
Package ‘mobForest’
July 31, 2019

Type Package

Title Model Based Random Forest Analysis

Version 1.3.1

Date 2019-07-31

Author Nikhil Garge [aut], Barry Eggleston [aut], Georgiy Bobashev [aut], Ben-
jamin Carper [cre], Kasey Jones [ctb, cre], Torsten Hothorn [ctb], Kurt Hornik [ctb], Car-
olin Strobl [ctb], Achim Zeileis [ctb]

Maintainer Kasey Jones <krjones@rti.org>

Description Functions to implements random forest method for model based
recursive partitioning. The mob() function, developed by Zeileis et al. (2008),
within 'party' package, is modified to construct model-based decision trees based
on random forests methodology. The main input function mobforest.analysis() takes
all input parameters to construct trees, compute out-of-bag errors, predictions,
and overall accuracy of forest. The algorithm performs parallel computation
using cluster functions within 'parallel' package.

License GPL (>= 2)

Depends parallel (>= 3.4.1), party (>= 1.2-4), sandwich (>= 2.4.0),
strucchange (>= 1.5-1), zoo (>= 1.8-0)

Imports methods, modeltools, stats, graphics

Suggests testthat (>= 1.0.2), mlbench (>= 2.1), lattice

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-31 21:10:03 UTC

R topics documented:
bootstrap . 2
compute.acc . 4
compute.mse . 5
compute.r2 . 5

1

2 bootstrap

get.mf.object.glm . 6
get.mf.object.lm . 7
get.pred.values . 8
get.varimp . 9
logistic.acc . 10
mob.rf.tree . 10
mobforest.analysis . 11
mobforest.control . 14
mobforest.control-class . 15
mobforest.output . 15
mobforest.output-class . 16
mob_fit_checksplit . 17
mob_fit_childweights . 17
mob_fit_fluctests . 18
mob_fit_getlevels . 18
mob_fit_getobjfun . 19
mob_fit_setupnode . 19
mob_fit_splitnode . 20
prediction.output . 20
prediction.output-class . 21
predictive.acc . 21
print.estimates . 23
residual.plot . 23
string.formula . 24
tree.predictions . 25
varimp.output . 26
varimp.output-class . 26
varimplot . 27

Index 28

bootstrap This method computes predicted outcome for each observation in the
data frame using the tree model supplied as an input argument.

Description

This method computes predicted outcome for each observation in the data frame using the tree
model supplied as an input argument.

Usage

bootstrap(i, data, main_model, partition_vars, mtry, new_test_data,
mobforest_controls, fraction, model, family, prob_cutoff = 0.5)

bootstrap 3

Arguments

i the tree

data A data frame containing the variables in the model.

main_model A model in character format

partition_vars A vector of partition variables

mtry A Random subset of partition variables to be considered at each

new_test_data A data frame representing test data for validating random forest model. This
data is not used in in tree building process.

mobforest_controls

The mobforest_controls passed into mobforest.analysis

fraction number of observations to draw without replacement (only relevant if replace =
FALSE)

model A model of class "StatModel" used for fitting observations in current node.
This parameter allows fitting a linear model or generalized linear model with
formula y ~ x_1 + ... + x_k. The Parameter "linearModel" fits linear model. The
parameter "glinearModel" fits Poisson or logistic regression model depending
upon the specification of parameter "family" (explained next). If "family" is
specified as binomial() then logistic regression is performed. If the "family" is
specified as poisson() then Poisson regression is performed.

family A description of error distribution and link function to be used in the model. This
parameter needs to be specified if generalized linear model is considered. The
parameter "binomial()" is to be specified when logistic regression is considered
and "poisson()" when Poisson regression is considered as the node model. The
values allowed for this parameter are binomial() and poisson().

prob_cutoff In case of logistic regression as a node model, the predicted probabilities for
OOB cases are converted into classes (yes/no, high/low, etc as specified) based
on this probability cutoff. If logistic regression is not considered as node model,
the prob_cutoff = NULL. By default it is 0.5 when parameter not specified (and
logistic regression considered).

