, clean, fmt, omit

Examples

library(modelsummary)
mod <- lm(wt ~ drat, data = mtcars)
gm <- modelsummary::gof_map
gm$omit[gm$raw == 'deviance'] <- FALSE
gm$fmt[gm$raw == 'r.squared'] <- "%.5f"
msummary(mod, gof_map = gm)

modelplot 11

modelplot Plot model coefficients using points or point-ranges

Description

Plot model coefficients using points or point-ranges

Usage

modelplot(
models,
conf_level = 0.95,
coef_map = NULL,
coef_omit = NULL,
facet = FALSE,
draw = TRUE,
background = NULL,
...

)

Arguments

models a single model object or a (potentially named) list of models to summarize

conf_level confidence level to use for confidence intervals

coef_map named character vector. Names refer to the original variable names. Values
refer to the variable names that will appear in the table. Coefficients which are
omitted from this vector will be omitted from the table. The table will be ordered
in the same order as this vector.

coef_omit string regular expression. Omits all matching coefficients from the table (using
‘stringr::str_detect‘).

facet TRUE or FALSE. When the ’models’ argument includes several model objects,
TRUE draws terms in separate facets, and FALSE draws terms side-by-side
(dodged).

draw TRUE returns a ’ggplot2’ object, FALSE returns the data.frame used to draw
the plot.

background A list of ’ggplot2’ geoms to add to the background of the plot. This is especially
useful to display annotations "behind" the ’geom_pointrange’ that ’modelplot’
draws.

... all other arguments are passed to the ‘tidy‘ method used to extract estimates
from the model. For example, this allows users to set ‘exponentiate=TRUE‘ to
exponentiate logistic regression coefficients.

Examples

library(modelsummary)

single model
mod <- lm(hp ~ vs + drat, mtcars)
modelplot(mod)

12 modelsummary

omit terms with string matches or regexes
modelplot(mod, coef_omit = 'Interc')

rename, reorder and subset with 'coef_map'
cm <- c('vs' = 'V-shape engine',

'drat' = 'Rear axle ratio')
modelplot(mod, coef_map = cm)

several models
models <- list()
models[['Small model']] <- lm(hp ~ vs, mtcars)
models[['Medium model']] <- lm(hp ~ vs + factor(cyl) , mtcars)
models[['Large model']] <- lm(hp ~ vs + drat + factor(cyl), mtcars)
modelplot(models)

customize your plots with 'ggplot2' functions
library(ggplot2)

modelplot(models) +
scale_color_brewer(type = 'qual') +
theme_classic()

pass arguments to 'geom_pointrange' through the ... ellipsis
modelplot(mod, color = 'red', size = 1, fatten = .5)

add geoms to the background, behind geom_pointrange
b <- list(geom_vline(xintercept = 0, color = 'orange'),

annotate("rect", alpha = .1,
xmin = -.5, xmax = .5,
ymin = -Inf, ymax = Inf),

geom_point(aes(y = term, x = estimate), alpha = .3,
size = 10, color = 'red', shape = 'square'))

modelplot(mod, background = b)

modelsummary Beautiful, customizable summaries of statistical models

Description

Beautiful, customizable summaries of statistical models

Usage

modelsummary(
models,
output = "default",
fmt = "%.3f",
statistic = "std.error",
statistic_override = NULL,
statistic_vertical = TRUE,
conf_level = 0.95,
stars = FALSE,

modelsummary 13

coef_map = NULL,
coef_omit = NULL,
gof_map = modelsummary::gof_map,
gof_omit = NULL,
add_rows = NULL,
title = NULL,
notes = NULL,
estimate = "estimate",
...

)

Arguments

models a single model object or a (potentially named) list of models to summarize

output filename or object type (string)

• Supported filename extensions: .html, .tex, .md, .txt, .png, .jpg.
• Supported object types: "default", "html", "markdown", "latex", "data.frame",

"gt", "kableExtra", "huxtable", "flextable".
• When a file name is supplied to the ‘output‘ argument, the table is written

immediately to file. If you want to customize your table by post-processing
it with functions provided by the ‘gt‘ or ‘kableExtra‘ packages, you need to
choose a different output format (e.g., "gt", "latex", "html", "markdown"),
and you need to save the table after post-processing using the ‘gt::gtsave‘,
‘kable::save_kable‘, or ‘cat‘ functions.

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

statistic string name of the statistic to include in parentheses

• Typical values: "conf.int", "std.error", "statistic", "p.value"
• Alternative values: any column name produced by ‘broom::tidy(model)‘

statistic_override

manually override the uncertainy estimates. This argument accepts three types
of input:

• a function or list of functions of length(models) which produce variance-
covariance matrices with row and column names equal to the names of
your coefficient estimates. For example, ‘R‘ supplies the ‘vcov‘ function,
and the ‘sandwich‘ package supplies ‘vcovHC‘, ‘vcovHAC‘, etc.

• a list of length(models) variance-covariance matrices with row and column
names equal to the names of your coefficient estimates.

