Package 'mlt'

May 12, 2020

Title Most Likely Transformations

Version 1.2-0

Date 2020-05-11

Description Likelihood-based estimation of conditional transformation models via the most likely transformation approach described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291>.

Depends basefun (>= 1.0-5), variables (>= 1.0-2)

Imports BB, alabama, stats, coneproj, graphics, methods, grDevices, sandwich, numDeriv, survival, nloptr

Suggests MASS, nnet, TH.data, multcomp

URL http://ctm.R-forge.R-project.org

License GPL-2

Encoding UTF-8

NeedsCompilation no

Author Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>)

Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>

Repository CRAN

Date/Publication 2020-05-12 12:50:02 UTC

R topics documented:

mlt-package	. 2
confband	. 2
ctm	. 3
ctm-methods	. 4
mlt	. 5
mlt-methods	. 6
mltoptim	. 8
plot-predict-simulate	. 8
R	. 10

12

Index

```
mlt-package
```

Description

The **mlt** package implements maximum likelihood estimation in conditional transformation models as introduced by Hothorn et al. (2018).

An introduction to the package is available in the mlt package vignette from package mlt.docreg (Hothorn, 2018).

A short talk on most likely transformations is available from https://channel9.msdn.com/Events/ useR-international-R-User-conference/useR2016/Most-Likely-Transformations.

Author(s)

This package is authored by Torsten Hothorn <Torsten.Hothorn@R-project.org>.

References

Torsten Hothorn, Lisa Moest, Peter Buehlmann (2018), Most Likely Transformations, *Scandinavian Journal of Statistics*, **45**(1), 110–134, doi: 10.1111/sjos.12291.

Torsten Hothorn (2018), Most Likely Transformations: The mlt Package, *Journal of Statistical Software*, forthcoming. URL: https://cran.r-project.org/package=mlt.docreg.

confband

Confidence Bands

Description

Confidence bands for transformation, distribution, survivor or cumulative hazard functions

Usage

```
confband(object, newdata, level = 0.95, ...)
## S3 method for class 'mlt'
confband(object, newdata, level = 0.95,
        type = c("trafo", "distribution", "survivor", "cumhazard"),
        K = 20, cheat = K, ...)
```

ctm

Arguments

object	an object of class mlt
newdata	a data frame of observations
level	the confidence level
type	the function to compute the confidence band for
К	number of grid points the function is evaluated at
cheat	number of grid points the function is evaluated at when using the quantile obtained for K grid points
	additional arguments to confint.glht

Details

The function is evaluated at K grid points and simultaneous confidence intervals are then interpolated in order to construct the band.

A smoother band can be obtained by setting cheat to something larger than K: The quantile is obtained for K grid points but the number of evaluated grid points cheat can be much larger at no additional cost. Technically, the nominal level is not maintained in this case but the deviation will be small for reasonably large K.

Value

For each row in newdata the function and corresponding confidence band evaluated at the K (or cheat) grid points is returned.

Conditional Transformation Models

Description

Specification of conditional transformation models

Usage

```
ctm(response, interacting = NULL, shifting = NULL, data = NULL,
todistr = c("Normal", "Logistic", "MinExtrVal", "MaxExtrVal", "Exponential"),
sumconstr = inherits(interacting, c("formula", "formula_basis")), ...)
```

Arguments

response	a basis function, ie, an object of class basis
interacting	a basis function, ie, an object of class basis
shifting	a basis function, ie, an object of class basis
data	either a data.frame containing the model variables or a formal description of these variables in an object of class vars

todistr	a character vector describing the distribution to be transformed
sumconstr	a logical indicating if sum constraints shall be applied
	arguments to as.basis when shifting is a formula

Details

This function only specifies the model which can then be fitted using mlt. The shift term is positive by default.

Possible choices of the distributions the model transforms to (the inverse link functions) include the standard normal ("Normal"), the standard logistic ("Logistic"), the standard minimum extreme value ("MinExtrVal", also known as Gompertz distribution), and the standard maximum extreme value ("MaxExtrVal", also known as Gumbel distribution) distributions. The exponential distribution ("Exponential") can be used to fit Aalen additive hazard models.

Value

An object of class ctm.

References

Torsten Hothorn, Lisa Moest, Peter Buehlmann (2018), Most Likely Transformations, *Scandinavian Journal of Statistics*, **45**(1), 110–134, doi: 10.1111/sjos.12291.

ctm-methods

Methods for ctm Objects

Description

Methods for objects of class ctm

Usage

Arguments

object	an unfitted conditional transformation model as returned by ctm
which	a character specifying which names shall be returned
	additional arguments

Details

coef can be used to get and set model parameters.