Value

A list model performance metrics including R2/accuracy, predictions, MSE, and variable impor-
tance

Examples

Not run:
formula <- as.formula(medv ~ lstat)
load data
data("BostonHousing", package = "mlbench")
mobforest_controls <-

mobforest.control(ntree = 1, mtry = 2, replace = TRUE,
alpha = 0.05, bonferroni = TRUE, minsplit = 25)

out <- bootstrap(i, data = BostonHousing, main_model = string.formula(formula),

4 compute.acc

partition_vars = partition_vars <- c("rad", "crim", "tax"),
mtry = 2, new_test_data = as.data.frame(matrix(0,0,0)),
mobforest_controls = mobforest_controls, fraction = 1,
model = linearModel, family = "", prob_cutoff = .5)

out

End(Not run)

compute.acc Predictive accuracy estimates across trees for logistic regression
model

Description

Compute predictive accuracy of response variable with binary outcome. The function takes ob-
served and predicted binary responses as input and computes proportion of observations classified
in same group.

Usage

compute.acc(response, predictions, prob_cutoff = 0.5)

Arguments

response A vector of binary outcome.

predictions A matrix of predicted probabilities (logit model) for out-of-bag observations for
each tree.

prob_cutoff The threshold for predicting 1’s & 0’s.

Value

Predictive accuracy estimate ranging between 0 and 1.

Examples

response <- as.data.frame(c(rep(0, 10000), rep(1, 10000)))
predictions <-

matrix(nrow = 20000, ncol = 3,
data = c(rep(.1, 15000), rep(.8, 5000), rep(.1, 15000),

rep(.8, 5000), rep(.1, 15000), rep(.8, 5000)))
compute.acc(response, predictions, prob_cutoff = .5)

compute.mse 5

compute.mse Predictive accuracy estimates (MSE) across trees for linear or poisson
regression model.

Description

Predictive accuracy estimates (MSE) across trees for linear or poisson regression model.

Usage

compute.mse(response, predictions)

Arguments

response A vector of actual response of outcome variable.

predictions A vector of predicted response for the same outcome variable.

Value

MSE estimates

Examples

The MSE should be 2.5. Off by 2 half the time, off by 1 the other half
response <- matrix(c(rep(0,100), rep(10,100)))
predictions <-

matrix(nrow=20, ncol = 3,
data = c(rep(1,100), rep(8,100), rep(1,100), rep(8,100),

rep(1,100), rep(8,100)))
compute.mse(response, predictions)

compute.r2 Predictive accuracy estimates across trees for linear or poisson re-
gression

Description

pseudo R-square (R2) computation - proportion of total variance in response variable explained
by the tree model. The function takes observed and predicted responses as input arguments and
computes pseudo-R2 to determine how well the tree model fits the given data.

Usage

compute.r2(response, predictions)

6 get.mf.object.glm

Arguments

response A vector of actual response of outcome variable.

predictions A vector of predictions for the same outcome variable

Value

Predictive accuracy estimates ranging between 0 and 1.

Examples

This example explains 90% of the variance
response <- matrix(c(rep(0, 100), rep(10, 100)))
predictions <-

matrix(nrow = 200, ncol = 3,
data = c(rep(1, 100), rep(8, 100), rep(1, 100), rep(8, 100),

rep(1, 100), rep(8, 100)))
compute.r2(response, predictions)

get.mf.object.glm Fit a general linear model to a mobForest model

Description

This method computes predicted outcome for each observation in the data frame using the tree
model supplied as an input argument.