• a list of length(models) vectors with names equal to the names of your
coefficient estimates. Numeric vectors are formatted according to ‘fmt‘
and placed in brackets, character vectors printed as given.

statistic_vertical

TRUE if statistics should be printed below estimates. FALSE if statistics should
be printed beside estimates.

conf_level confidence level to use for confidence intervals

stars to indicate statistical significance

• FALSE (default): no significance stars.

14 modelsummary

• TRUE: *=.1, **=.05, ***=.01
• Named numeric vector for custom stars such as ‘c(’*’ = .1, ’+’ = .05)‘

coef_map named character vector. Names refer to the original variable names. Values
refer to the variable names that will appear in the table. Coefficients which are
omitted from this vector will be omitted from the table. The table will be ordered
in the same order as this vector.

coef_omit string regular expression. Omits all matching coefficients from the table (using
‘stringr::str_detect‘).

gof_map data.frame with four columns: ‘raw‘, ‘clean‘, ‘fmt‘, and ‘omit‘. See ‘model-
summary::gof_map‘

gof_omit string regular expression. Omits all matching gof statistics from the table (using
‘stringr::str_detect‘).

add_rows a data.frame (or tibble) with the same number of columns as your main table.
By default, rows are appended to the bottom of the table. You can define a
"position" attribute of integers to set the row positions. See examples.

title string

notes list or vector of notes to append to the bottom of the table.

estimate character name of the estimate to display. Must be a column name in the
data.frame produced by ‘tidy(model)‘. In the vast majority of cases, the default
value of this argument should not be changed.

... all other arguments are passed to the ‘tidy‘ method used to extract estimates
from the model. For example, this allows users to set ‘exponentiate=TRUE‘ to
exponentiate logistic regression coefficients.

Value

a ’gt’ table object.

Examples

library(modelsummary)

load data and estimate models
data(trees)
models <- list()
models[['Bivariate']] <- lm(Girth ~ Height, data = trees)
models[['Multivariate']] <- lm(Girth ~ Height + Volume, data = trees)

simple table
msummary(models)

confidence intervals, p values, or t-stats instead of standard errors
msummary(models, statistic = 'conf.int', conf_level = 0.99)
msummary(models, statistic = 'p.value', conf_level = 0.99)
msummary(models, statistic = 'statistic', conf_level = 0.99)

rename and re-order coefficients
msummary(models, coef_map = c('Volume' = 'Large', 'Height' = 'Tall'))

titles
msummary(models, title = 'This is the title')

msummary 15

title with italicized text
msummary(models, title = gt::md('This is *the* title'))

add_rows: we use `tribble` from the `tibble` package to build a data.frame
more easily. Then, we assign an attribute to determine each row's position.
rows <- tibble::tribble(~term, ~Bivariate, ~Multivariate,

'Empty row', '-', '-',
'Another empty row', '?', '?')

attr(rows, 'position') <- c(1, 3)
msummary(models, add_rows = rows)

notes at the bottom of the table (here, the second note includes markdown bold characters)
msummary(models, notes = list('A first note', gt::md('A **bold** note')))

modify list of GOF statistics and their format using the built-in
'gof_map' data frame as a starting point
gof_custom <- modelsummary::gof_map
gof_custom$omit[gof_custom$raw == 'deviance'] <- FALSE
gof_custom$fmt[gof_custom$raw == 'r.squared'] <- "%.5f"
msummary(models, gof_map = gof_custom)

msummary Beautiful, customizable summaries of statistical models

Description

‘msummary()‘ is a shortcut to ‘modelsummary()‘

Usage

msummary(
models,
output = "default",
fmt = "%.3f",
statistic = "std.error",
statistic_override = NULL,
statistic_vertical = TRUE,
conf_level = 0.95,
stars = FALSE,
coef_map = NULL,
coef_omit = NULL,
gof_map = modelsummary::gof_map,
gof_omit = NULL,
add_rows = NULL,
title = NULL,
notes = NULL,
estimate = "estimate",
...

)

16 msummary

Arguments

models a single model object or a (potentially named) list of models to summarize

output filename or object type (string)

• Supported filename extensions: .html, .tex, .md, .txt, .png, .jpg.
• Supported object types: "default", "html", "markdown", "latex", "data.frame",

"gt", "kableExtra", "huxtable", "flextable".
• When a file name is supplied to the ‘output‘ argument, the table is written

immediately to file. If you want to customize your table by post-processing
it with functions provided by the ‘gt‘ or ‘kableExtra‘ packages, you need to
choose a different output format (e.g., "gt", "latex", "html", "markdown"),
and you need to save the table after post-processing using the ‘gt::gtsave‘,
‘kable::save_kable‘, or ‘cat‘ functions.

fmt string which specifies how numeric values will be rounded. This string is passed
to the ‘sprintf‘ function. ’%.3f’ will keep 3 digits after the decimal point with
trailing zero. ’%.5f’ will keep 5 digits. ’%.3e’ will use exponential notation.
See ‘?sprintf‘ for more options.

statistic string name of the statistic to include in parentheses

• Typical values: "conf.int", "std.error", "statistic", "p.value"
• Alternative values: any column name produced by ‘broom::tidy(model)‘

statistic_override

manually override the uncertainy estimates. This argument accepts three types
of input:

• a function or list of functions of length(models) which produce variance-
covariance matrices with row and column names equal to the names of
your coefficient estimates. For example, ‘R‘ supplies the ‘vcov‘ function,
and the ‘sandwich‘ package supplies ‘vcovHC‘, ‘vcovHAC‘, etc.