Description

Likelihood-based model estimation in conditional transformation models

Usage

Arguments

model	a conditional transformation model as specified by ctm
data	a data.frame containing all variables specified in model
weights	an optional vector of weights
offset	an optional vector of offset values
fixed	a named vector of fixed regression coefficients; the names need to correspond to column names of the design matrix
theta	optional starting values for the model parameters
pstart	optional starting values for the distribution function evaluated at the data
scale	a logical indicating if (internal) scaling shall be applied to the model coefficients
dofit	a logical indicating if the model shall be fitted to the data (TRUE) or not
optim	a list of functions implementing suitable optimisers
	additional arguments, currently ignored

Details

This function fits a conditional transformation model by searching for the most likely transformation as described in Hothorn et al. (2017).

Value

An object of class mlt with corresponding methods.

References

Torsten Hothorn, Lisa Moest, Peter Buehlmann (2018), Most Likely Transformations, *Scandinavian Journal of Statistics*, **45**(1), 110–134, doi: 10.1111/sjos.12291.

mlt

Examples

mlt-methods

Methods for mlt Objects

Description

Methods for objects of class mlt

Usage

```
## S3 method for class 'mlt'
coef(object, fixed = TRUE, ...)
coef(object) <- value</pre>
## S3 method for class 'mlt'
weights(object, ...)
## S3 method for class 'mlt'
logLik(object, parm = coef(object, fixed = FALSE), w = NULL, newdata, ...)
## S3 method for class 'mlt'
vcov(object, parm = coef(object, fixed = FALSE), complete = FALSE, ...)
Hessian(object, ...)
## S3 method for class 'mlt'
Hessian(object, parm = coef(object, fixed = FALSE), ...)
Gradient(object, ...)
## S3 method for class 'mlt'
Gradient(object, parm = coef(object, fixed = FALSE), ...)
## S3 method for class 'mlt'
estfun(object, parm = coef(object, fixed = FALSE),
       w = NULL, newdata, ...)
## S3 method for class 'mlt'
```

mlt-methods

```
mkgrid(object, n, ...)
## S3 method for class 'mlt'
bounds(object)
## S3 method for class 'mlt'
variable.names(object, ...)
## S3 method for class 'mlt_fit'
update(object, weights = stats::weights(object),
            subset = NULL, offset = object$offset, theta = coef(object, fixed = FALSE),
            ...)
## S3 method for class 'mlt'
as.mlt(object)
```

Arguments

object	a fitted conditional transformation model as returned by mlt
fixed	a logical indicating if only estimated coefficients (fixed = FALSE) should be returned
value	coefficients to be assigned to the model
parm	model parameters
w	model weights
weights	model weights
newdata	an optional data frame of new observations. Allows evaluation of the log- likelihood for a given model object on these new observations. The parameters parm and w are ignored in this situation.
n	number of grid points
subset	an optional integer vector indicating the subset of observations to be used for fitting.
offset	an optional vector of offset values
theta	optional starting values for the model parameters
complete	currently ignored
	additional arguments

Details

coef can be used to get and set model parameters, weights and logLik extract weights and evaluate the log-likelihood (also for parameters other than the maximum likelihood estimate). Hessian returns the Hessian and vcov the inverse thereof. Gradient gives the gradient (sum of the score contributions) and estfun the score contribution by each observation. mkgrid generates a grid of all variables (as returned by variable.names) in the model. update allows refitting the model with alternative weights and potentially different starting values. bounds gets bounds for bounded variables in the model. mltoptim

Description

Define optimisers and their control parameters

Usage

```
mltoptim(auglag = list(maxtry = 5, kkt2.check = FALSE),
            spg = list(maxit = 10000, quiet = TRUE, checkGrad = FALSE),
            nloptr = NULL, trace = FALSE)
```

Arguments

auglag	A list with control parameters for the auglag optimiser. maxtry is the number of times the algorithm is started on random starting values in case it failed with the precomputed ones.
spg	A list with control parameters for the BBoptim optimiser (calling spg internally).
nloptr	A list with control parameters for the nloptr optimiser. This is still experimen- tal and thus switched off (defaulting to NULL).
trace	A logical switching trace reports by the optimisers off.

Details

This function sets-up functions to be called in mlt internally.

Value

A list of functions with arguments theta (starting values), f (log-likelihood), g (scores), ui and ci (linear inequality constraints). Adding further such functions is a way to add more optimisers to mlt. The first one in this list converging defines the resulting model.

plot-predict-simulate Plots, Predictions and Samples from mlt Objects

Description

Plot, predict and sample from objects of class mlt

Usage

```
## S3 method for class 'ctm'
plot(x, newdata, type = c("distribution", "survivor", "density",
      "logdensity", "hazard", "loghazard", "cumhazard", "logcumhazard", "odds",
      "logodds", "quantile", "trafo"),
     q = NULL, prob = 1:(K - 1) / K, K = 50, col = rgb(.1, .1, .1, .1), lty = 1,
      add = FALSE, \ldots)
## S3 method for class 'mlt'
plot(x, ...)
## S3 method for class 'ctm'
predict(object, newdata, type = c("trafo", "distribution",
            "survivor", "density", "logdensity", "hazard", "loghazard", "cumhazard",
            "logcumhazard", "odds", "logodds", "quantile"),
          terms = c("bresponse", "binteracting", "bshifting"),
          q = NULL, prob = NULL, K = 50, interpolate = TRUE, ...)
## S3 method for class 'mlt'
predict(object, newdata = object$data, ...)
## S3 method for class 'ctm'
simulate(object, nsim = 1, seed = NULL, newdata, K = 50, q = NULL,
          interpolate = TRUE, bysim = TRUE, ...)
## S3 method for class 'mlt'
simulate(object, nsim = 1, seed = NULL, newdata = object$data, bysim = TRUE, ...)
```