Usage

get.mf.object.glm(object, main_model, partition_vars, data, new_test_data,
ntree, family, prob_cutoff = 0.5)

Arguments

object A bootstrap model object created by bootstrap()

main_model A model in character format.

partition_vars A vector of partition variables.

data A data frame containing the variables in the model.

new_test_data A data frame representing test data for validating random forest model. This
data is not used in the tree building process

ntree Number of trees to be constructed in forest (default = 300).

family A description of error distribution and link function to be used in the model. This
parameter needs to be specified if generalized linear model is considered. The
parameter "binomial()" is to be specified when logistic regression is considered
and "poisson()" when Poisson regression is considered as the node model. The
values allowed for this parameter are binomial() and poisson().

get.mf.object.lm 7

prob_cutoff In case of logistic regression as a node model, the predicted probabilities for
OOB cases are converted into classes (yes/no, high/low, etc as specified) based
on this probability cutoff. If logistic regression is not considered as node model,
the prob_cutoff = NULL. By default it is 0.5 when parameter not specified (and
logistic regression considered).

Value

An object of class mobforest.output.

See Also

mobforest.control(), mobforest.output-class

get.mf.object.lm Fit a linear model to a mobForest model

Description

This method computes predicted outcome for each observation in the data frame using the tree
model supplied as an input argument.

Usage

get.mf.object.lm(object, main_model, partition_vars, data, new_test_data,
ntree, family)

Arguments

object A bootstrap model object created by bootstrap()

main_model A model in character format.

partition_vars A vector of partition variables.

data A data frame containing the variables in the model.

new_test_data A data frame representing test data for validating random forest model. This
data is not used in in tree building process.

ntree Number of trees to be constructed in forest (default = 300)

family A description of error distribution and link function to be used in the model. This
parameter needs to be specified if generalized linear model is considered. The
parameter "binomial()" is to be specified when logistic regression is considered
and "poisson()" when Poisson regression is considered as the node model. The
values allowed for this parameter are binomial() and poisson().

Value

An object of class mobforest.output.

8 get.pred.values

See Also

mobforest.control(), mobforest.output-class

get.pred.values Get predictions summarized across trees for out-of-bag cases or all
cases for cases from new test data

Description

Get predictions summarized across trees for out-of-bag cases or all cases for cases from new test
data

Usage

get.pred.values(rf, OOB = T, newdata = F)

Arguments

rf An object of class mobforest.output.

OOB a logical determining whether to return predictions from the out-of-bag sample
or the learning sample (not suggested).

newdata a logical determining whether to return predictions from test data. If newdata =
TRUE, then OOB argument is ignored.

Value

matrix with three columns: 1) Mean Predictions across trees, 2) Standard deviation of predictions
across trees, and 3) Residual (mean predicted - observed). The third column is applicable only when
linear regression is considered as the node model.

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = TRUE,
alpha = 0.05, bonferroni = TRUE, minsplit = 25), data = BostonHousing,
processors = 1, model = linearModel, seed = 1111)

Obtain out-of-bag predicted values
OOB_pred_mat <- get.pred.values(rfout, OOB = TRUE)

get.varimp 9

OOB_pred = OOB_pred_mat[, 1]

End(Not run)

get.varimp Variable importance scores computed through random forest analysis

Description

Variable importance scores computed through random forest analysis

Usage

get.varimp(rf)

Arguments

rf An object of class mobforest.output returned by mobforest.analysis()

References

Leo Breiman (2001). Random Forests. Machine Learning, 45(1), 5-32.

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = TRUE,
alpha = 0.05, bonferroni = TRUE, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)
Returns a vector of variable importance scores
get.varimp(rfout)

End(Not run)

10 mob.rf.tree

logistic.acc Contingency table: Predicted vs. Observed Outcomes

Description

This function takes predicted probabilities (for out of bag cases) obtained through logistic regression-
based tree models and converts them into binary classes (based on specified probability threshold).
The predicted classifications are then compared to actual binary response.

Usage

logistic.acc(response, predicted, prob_thresh = 0.5)

Arguments

response A vector of binary classes of out-of-cases for a given tree.

predicted A vector of predicted probabilities of out-of-cases using same tree.

prob_thresh Probability threshold for classification (default = .5).

