Package 'mlr3measures'

June 27, 2020

Title Performance Measures for 'mlr3'

Version 0.2.0

Description Implements multiple performance measures for supervised learning. Includes over 40 measures for regression and classification. Additionally, meta information about the performance measures can be queried, e.g. what the best and worst possible performances scores are.

License LGPL-3

URL https:///mlr3measures.mlr-org.com,

https://github.com/mlr-org/mlr3measures

BugReports https://github.com/mlr-org/mlr3measures/issues

Depends R (>= 3.1.0)

Imports checkmate

Suggests bibtex, testthat

Encoding UTF-8

RoxygenNote 7.1.0

Collate 'assertions.R' 'measures.R' 'binary_auc.R' 'binary_bbrier.R' 'binary_dor.R' 'binary_fbeta.R' 'binary_fdr.R' 'binary_fn.R' 'binary_fnr.R' 'binary_fomr.R' 'binary_fp.R' 'binary_fpr.R' 'binary_mcc.R' 'binary_npv.R' 'binary_pv.R' 'binary_tn.R' 'binary_tnr.R' 'binary_tp.R' 'binary_tpr.R' 'classif_acc.R' 'classif_auc.R' 'classif_bacc.R' 'classif_ce.R' 'classif_logloss.R' 'classif_mbrier.R' 'confusion_matrix.R' 'helper.R' 'regr_bias.R' 'regr_ktau.R' 'regr_mae.R' 'regr_mape.R' 'regr_mse.R' 'regr_mase.R' 'regr_medae.R' 'regr_medse.R' 'regr_mse.R' 'regr_msle.R' 'regr_pbias.R' 'regr_rse.R' 'regr_rsq.R' 'regr_sae.R' 'regr_smape.R' 'regr_srbo.R' 'regr_sse.R' 'roxygen.R' 'zzz.R'

NeedsCompilation no

Author Michel Lang [cre, aut] (<https://orcid.org/0000-0001-9754-0393>), Martin Binder [ctb] Maintainer Michel Lang <michellang@gmail.com> Repository CRAN Date/Publication 2020-06-27 04:50:02 UTC

R topics documented:

mlr3measures-package	3
acc	3
auc	4
bacc	6
bbrier	7
bias	8
ce	9
confusion_matrix	10
dor	11
fbeta	13
fdr	14
fn	16
fnr	17
fomr	18
fp	19
fpr	21
ktau	22
logloss	23
mae	24
mape	25
mauc_aunu	26
maxae	28
maxse	29
mbrier	30
mcc	31
measures	33
medae	33
medse	34
mse	35
msle	36
npv	37
pbias	39
ppv	40
rae	41
rmse	43
rmsle	44
птяе	45
rse	46
rsq	47
sae	48
smape	49

	5
tpr	
tp	
tnr	
tn	
sse	
srho	

Index

mlr3measures-package mlr3measures: Performance Measures for 'mlr3'

Description

Implements multiple performance measures for supervised learning. Includes over 40 measures for regression and classification. Additionally, meta information about the performance measures can be queried, e.g. what the best and worst possible performances scores are.

Author(s)

Maintainer: Michel Lang <michellang@gmail.com> (ORCID)

Other contributors:

• Martin Binder <mlr.developer@mb706.com> [contributor]

See Also

Useful links:

- https:///mlr3measures.mlr-org.com
- https://github.com/mlr-org/mlr3measures
- Report bugs at https://github.com/mlr-org/mlr3measures/issues

acc

Classification Accuracy

Description

Classification measure defined as

$$\frac{1}{n}\sum_{i=1}^{n}\left(t_{i}=r_{i}\right)$$

Usage

acc(truth, response, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the same levels and length as response.
response	:: factor() Predicted response labels. Must have the same levels and length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "classif"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

See Also

Other Classification Measures: bacc(), ce(), logloss(), mauc_aunu(), mbrier()

Examples

```
set.seed(1)
lvls = c("a", "b", "c")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
acc(truth, response)
```

auc

Area Under the ROC Curve

Description

Computes the area under the Receiver Operator Characteristic (ROC) curve. The AUC can be interpreted as the probability that a randomly chosen positive observation has a higher predicted probability than a randomly chosen negative observation.