Arguments

object	a fitted conditional transformation model as returned by mlt or an unfitted conditional transformation model as returned by ctm
x	a fitted conditional transformation model as returned by mlt
newdata	an optional data frame of observations
type	type of prediction or plot to generate
q	quantiles at which to evaluate the model
prob	probabilities for the evaluation of the quantile function (type = "quantile")
terms	terms to evaluate for the predictions, corresponds to the argument response, interacting and shifting in $\tt ctm$
К	number of grid points to generate (in the absence of q)
col	color for the lines to plot
lty	line type for the lines to plot
add	logical indicating if a new plot shall be generated (the default)
interpolate	logical indicating if quantiles shall be interpolated linearily
nsim	number of samples to generate
seed	optional seed for the random number generator
bysim	logical, if TRUE a list with nsim elements is returned, each element is of length nrow(newdata) and contains one sample from the conditional distribution for each row of newdata. If FALSE, a list of length nrow(newdata) is returned, its

tion given newdata[i,].

additional arguments

Details

. . .

plot evaluates the transformation function over a grid of q values for all observations in newdata and plots these functions (according to type). predict evaluates the transformation function over a grid of q values for all observations in newdata and returns the result as a matrix (where _columns_ correspond to _rows_ in newdata). Note that the predict method for ctm objects requires all model coefficients to be specified in this unfitted model. simulate draws samples from object by numerical inversion of the quantile function.

Note that offsets are ALWAYS IGNORED when computing predictions. If you want the methods to pay attention to offsets, specify them as a variable in the model with fixed regression coefficient using the fixed argument in mlt.

R

Response Variable

Description

Represent a possibly censored or truncated response variable

Usage

```
R(object, ...)
## S3 method for class 'numeric'
R(object = NA, cleft = NA, cright = NA,
    tleft = NA, tright = NA, tol = sqrt(.Machine$double.eps), ...)
## S3 method for class 'ordered'
R(object, cleft = NA, cright = NA, ...)
## S3 method for class 'integer'
R(object, cleft = NA, cright = NA, bounds = c(min(object), Inf), ...)
## S3 method for class 'factor'
R(object, ...)
## S3 method for class 'Surv'
R(object, ...)
as.Surv(object)
## S3 method for class 'response'
as.Surv(object)
```

Arguments

object	A vector of (conceptually) exact measurements or an object of class response (for as.Surv) or a list.
cleft	A vector of left borders of censored measurements

10

cright	A vector of right borders of censored measurements
tleft	A vector of left truncations
tright	A vector of right truncations
tol	Tolerance for checking if cleft < cright
bounds	Range of possible values for integers
	other arguments, ignored except for tleft and tright to ${\tt R}$. ordered and ${\tt R}$. integer

Details

R is basically an extention of Surv for the representation of arbitrarily censored or truncated measurements at any scale.

R applied to a list calls R for each of the list elements and returns a joint object.

Examples

ordered factor
R(gl(3, 3, labels = LETTERS[1:3]))

Index

*Topic **list** mltoptim, 8 *Topic package mlt-package, 2 as.mlt(mlt-methods), 6 as.Surv (R), 10 auglag, 8 BBoptim, 8 bounds.mlt(mlt-methods), 6 coef.ctm(ctm-methods), 4 coef.mlt(mlt-methods), 6 coef<- (mlt-methods), 6</pre> coef<-.ctm(ctm-methods), 4</pre> confband, 2 confint.glht, 3 ctm, 3, 4, 5, 9 ctm-methods, 4 estfun.mlt(mlt-methods), 6 Gradient (mlt-methods), 6 Hessian (mlt-methods), 6 logLik.mlt(mlt-methods), 6 mkgrid.mlt(mlt-methods), 6 mlt, 3, 4, 5, 7-10 mlt-methods, 6 mlt-package, 2 mltoptim, 8 nloptr, 8 plot-predict-simulate, 8 plot.ctm (plot-predict-simulate), 8 plot.mlt(plot-predict-simulate), 8 predict.ctm (plot-predict-simulate), 8 predict.mlt(plot-predict-simulate), 8

R, 10

simulate.ctm(plot-predict-simulate), 8
simulate.mlt(plot-predict-simulate), 8
spg, 8
Surv, 11

update.mlt_fit (mlt-methods), 6

variable.names.ctm(ctm-methods), 4
variable.names.mlt(mlt-methods), 6
vcov.mlt(mlt-methods), 6

weights.mlt(mlt-methods), 6