Examples

We should get 15 predictions correct and miss 5
response <- matrix(c(rep(0,10), rep(1,10)))
predicted <- c(rep(.1,15), rep(.8,5))
logistic.acc(response, predicted, .5)

mob.rf.tree Model based recursive partitioning - randomized subset of partition
variables considered during each split.

Description

The mob function in party package is modified so that a random subset of predictor variables are
considered during each split. mtry represents the number of predictor variables to be considered
during each split.

Usage

mob.rf.tree(main_model, partition_vars, mtry, weights, data = list(),
na.action = na.omit, model = glinearModel, control = mob_control(),
...)

mobforest.analysis 11

Arguments

main_model A model in character format

partition_vars A vector of partition variables

mtry A Random subset of partition variables to be considered at each node of decision
tree

weights An optional vector of weights, as described in mob

data A data frame containing the variables in the model.

na.action A function which indicates what should happen when the data contain NAs, as
described in mob

model A model of class StatModel

control A list with control parameters as returned by mob_control

... Additional arguments passed to the fit call for the model.

Value

An object of class mob inheriting from BinaryTree. Every node of the tree is additionally associ-
ated with a fitted model.

References

Achim Zeileis, Torsten Hothorn, and Kurt Hornik (2008). Model-Based Recursive Partitioning.
Journal of Computational and Graphical Statistics, 17(2), 492-514.

mobforest.analysis Model-based random forest analysis

Description

Main function that takes all the necessary arguments to start model-based random forest analysis.

Usage

mobforest.analysis(formula, partition_vars, data,
mobforest_controls = mobforest.control(),
new_test_data = as.data.frame(matrix(0, 0, 0)), processors = 1,
model = linearModel, family = NULL, prob_cutoff = 0.5,
seed = sample(1:1e+07, 1))

12 mobforest.analysis

Arguments

formula An object of class formula specifying the model. This should be of type y ~ x_1
+ ... + x_k, where the variables x_1, x_2, ..., x_k are predictor variables and y
represents an outcome variable. This model is referred to as the node model

partition_vars A character vector specifying the partition variables

data An input dataset that is used for constructing trees in random forest.
mobforest_controls

An object of class "mobforest.control" returned by mobforest.control(), that
contains parameters controlling the construction of random forest.

new_test_data A data frame representing test data for validating random forest model. This
data is not used in in tree building process.

processors A number of processors/cores on your computer that should be used for parallel
computation.

model A model of class "StatModel" used for fitting observations in current node.
This parameter allows fitting a linear model or generalized linear model with
formula y ~ x_1 + ... + x_k. The Parameter "linearModel" fits linear model. The
parameter "glinearModel" fits Poisson or logistic regression model depending
upon the specification of parameter "family" (explained next). If "family" is
specified as binomial() then logistic regression is performed. If the "family" is
specified as poisson() then Poisson regression is performed.

family A description of error distribution and link function to be used in the model. This
parameter needs to be specified if generalized linear model is considered. The
parameter "binomial()" is to be specified when logistic regression is considered
and "poisson()" when Poisson regression is considered as the node model. The
values allowed for this parameter are binomial() and poisson().

prob_cutoff In case of logistic regression as a node model, the predicted probabilities for
OOB cases are converted into classes (yes/no, high/low, etc as specified) based
on this probability cutoff. If logistic regression is not considered as node model,
the prob_cutoff = NULL. By default it is 0.5 when parameter not specified (and
logistic regression considered).

seed Since this function uses parallel processes, to replicate results, set the cluster
"clusterSetRNGStream()" seed.

Details

mobforest.analysis is the main function that takes all the input parameters - model, partition vari-
ables, and forest control parameters - and starts the model-based random forest analysis. mobforest.analysis
calls bootstrap function which constructs decision trees, computes out-of-bag (OOB) predic-
tions, OOB predictive accuracy and perturbation in OOB predictive accuracy through permutation.
bootstrap constructs trees on multiple cores/processors simultaneously through parallel computa-
tion. Later, the get.mf.object function wraps the analysis output into mobforest.output object.