Usage

```
auc(truth, prob, positive, na_value = NaN, ...)
```

auc

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
prob	:: numeric() Predicted probability for positive class. Must have exactly same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: FALSE
- Required prediction: prob

Note

This measure is undefined if the true values are either all positive or all negative.

References

Youden WJ (1950). "Index for rating diagnostic tests." *Cancer*, **3**(1), 32–35. doi: 10.1002/1097-0142(1950)3:1<32::aidcncr2820030106>3.0.co;23.

See Also

Other Binary Classification Measures: bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
truth = factor(c("a", "a", "a", "b"))
prob = c(.6, .7, .1, .4)
auc(truth, prob, "a")
```

Description

Computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.

First, the sample weights w are normalized per class:

$$\hat{w}_i = \frac{w_i}{\sum_j 1(y_j = y_i)w_i}.$$

The balanced accuracy is calculated as

$$\frac{1}{\sum_i \hat{w}_i} \sum_i 1(r_i = t_i) \hat{w}_i.$$

Usage

```
bacc(truth, response, sample_weights = NULL, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the same levels and length as response.
response	:: factor() Predicted response labels. Must have the same levels and length as truth.
sample_weights	:: numeric() Non-negative sample weights. Must have the same levels and length as truth. Defaults to equal sample weights.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "classif"
- Range: [0,1]
- Minimize: FALSE
- Required prediction: response

bacc

bbrier

References

Brodersen KH, Ong CS, Stephan KE, Buhmann JM (2010). "The Balanced Accuracy and Its Posterior Distribution." In 2010 20th International Conference on Pattern Recognition. doi: 10.1109/ icpr.2010.764.

Guyon I, Bennett K, Cawley G, Escalante HJ, Escalera S, Ho TK, Macia N, Ray B, Saeed M, Statnikov A, Viegas E (2015). "Design of the 2015 ChaLearn AutoML challenge." In 2015 International Joint Conference on Neural Networks (IJCNN). doi: 10.1109/ijcnn.2015.7280767.

See Also

Other Classification Measures: acc(), ce(), logloss(), mauc_aunu(), mbrier()

Examples

```
set.seed(1)
lvls = c("a", "b", "c")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
bacc(truth, response)
```

```
bbrier
```

Binary Brier Score

Description

Brier score for binary classification problems defined as

$$\frac{1}{n} \sum_{i=1}^{n} (I_i - p_i)^2$$

 I_i is 1 if observation *i* belongs to the positive class, and 0 otherwise.

Note that this (more common) definition of the Brier score is equivalent to the original definition of the multi-class Brier score (see mbrier()) divided by 2.

Usage

```
bbrier(truth, prob, positive, ...)
```

Arguments

truth	:: factor()
	True (observed) labels. Must have the exactly same two levels and the same
	length as response.
prob	<pre>:: numeric()</pre>
	Predicted probability for positive class. Must have exactly same length as truth.
positive	:: character(1)
	Name of the positive class.
	:: any
	Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: TRUE
- Required prediction: prob

References

https://en.wikipedia.org/wiki/Brier_score

Brier GW (1950). "Verification of forecasts expressed in terms of probability." *Monthly Weather Review*, **78**(1), 1–3. doi: 10.1175/15200493(1950)078<0001:vofeit>2.0.co;2.

See Also

```
Other Binary Classification Measures: auc(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(),
fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()
```

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
prob = runif(10)
bbrier(truth, prob, positive = "a")
```

bias

Bias

Description

Regression measure defined as

$$\frac{1}{n}\sum_{i=1}^{n}\left(t_{i}-r_{i}\right)$$

Good predictions score close to 0.

Usage

bias(truth, response, ...)

ce

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	<pre>:: numeric() Predicted response values. Must have the same length as truth.</pre>
•••	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $(-\infty, \infty)$
- Minimize: NA
- Required prediction: response

See Also

Other Regression Measures: ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rmsle(), rrse(), rse(), rsq(), sae(), smape(),
srho(), sse()

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
bias(truth, response)

ce

Classification Error

Description

Classification measure defined as

$$\frac{1}{n}\sum_{i=1}^{n}\left(t_{i}\neq r_{i}\right)$$

Usage

ce(truth, response, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the same levels and length as response.
response	:: factor() Predicted response labels. Must have the same levels and length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "classif"
- Range: [0,1]
- Minimize: TRUE
- Required prediction: response

See Also

Other Classification Measures: acc(), bacc(), logloss(), mauc_aunu(), mbrier()

Examples

