
modelbased is a lightweight package helping with model-based estimations, used in the computation of marginal means, contrast analysis and predictions.
Run the following:
Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:
The package is built around 5 main functions:
estimate_means(): Estimates the average values at each factor levelsestimate_contrasts(): Estimates and tests contrasts between different factor levelsestimate_slopes(): Estimates the slopes of numeric predictors at different factor levelsestimate_response(): Predict the response variable using the modelestimate_smooth(): Describes a non-linear term (e.g. in GAMs) by its linear partsThese functions are powered by the visualisation_matrix() function, a smart tool for guessing the appropriate reference grid.
The package currently only supports rstanarm models, but will be expanded to cover a large variety of frequentist and Bayesian models.
Check-out this vignette to create this plot:

Check-out this vignette to create this plot:

## Species    | Median |       89% CI
## ----------------------------------
## setosa     |   3.43 | [3.34, 3.50]
## versicolor |   2.77 | [2.70, 2.85]
## virginica  |   2.98 | [2.90, 3.05]Check-out this vignette to create this plot:

estimate_contrasts(model)
## Level1     |     Level2 | Median |         89% CI |     pd | % in ROPE | Median (std.)
## --------------------------------------------------------------------------------------
## setosa     | versicolor |   0.65 | [ 0.55,  0.77] |   100% |        0% |          1.50
## setosa     |  virginica |   0.45 | [ 0.34,  0.56] |   100% |        0% |          1.03
## versicolor |  virginica |  -0.21 | [-0.32, -0.10] | 99.83% |     6.93% |         -0.47model <- stan_glm(Sepal.Width ~ Species * Petal.Length, data = iris)
estimate_contrasts(model, modulate = "Petal.Length", length = 3)## Level1     |     Level2 | Petal.Length | Median |        89% CI |     pd | % in ROPE | Median (std.)
## ----------------------------------------------------------------------------------------------------
## setosa     | versicolor |         1.00 |   1.52 | [ 1.05, 2.00] |   100% |        0% |          3.48
## setosa     |  virginica |         1.00 |   1.23 | [ 0.69, 1.76] |   100% |     0.02% |          2.82
## versicolor |  virginica |         1.00 |  -0.30 | [-1.03, 0.39] | 74.30% |    13.90% |         -0.68
## setosa     | versicolor |         3.95 |   1.79 | [ 1.04, 2.53] |   100% |        0% |          4.11
## setosa     |  virginica |         3.95 |   1.83 | [ 1.03, 2.60] |   100% |        0% |          4.21
## versicolor |  virginica |         3.95 |   0.04 | [-0.18, 0.26] | 61.40% |    51.00% |          0.09
## setosa     | versicolor |         6.90 |   2.08 | [ 0.50, 3.73] | 98.10% |     1.18% |          4.77
## setosa     |  virginica |         6.90 |   2.45 | [ 0.80, 3.95] | 99.25% |     0.42% |          5.61
## versicolor |  virginica |         6.90 |   0.37 | [-0.06, 0.78] | 91.25% |    11.97% |          0.85estimate_slopes(model)
## Species    | Median |       89% CI |     pd | % in ROPE | Median (std.)
## -----------------------------------------------------------------------
## setosa     |   0.42 | [0.10, 0.69] | 98.85% |     4.10% |          1.70
## versicolor |   0.33 | [0.19, 0.47] | 99.95% |     0.57% |          1.32
## virginica  |   0.21 | [0.09, 0.33] | 99.83% |     6.95% |          0.87Check-out this vignette to create this plot:

| Sepal.Length | Species | Median | CI_low | CI_high | 
|---|---|---|---|---|
| 5.1 | setosa | 1.47 | 1.10 | 1.91 | 
| 4.9 | setosa | 1.44 | 1.05 | 1.85 | 
| 4.7 | setosa | 1.39 | 0.96 | 1.79 | 
| 4.6 | setosa | 1.41 | 0.99 | 1.83 | 
| 5.0 | setosa | 1.47 | 1.01 | 1.88 | 
| 5.4 | setosa | 1.52 | 1.15 | 1.95 | 
See this vignette to create this plot: 
| Petal.Length | Median | CI_low | CI_high | 
|---|---|---|---|
| 1.00 | 3.62 | 3.51 | 3.73 | 
| 1.98 | 3.18 | 3.11 | 3.24 | 
| 2.97 | 2.90 | 2.82 | 2.97 | 
| 3.95 | 2.78 | 2.71 | 2.86 | 
| 4.93 | 2.83 | 2.77 | 2.89 | 
| 5.92 | 3.05 | 2.96 | 3.14 | 
| 6.90 | 3.44 | 3.25 | 3.63 |