Predictive accuracy estimates are computed using pseudo-R2 metric, defined as the proportion of
total variation in outcome variable explained by a tree model on out-of-bag cases. R2 ranges from
0 to 1. R2 of zero suggests worst tree model (in terms of predicting outcome) and R2 of 1 suggests

mobforest.analysis 13

perfect tree model.

Value

An object of class mobforest.output.

References

Achim Zeileis, Torsten Hothorn, and Kurt Hornik (2008). Model-Based Recursive Partitioning.
Journal of Computational and Graphical Statistics, 17(2), 492-514.

Hothorn, T., Hornik, K. and Zeileis, A. (2006) Unbiased recursive partitioning: A conditional in-
ference framework, J Compute Graph Stat, 15, 651-674.

Strobl, C., Malley, J. and Tutz, G. (2009) An introduction to recursive partitioning: rationale, ap-
plication, and characteristics of classification and regression trees, bagging, and random forests,
Psychol Methods, 14, 323-348.

See Also

mobforest.control(), mobforest.output-class

Examples

library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = TRUE,
alpha = 0.05, bonferroni = TRUE, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)
Not run:
rfout

End(Not run)

14 mobforest.control

mobforest.control Control parameters for random forest

Description

Various parameters that control the forest growing.

Usage

mobforest.control(ntree = 300, mtry = 0, replace = FALSE,
fraction = 0.632, alpha = 1, bonferroni = FALSE, minsplit = 20,
trim = 0.1, objfun = deviance, breakties = FALSE, parm = NULL,
verbose = FALSE)

Arguments

ntree Number of trees to be constructed in forest (default = 300).

mtry Number of input variables randomly sampled as candidates at each node.

replace logical. replace = TRUE (default) performs bootstrapping. replace = FALSE
performs sampling without replacement.

fraction Number of observations to draw without replacement (only relevant if replace =
FALSE).

alpha A node is considered for splitting if the p value for any partitioning variable in
that node falls below alpha (default 0.05). Please see mob_control().

bonferroni logical. Should p values be Bonferroni corrected? (default TRUE). Please see
mob_control().

minsplit An integer. The minimum number of observations in a node (default 20). Please
see mob_control().

trim A numeric, as defined in mob_control().

objfun A function, as defined in mob_control().

breakties A logical, as defined in mob_control().

parm A numeric or vector, as defined in mob_control().

verbose A logical, as defined in mob_control().

Details

This function is used to set up forest controls. The mob_control (from party ’package’) object is
used to set up control parameters for single tree model. For most parameters, please see: mob_control()

Value

An object of class mobforest.control.

mobforest.control-class 15

References

Achim Zeileis, Torsten Hothorn, and Kurt Hornik (2008). Model-Based Recursive Partitioning.
Journal of Computational and Graphical Statistics, 17(2), 492-514.

Examples

create forest controls before starting random forest analysis
mobforest_control = mobforest.control(ntree = 400, mtry = 4, replace = TRUE,

minsplit = 200)

mobforest.control-class

Class "mobforest.control" of mobForest model

Description

Control parameters for random forest

Objects from the Class

Objects can be created by mobforest.control.

Examples

showClass("mobforest.control") The following code creates following forest
controls: 400 trees to be constructed, sampling with replacement, a node
contains at least 200 observations
mobforest_controls = mobforest.control(ntree = 400, mtry = 4,

replace = TRUE, minsplit = 200)

mobforest.output Model-based random forest object

Description

Random Forest Output object that stores all the results including predictions, variable importance
matrix, model, family of error distributions, and observed responses.

Usage

mobforest.output(oob_predictions, general_predictions,
new_data_predictions, varimp_object, model_used, family, train_response,
new_response = data.frame(matrix(0, 0, 0)))

16 mobforest.output-class

Arguments

oob_predictions

Predictions on out-of-bag data.
general_predictions

Predictions on learning data.
new_data_predictions

Predictions on new test data.

varimp_object The variable importance object.

model_used The model used.

family A description of the error distribution and link function to be used in the model.

train_response Response outcome of training data.

new_response Response outcome of test data.