```
set.seed(1)
lvls = c("a", "b", "c")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
ce(truth, response)
```

confusion_matrix Calculate Binary Confusion Matrix

Description

Calculates the confusion matrix for a binary classification problem once and then calculates all confusion measures of this package.

Usage

```
confusion_matrix(truth, response, positive, na_value = NaN, relative = FALSE)
```

dor

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
relative	:: logical(1) If TRUE, the returned confusion matrix contains relative frequencies instead of absolute frequencies.

Value

List with two elements:

• matrix stores the calculated confusion matrix.

confusion_matrix(truth, response, positive = "b")

• measures stores the metrics as named numeric vector.

Examples

```
set.seed(123)
lvls = c("a", "b")
truth = factor(sample(lvls, 20, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 20, replace = TRUE), levels = lvls)
confusion_matrix(truth, response, positive = "a")
confusion_matrix(truth, response, positive = "a", relative = TRUE)
```

dor

Diagnostic Odds Ratio

Description

Binary classification measure defined as

```
\frac{\mathrm{TP}/\mathrm{FP}}{\mathrm{FN}/\mathrm{TN}}.
```

Usage

```
dor(truth, response, positive, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: $[0,\infty)$
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined if FP = 0 or FN = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
dor(truth, response, positive = "a")
```

fbeta

Description

Binary classification measure defined with P as precision() and R as recall() as

$$(1+\beta^2)\frac{P\cdot R}{(\beta^2 P)+R}.$$

It measures the effectiveness of retrieval with respect to a user who attaches β times as much importance to recall as precision. For $\beta = 1$, this measure is called "F1" score.

Usage

```
fbeta(truth, response, positive, beta = 1, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
beta	:: numeric(1) Parameter to give either precision or recall more weight. Default is 1, resulting in balanced weights.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined if

- TP = 0
- precision or recall is undefined, i.e. TP + FP = 0 or TP + FN = 0.

References

Sasaki Y, others (2007). "The truth of the F-measure." *Teach Tutor mater*, **1**(5), 1–5. https://www.cs.odu.edu/~mukka/cs795sum10dm/Lecturenotes/Day3/F-measure-YS-260ct07.pdf.

Rijsbergen CJV (1979). *Information Retrieval*, 2nd edition. Butterworth-Heinemann, Newton, MA, USA. ISBN 408709294.

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fbeta(truth, response, positive = "a")
```

fdr

False Discovery Rate

Description

Binary classification measure defined as

 $\frac{\mathrm{FP}}{\mathrm{TP}+\mathrm{FP}}.$

Usage

```
fdr(truth, response, positive, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.

positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined if TP + FP = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

```
Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fnr(), fn(), fomr(),
fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()
```

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fdr(truth, response, positive = "a")
```

Description

Classification measure counting the false negatives (type 2 error), i.e. the number of predictions indicating a negative class label while in fact it is positive. This is sometimes also called a "false alarm".

Usage

```
fn(truth, response, positive, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()

fn

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fn(truth, response, positive = "a")
```

```
fnr
```

False Negative Rate

Description

Binary classification measure defined as

$$\frac{\rm FN}{\rm TP+FN}$$

Also know as "miss rate".

Usage

fnr(truth, response, positive, na_value = NaN, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined if TP + FN = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fnr(truth, response, positive = "a")
```

```
fomr
```

False Omission Rate

Description

Binary classification measure defined as

$$\frac{\mathrm{FN}}{\mathrm{FN}+\mathrm{TN}}.$$

Usage

fomr(truth, response, positive, na_value = NaN, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: TRUE
- · Required prediction: response

Note

This measure is undefined if FN + TN = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

```
Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()
```

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fomr(truth, response, positive = "a")
```

fp

False Positives

Description

Classification measure counting the false positives (type 1 error), i.e. the number of predictions indicating a positive class label while in fact it is negative.

Usage

fp(truth, response, positive, ...)

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

```
Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()
```

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fp(truth, response, positive = "a")
```

20

fpr

Description

Binary classification measure defined as

 $\frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}}.$

Also know as fall out or probability of false alarm.