• a list of length(models) variance-covariance matrices with row and column
names equal to the names of your coefficient estimates.

• a list of length(models) vectors with names equal to the names of your
coefficient estimates. Numeric vectors are formatted according to ‘fmt‘
and placed in brackets, character vectors printed as given.

statistic_vertical

TRUE if statistics should be printed below estimates. FALSE if statistics should
be printed beside estimates.

conf_level confidence level to use for confidence intervals

stars to indicate statistical significance

• FALSE (default): no significance stars.
• TRUE: *=.1, **=.05, ***=.01
• Named numeric vector for custom stars such as ‘c(’*’ = .1, ’+’ = .05)‘

coef_map named character vector. Names refer to the original variable names. Values
refer to the variable names that will appear in the table. Coefficients which are
omitted from this vector will be omitted from the table. The table will be ordered
in the same order as this vector.

coef_omit string regular expression. Omits all matching coefficients from the table (using
‘stringr::str_detect‘).

gof_map data.frame with four columns: ‘raw‘, ‘clean‘, ‘fmt‘, and ‘omit‘. See ‘model-
summary::gof_map‘

msummary 17

gof_omit string regular expression. Omits all matching gof statistics from the table (using
‘stringr::str_detect‘).

add_rows a data.frame (or tibble) with the same number of columns as your main table.
By default, rows are appended to the bottom of the table. You can define a
"position" attribute of integers to set the row positions. See examples.

title string

notes list or vector of notes to append to the bottom of the table.

estimate character name of the estimate to display. Must be a column name in the
data.frame produced by ‘tidy(model)‘. In the vast majority of cases, the default
value of this argument should not be changed.

... all other arguments are passed to the ‘tidy‘ method used to extract estimates
from the model. For example, this allows users to set ‘exponentiate=TRUE‘ to
exponentiate logistic regression coefficients.

Value

a ’gt’ table object.

Examples

library(modelsummary)

load data and estimate models
data(trees)
models <- list()
models[['Bivariate']] <- lm(Girth ~ Height, data = trees)
models[['Multivariate']] <- lm(Girth ~ Height + Volume, data = trees)

simple table
msummary(models)

confidence intervals, p values, or t-stats instead of standard errors
msummary(models, statistic = 'conf.int', conf_level = 0.99)
msummary(models, statistic = 'p.value', conf_level = 0.99)
msummary(models, statistic = 'statistic', conf_level = 0.99)

rename and re-order coefficients
msummary(models, coef_map = c('Volume' = 'Large', 'Height' = 'Tall'))

titles
msummary(models, title = 'This is the title')

title with italicized text
msummary(models, title = gt::md('This is *the* title'))

add_rows: we use `tribble` from the `tibble` package to build a data.frame
more easily. Then, we assign an attribute to determine each row's position.
rows <- tibble::tribble(~term, ~Bivariate, ~Multivariate,

'Empty row', '-', '-',
'Another empty row', '?', '?')

attr(rows, 'position') <- c(1, 3)
msummary(models, add_rows = rows)

18 tidy_custom.default

notes at the bottom of the table (here, the second note includes markdown bold characters)
msummary(models, notes = list('A first note', gt::md('A **bold** note')))

modify list of GOF statistics and their format using the built-in
'gof_map' data frame as a starting point
gof_custom <- modelsummary::gof_map
gof_custom$omit[gof_custom$raw == 'deviance'] <- FALSE
gof_custom$fmt[gof_custom$raw == 'r.squared'] <- "%.5f"
msummary(models, gof_map = gof_custom)

sanity_ds_right_handed_formula

sanity check: datasummary_table1

Description

sanity check: datasummary_table1

Usage

sanity_ds_right_handed_formula(formula)

Arguments

formula right-handed formulae only

tidy_custom.default Extract custom information from a model object and turn it into a tidy
tibble

Description

Extract custom information from a model object and turn it into a tidy tibble

Usage

Default S3 method:
tidy_custom(x)

Arguments

x An object to be converted into a tidy [tibble::tibble()].

Value

A [tibble::tibble()] with information about model components.

Index

∗ datasets
gof_map, 10

datasummary, 2
datasummary_correlation, 5
datasummary_skim, 6

extract, 7

factory, 9

glance_custom, 10
gof_map, 10

modelplot, 11
modelsummary, 12
msummary, 15

sanity_ds_right_handed_formula, 18

tidy_custom.default, 18

19

	datasummary
	datasummary_correlation
	datasummary_skim
	extract
	factory
	glance_custom
	gof_map
	modelplot
	modelsummary
	msummary
	sanity_ds_right_handed_formula
	tidy_custom.default
	Index