See Also

prediction.output, varimp.output

mobforest.output-class

Class "mobforest.output" of mobforest model

Description

Random Forest output for model based recursive partitioning

Usage

S4 method for signature 'mobforest.output'
show(object)

Arguments

object object of class mobforest.output

Objects from the Class

Objects can be created by mobforest.output.

See Also

prediction.output, varimp.output

mob_fit_checksplit 17

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = TRUE,
alpha = 0.05, bonferroni = TRUE, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)

End(Not run)

mob_fit_checksplit Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_checksplit(split, weights, minsplit)

Arguments

split see party package

weights see party package

minsplit see party package

mob_fit_childweights Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_childweights(node, mf, weights)

18 mob_fit_getlevels

Arguments

node see party package

mf see party package

weights see party package

mob_fit_fluctests Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_fluctests(obj, mf, minsplit, trim, breakties, parm)

Arguments

obj see party package

mf see party package

minsplit see party package

trim see party package

breakties see party package

parm cheese?

mob_fit_getlevels Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_getlevels(x)

Arguments

x see party package

mob_fit_getobjfun 19

mob_fit_getobjfun Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_getobjfun(obj, mf, weights, left, objfun = deviance)

Arguments

obj see party package

mf see party package

weights see party package

left see party package

objfun see party package

mob_fit_setupnode Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_setupnode(obj, mf, weights, control)

Arguments

obj see party package

mf see party package

weights see party package

control see party package

20 prediction.output

mob_fit_splitnode Utility Function. Taken from party package to remove ":::" warning

Description

Utility Function. Taken from party package to remove ":::" warning

Usage

mob_fit_splitnode(x, obj, mf, weights, minsplit, objfun, verbose = TRUE)

Arguments

x see party package
obj see party package
mf see party package
weights see party package
minsplit see party package
objfun see party package
verbose To print or not to print

prediction.output Predictions and predictive accuracy estimates

Description

This function takes predictions and predictive accuracy estimates as input arguments and creates
objects of class prediction.output.

Usage

prediction.output(pred_mean = numeric(), pred_sd = numeric(),
residual = numeric(), R2_or_acc = numeric(), mse = numeric(),
overall_r2_or_acc = numeric(), pred_type = character())

Arguments

pred_mean Mean predictions across trees.
pred_sd Standard deviation predictions across trees.
residual Residuals (predicted outcome - observed outcome).
R2_or_acc R2 or accuracy (for binomial) across trees
mse MSE across trees
overall_r2_or_acc

Overall R2 or accuracy (for binomial)
pred_type Out-of-bag data or test data or learning data.

prediction.output-class 21

Value

An object of class "prediction.output()".

See Also

prediction.output, mobforest.analysis

prediction.output-class

Class "prediction.output" of mobForest model

Description

The object of this class stores predictions and predictive accuracy estimates.

Objects from the Class

Objects can be created by calls of the form prediction.output.

See Also

prediction.output, predictive.acc

predictive.acc Predictive performance across all trees

Description

Predictive performance across all trees

Usage

predictive.acc(object = "mfOutput", newdata = F, prob_cutoff = NULL,
plot = T)

Arguments

object An object of class mobforest.output

newdata A logical value specifying if the performance needs to be summarized on test
data supplied as new_test_data argument to mobforest.analysis function.

prob_cutoff Predicted probabilities converted into classes (Yes/No, 1/0) based on this prob-
ability threshold. Only used for producing predicted Vs actual classes table.

plot A logical value specifying if the use wishes to view performance plots

22 predictive.acc

Value

A list with performance parameters

oob_r2 A vector of predictive accuracy estimates (ranging between 0 and 1) measured
on Out-of-bag cases for each tree

oob_mse A vector of MSE for Out-of-bag data for each tree. Valid only if the outcome is
continuous.

oob_overall_r2

Overall predictive accuracy measured by combining Out-of-bag predictions across
trees.