Usage

```
fpr(truth, response, positive, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined if FP + TN = 0.

References

```
https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram
```

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fpr(truth, response, positive = "a")
```

```
ktau
```

Kendall's tau

Description

Regression measure defined as Kendall's rank correlation coefficient between truth and response. Calls stats::cor() with method set to "kendall".

Usage

ktau(truth, response, ...)

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: [-1,1]
- Minimize: FALSE
- Required prediction: response

logloss

References

Rosset S, Perlich C, Zadrozny B (2006). "Ranking-based evaluation of regression models." *Knowledge and Information Systems*, **12**(3), 331–353. doi: 10.1007/s1011500600373.

See Also

Other Regression Measures: bias(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(),
srho(), sse()

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
ktau(truth, response)
```

```
logloss
```

Log Loss

Description

Classification measure defined as

$$-\frac{1}{n}\sum_{i=1}^{n}\log\left(p_{i}\right)$$

where p_i is the probability for the true class of observation *i*.

Usage

logloss(truth, prob, eps = 1e-15, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the same levels and length as response.
prob	:: matrix() Matrix of predicted probabilities, each column is a vector of probabilities for a specific class label. Columns must be named with levels of truth.
eps	<pre>:: numeric(1) Probabilities are clipped to max(eps,min(1 -eps,p)). Otherwise the measure would be undefined for probabilities p = 0 and p = 1.</pre>
••••	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "classif"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: prob

See Also

```
Other Classification Measures: acc(), bacc(), ce(), mauc_aunu(), mbrier()
```

Examples

```
set.seed(1)
lvls = c("a", "b", "c")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
prob = matrix(runif(3 * 10), ncol = 3, dimnames = list(NULL, lvls))
prob = t(apply(prob, 1, function(x) x / sum(x)))
logloss(truth, prob)
```

mae

Mean Absolute Errors

Description

Regression measure defined as

$$\frac{1}{n}\sum_{i=1}^{n}|t_i - r_i|$$

Usage

mae(truth, response, ...)

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

24

mape

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rmsle(), rrse(), rse(), rsq(), sae(), smape(),
srho(), sse()
```

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
mae(truth, response)

mape

Mean Absolute Percent Error

Description

Regression measure defined as

$$\frac{1}{n}\sum_{i=1}^{n} \left| \frac{t_i - r_i}{t_i} \right|.$$

Usage

mape(truth, response, na_value = NaN, ...)

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	<pre>:: numeric() Predicted response values. Must have the same length as truth.</pre>
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- · Required prediction: response

Note

This measure is undefined if any element of t is 0.

References

de Myttenaere A, Golden B, Le Grand B, Rossi F (2016). "Mean Absolute Percentage Error for regression models." *Neurocomputing*, **192**, 38–48. ISSN 0925-2312, doi: 10.1016/j.neucom.2015.12.114.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rmsle(), rrse(), rse(), rsq(), sae(), smape(),
srho(), sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
mape(truth, response)
```

mauc_aunu

Multiclass AUC Scores

Description

Multiclass AUC measures.

- *AUNU*: AUC of each class against the rest, using the uniform class distribution. Computes the AUC treating a c-dimensional classifier as c two-dimensional 1-vs-rest classifiers, where classes are assumed to have uniform distribution, in order to have a measure which is independent of class distribution change (Fawcett 2001).
- *AUNP*: AUC of each class against the rest, using the a priori class distribution. Computes the AUC treating a c-dimensional classifier as c two-dimensional 1-vs-rest classifiers, taking into account the prior probability of each class (Fawcett 2001).

- *AU1U*: AUC of each class against each other, using the uniform class distribution. Computes something like the AUC of c(c -1) binary classifiers (all possible pairwise combinations). See Hand (2001) for details.
- AU1P: AUC of each class against each other, using the a priori class distribution. Computes something like AUC of c(c -1) binary classifiers while considering the a priori distribution of the classes as suggested in Ferri (2009). Note we deviate from the definition in Ferri (2009) by a factor of c. The person implementing this function and writing this very documentation right now cautions against using this measure because it is an imperfect generalization of AU1U.

Usage