oob_overall_mse

Overall MSE measured by combining Out-of-bag predictions across trees.

general_r2 A vector of predictive accuracy (ranging between 0 and 1) measured on com-
plete learning data for each tree

general_mse A vector of MSE measured on complete learning data for each tree. Valid only
if the outcome is continuous.

general_overall_r2

Overall predictive accuracy measured by combining predictions across trees.
general_overall_mse

Overall MSE measured by combining predictions across trees. Valid only if the
outcome is continuous.

model_used The node model and partition variables used for analysis

family Error distribution assumptions of the model

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = T,
alpha = 0.05, bonferroni = T, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)

get predictive performance estimates and produce a performance plot
pacc <- predictive.acc(rfout)

End(Not run)

print.estimates 23

print.estimates Predictive Accuracy Report

Description

Predictive Accuracy Report

Usage

S3 method for class 'estimates'
print(x, ...)

Arguments

x An object of class ’predictive.acc’ returned by "predictive.acc()" function

... Additional arguments to print method

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = T,
alpha = 0.05, bonferroni = T, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)
prints predictive accuracy output
pacc <- predictive.acc(rfout)

End(Not run)

residual.plot Produces two plots: a) histogram of residuals, b) predicted Vs resid-
uals. This feature is applicable only when linear regression is consid-
ered as the node model.

24 string.formula

Description

Residuals are computed as difference between the predicted values of outcome (summarized across
all trees) and observed values of outcome. The residual plots are typical when the fitted values are
obtained through linear regression but not when logistic or Poisson regression is considered as a
node model. Therefore, the residual plots are produced only when linear regression is considered.
For logistic or Poisson models, a message is printed saying "Residual Plot not produced when
logistic of Poisson regression is considered as the node model".

Usage

residual.plot(object, breaks = 50)

Arguments

object An object of class ’mobforest.output’

breaks Integer for number of breaks in histogram

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = T,
alpha = 0.05, bonferroni = T, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)
get predictive performance estimates and produce a performance plot
residualPlot(rfout)

End(Not run)

string.formula Model in the formula object converted to a character

Description

Model in the formula object converted to a character

Usage

string.formula(formula)

tree.predictions 25

Arguments

formula formula object

Value

character. model

Examples

aformula <- as.formula(medv ~ lstat)
astring <- string.formula(aformula)
print(astring)

tree.predictions Predictions from tree model

Description

This method computes predicted outcome for each observation in the data frame using the tree
model supplied as an input argument.

Usage

tree.predictions(j, df, tree)

Arguments

j the observation
df A data frame containing the variables in the model.
tree An object of class mob inheriting from BinaryTree

Value

A vector of predicted outcome

Examples

library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
data <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]
fmBH <- mob.rf.tree(main_model = "medv ~ lstat",

partition_vars = c("rad", "tax", "crim"), mtry = 2,
control = mob_control(), data = data,
model = linearModel)

tree.predictions(j = 1, df = data, tree = fmBH@tree)

26 varimp.output-class

varimp.output Variable importance matrix containing the decrease in predictive ac-
curacy after permuting the variables across all trees

Description

Values of variable ’m’ in the oob cases are randomly permuted and R2 obtained through variable-
m-permuted oob data is subtracted from R2 obtained on untouched oob data. The average of this
number over all the trees in the forest is the raw importance score for variable m.

Usage

varimp.output(varimp_matrix)

Arguments

varimp_matrix a matrix containing decrease in predictive accuracy for all variables for each tree

Value

An object of class varimp.output.

References

Strobl, C., Malley, J. and Tutz, G. (2009) An introduction to recursive partitioning: rationale, ap-
plication, and characteristics of classification and regression trees, bagging, and random forests,
Psychol Methods, 14, 323-348.

varimp.output-class Class "varimp.output" of mobforest model

Description

Variable importance

Objects from the Class

Objects can be created by calls of the form varimp.output.