```
mauc_aunu(truth, prob, na_value = NaN, ...)
mauc_aunp(truth, prob, na_value = NaN, ...)
mauc_au1u(truth, prob, na_value = NaN, ...)
mauc_au1p(truth, prob, na_value = NaN, ...)
```

Arguments

truth	:: factor()
	True (observed) labels. Must have the same levels and length as response.
prob	:: matrix() Matrix of predicted probabilities, each column is a vector of probabilities for a specific class label. Columns must be named with levels of truth.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "classif"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: prob

References

Fawcett T (2001). "Using rule sets to maximize ROC performance." In *Proceedings 2001 IEEE international conference on data mining*, 131–138. IEEE.

Ferri C, Hernández-Orallo J, Modroiu R (2009). "An experimental comparison of performance measures for classification." *Pattern Recognition Letters*, **30**(1), 27–38. doi: 10.1016/j.patrec.2008.08.010. Hand DJ, Till RJ (2001). "A simple generalisation of the area under the ROC curve for multiple class classification problems." *Machine learning*, **45**(2), 171–186.

See Also

Other Classification Measures: acc(), bacc(), ce(), logloss(), mbrier()

Examples

```
set.seed(1)
lvls = c("a", "b", "c")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
prob = matrix(runif(3 * 10), ncol = 3)
colnames(prob) = levels(truth)
mauc_aunu(truth, prob)
```

```
maxae
```

Max Absolute Error

Description

Regression measure defined as

 $\max\left(\left|t_i - r_i\right|\right).$

Usage

```
maxae(truth, response, ...)
```

Arguments

truth	::numeric()
	True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

maxse

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxse(), medae(), medse(), mse(),
msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
maxae(truth, response)
```

maxse

Max Squared Error

Description

Regression measure defined as

```
\max\left(t_i - r_i\right)^2.
```

Usage

```
maxse(truth, response, ...)
```

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), medae(), medse(), mse(),
msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
maxse(truth, response)

mbrier

Multiclass Brier Score

Description

Brier score for multi-class classification problems with r labels defined as

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{r} (I_{ij} - p_{ij})^2.$$

 I_{ij} is 1 if observation *i* has true label *j*, and 0 otherwise.

Note that there also is the more common definition of the Brier score for binary classification problems in bbrier().

Usage

```
mbrier(truth, prob, ...)
```

Arguments

truth	:: factor()
	True (observed) labels. Must have the same levels and length as response.
prob	::matrix()
	Matrix of predicted probabilities, each column is a vector of probabilities for a
	specific class label. Columns must be named with levels of truth.
	:: any
	Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

30

тсс

Meta Information

- Type: "classif"
- Range: [0,2]
- Minimize: TRUE
- Required prediction: prob

References

Brier GW (1950). "Verification of forecasts expressed in terms of probability." *Monthly Weather Review*, **78**(1), 1–3. doi: 10.1175/15200493(1950)078<0001:vofeit>2.0.co;2.

See Also

Other Classification Measures: acc(), bacc(), ce(), logloss(), mauc_aunu()

Examples

```
set.seed(1)
lvls = c("a", "b", "c")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
prob = matrix(runif(3 * 10), ncol = 3)
colnames(prob) = levels(truth)
mbrier(truth, prob)
```

mcc

Matthews Correlation Coefficient

Description

Binary classification measure defined as

```
\frac{\mathrm{TP}\cdot\mathrm{TN}-\mathrm{FP}\cdot\mathrm{FN}}{\sqrt{(\mathrm{TP}+\mathrm{FP})(\mathrm{TP}+\mathrm{FN})(\mathrm{TN}+\mathrm{FP})(\mathrm{TN}+\mathrm{FN})}}.
```

Usage

```
mcc(truth, response, positive, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.

positive	:: character(1)
	Name of the positive class.
	:: any
	Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [-1, 1]
- Minimize: FALSE
- Required prediction: response

Note

This above formula is undefined if any of the four sums in the denominator is 0. The denominator is then set to 1.

References

Matthews BW (1975). "Comparison of the predicted and observed secondary structure of T4 phage lysozyme." *Biochimica et Biophysica Acta (BBA) - Protein Structure*, **405**(2), 442–451. doi: 10.1016/00052795(75)901099.

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), npv(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
mcc(truth, response, positive = "a")
```

тсс

measures

Description

The environment() measures keeps track of all measures in this package. Stores meta information about measures, such as minimum, maximum of if the measure must be minimized or maximized.

Usage

measures

Format

An object of class environment of length 51.

Examples

names(measures)
measures\$tpr

medae

Median Absolute Errors

Description

Regression measure defined as

 $\operatorname{median}_{i}\left|t_{i}-r_{i}\right|.$

Usage

```
medae(truth, response, ...)
```

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

medse

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medse(), mse(),
msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
medae(truth, response)

medse

Median Squared Error

Description

Regression measure defined as

$$\operatorname{median}_{i}\left[\left(t_{i}-r_{i}\right)^{2}\right].$$

Usage

```
medse(truth, response, ...)
```

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

34

mse

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), mse(),
msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
medse(truth, response)

mse

Mean Squared Error

Description

Regression measure defined as

$$\frac{1}{n}\sum_{i=1}^{n} (t_i - r_i)^2$$
.

Usage

```
mse(truth, response, ...)
```

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
mse(truth, response)

msle

Mean Squared Log Error

Description

Regression measure defined as

$$\frac{1}{n}\sum_{i=1}^{n}\left(\ln(1+t_i) - \ln(1+r_i)\right)^2.$$

Usage

msle(truth, response, na_value = NaN, ...)

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	<pre>:: numeric() Predicted response values. Must have the same length as truth.</pre>
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

36

npv

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined if any element of t or r is less than or equal to -1.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), pbias(), rae(), rmse(), rrse(), rse(), rsq(), sae(), smape(), srho(), sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
msle(truth, response)
```

npv

Negative Predictive Value

Description

Binary classification measure defined as

$$\frac{\mathrm{TN}}{\mathrm{FN} + \mathrm{TN}}$$

Usage

npv(truth, response, positive, na_value = NaN, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined if FN + TN = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), ppv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
npv(truth, response, positive = "a")
```

pbias

Percent Bias

Description

Regression measure defined as

$$\frac{1}{n}\sum_{i=1}^n \frac{(t_i - r_i)}{|t_i|}$$

Good predictions score close to 0.

Usage

pbias(truth, response, na_value = NaN, ...)

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	<pre>:: numeric() Predicted response values. Must have the same length as truth.</pre>
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $(-\infty, \infty)$
- Minimize: NA
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), rae(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(), sse()
```

ppv

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
pbias(truth, response)
```

ppv

Positive Predictive Value

Description

Binary classification measure defined as

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}.$$

Also know as "precision".

Usage

```
ppv(truth, response, positive, na_value = NaN, ...)
```

```
precision(truth, response, positive, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

40

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined if TP + FP = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), tnr(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
ppv(truth, response, positive = "a")
```

rae

Relative Absolute Error

Description

Regression measure defined as

$$\frac{\sum_{i=1}^{n} |t_i - r_i|}{\sum_{i=1}^{n} |t_i - \bar{t}|}.$$

Can be interpreted as absolute error of the predictions relative to a naive model predicting the mean.

Usage

```
rae(truth, response, na_value = NaN, ...)
```

rae

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	:: numeric() Predicted response values. Must have the same length as truth.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined for constant t.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rae(truth, response)
```

rmse

Description

Regression measure defined as

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(t_i-r_i)^2}.$$

Usage

rmse(truth, response, ...)

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
•••	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(), sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rmse(truth, response)
```

rmsle

Description

Regression measure defined as

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(\ln(1+t_i) - \ln(1+r_i)\right)^2}.$$

Usage

rmsle(truth, response, na_value = NaN, ...)