References

Strobl, C., Malley, J. and Tutz, G. (2009) An introduction to recursive partitioning: rationale, ap-
plication, and characteristics of classification and regression trees, bagging, and random forests,
Psychol Methods, 14, 323-348.

varimplot 27

See Also

varimp.output

varimplot A plot with variable importance score on X-axis and variable name on
Y-axis.

Description

A plot with variable importance score on X-axis and variable name on Y-axis.

Usage

varimplot(object)

Arguments

object An object of class mobforest.output returned by mobforest.analysis()

References

Leo Breiman (2001). Random Forests. Machine Learning, 45(1), 5-32.

See Also

get.varimp

Examples

Not run:
library(mlbench)
set.seed(1111)
Random Forest analysis of model based recursive partitioning load data
data("BostonHousing", package = "mlbench")
BostonHousing <- BostonHousing[1:90, c("rad", "tax", "crim", "medv", "lstat")]

Recursive partitioning based on linear regression model medv ~ lstat with 3
trees. 1 core/processor used.
rfout <- mobforest.analysis(as.formula(medv ~ lstat), c("rad", "tax", "crim"),

mobforest_controls = mobforest.control(ntree = 3, mtry = 2, replace = T,
alpha = 0.05, bonferroni = T, minsplit = 25), data = BostonHousing,

processors = 1, model = linearModel, seed = 1111)
varimplot(rfout)

End(Not run)

Index

∗Topic classes
mobforest.control-class, 15
mobforest.output-class, 16
prediction.output-class, 21

BinaryTree, 11, 25
bootstrap, 2
bootstrap(), 6, 7

clusterSetRNGStream(), 12
compute.acc, 4
compute.mse, 5
compute.r2, 5

get.mf.object.glm, 6
get.mf.object.lm, 7
get.pred.values, 8
get.pred.values,

(mobforest.output-class), 16
get.varimp, 9, 27

logical, (mobforest.output-class), 16
logical-method

(mobforest.output-class), 16
logistic.acc, 10

mob, 10, 11
mob.rf.tree, 10
mob_control, 11
mob_control(), 14
mob_fit_checksplit, 17
mob_fit_childweights, 17
mob_fit_fluctests, 18
mob_fit_getlevels, 18
mob_fit_getobjfun, 19
mob_fit_setupnode, 19
mob_fit_splitnode, 20
mobfores.output,

(mobforest.output-class), 16
mobforest.analysis, 11, 21
mobforest.analysis(), 9, 27

mobforest.control, 12, 14, 14, 15
mobforest.control(), 7, 8, 12, 13
mobforest.control-class, 15
mobforest.output, 7, 9, 13, 15, 16, 27
mobforest.output,

(mobforest.output-class), 16
mobforest.output-class, 16
mobforest.output-method

(mobforest.output-class), 16
mobforest.output-method,

(mobforest.output-class), 16

prediction.output, 16, 20, 20, 21
prediction.output(), 21
prediction.output-class, 21
predictive.acc, 21, 21
predictive.acc(), 23
predictive.acc,

(mobforest.output-class), 16
print.estimates, 23

residual.plot, 23

show,mobforest.output-method
(mobforest.output-class), 16

StatModel, 3, 11, 12
string.formula, 24

tree.predictions, 25

varimp.output, 16, 26, 26, 27
varimp.output-class, 26
varimplot, 27

28

	bootstrap
	compute.acc
	compute.mse
	compute.r2
	get.mf.object.glm
	get.mf.object.lm
	get.pred.values
	get.varimp
	logistic.acc
	mob.rf.tree
	mobforest.analysis
	mobforest.control
	mobforest.control-class
	mobforest.output
	mobforest.output-class
	mob_fit_checksplit
	mob_fit_childweights
	mob_fit_fluctests
	mob_fit_getlevels
	mob_fit_getobjfun
	mob_fit_setupnode
	mob_fit_splitnode
	prediction.output
	prediction.output-class
	predictive.acc
	print.estimates
	residual.plot
	string.formula
	tree.predictions
	varimp.output
	varimp.output-class
	varimplot
	Index