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	:: numeric() Predicted response values. Must have the same length as truth.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined if any element of t or r is less than or equal to -1.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmse(), rrse(), rsq(), sae(), smape(), srho(), sse()
```

rrse

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rmsle(truth, response)

rrse

Root Relative Squared Error

Description

Regression measure defined as

$$\sqrt{\frac{\sum_{i=1}^{n} (t_i - r_i)^2}{\sum_{i=1}^{n} (t_i - \bar{t})^2}}$$

Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.

Usage

rrse(truth, response, na_value = NaN, ...)

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	:: numeric() Predicted response values. Must have the same length as truth.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined for constant t.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rse(), rsq(), sae(), smape(), srho(), sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rrse(truth, response)
```

```
rse
```

Relative Squared Error

Description

Regression measure defined as

$$\frac{\sum_{i=1}^{n} (t_i - r_i)^2}{\sum_{i=1}^{n} (t_i - \bar{t})^2}.$$

Can be interpreted as squared error of the predictions relative to a naive model predicting the mean.

Usage

rse(truth, response, na_value = NaN, ...)

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined for constant t.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rsq(), sae(), smape(), srho(),
sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rse(truth, response)
```

rsq

R Squared

Description

Regression measure defined as

$$1 - \frac{\sum_{i=1}^{n} (t_i - r_i)^2}{\sum_{i=1}^{n} (t_i - \bar{t})^2}$$

Also known as coefficient of determination or explained variation. Substracts the rse() from 1, hence it compares the squared error of the predictions relative to a naive model predicting the mean.

Usage

```
rsq(truth, response, na_value = NaN, ...)
```

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.

rsq

na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $(-\infty, 1]$
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined for constant t.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), sae(), smape(), srho(),
sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rsq(truth, response)
```

sae

Sum of Absolute Errors

Description

Regression measure defined as

$$\sum_{i=1}^{n} |t_i - r_i|$$

Usage

sae(truth, response, ...)

smape

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), smape(), srho(),
sse()
```

Examples

set.seed(1)
truth = 1:10
response = truth + rnorm(10)
sae(truth, response)

smape

Symmetric Mean Absolute Percent Error

Description

Regression measure defined as

$$\frac{2}{n} \sum_{i=1}^{n} \frac{|t_i - r_i|}{|t_i| + |r_i|}$$

Usage

```
smape(truth, response, na_value = NaN, ...)
```

smape

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	<pre>:: numeric() Predicted response values. Must have the same length as truth.</pre>
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: [0,2]
- Minimize: TRUE
- Required prediction: response

Note

This measure is undefined if if any |t| + |r| is 0.

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rrse(), rse(), rsq(), sae(), srho(), sse()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
smape(truth, response)
```

srho

Description

Regression measures defined as Spearman's rank correlation coefficient between truth and response. Calls stats::cor() with method set to "spearman".

Usage

```
srho(truth, response, ...)
```

Arguments

truth	<pre>:: numeric() True (observed) values. Must have the same length as response.</pre>
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: [-1, 1]
- Minimize: FALSE
- · Required prediction: response

References

Rosset S, Perlich C, Zadrozny B (2006). "Ranking-based evaluation of regression models." *Knowledge and Information Systems*, **12**(3), 331–353. doi: 10.1007/s1011500600373.

See Also

Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmsle(), rrse(), rse(), rse(), rse(), sae(), smape(), sse()

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
srho(truth, response)
```

sse

Description

Regression measure defined as

$$\sum_{i=1}^n \left(t_i - r_i\right)^2.$$

Usage

sse(truth, response, ...)

Arguments

truth	:: numeric() True (observed) values. Must have the same length as response.
response	:: numeric() Predicted response values. Must have the same length as truth.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "regr"
- Range: $[0,\infty)$
- Minimize: TRUE
- Required prediction: response

See Also

```
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(),
mse(), msle(), pbias(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(),
srho()
```

Examples

```
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
sse(truth, response)
```

sse

Description

Classification measure counting the true negatives, i.e. the number of predictions correctly indicating a negative class label.

Usage

tn(truth, response, positive, ...)

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: $[0,\infty)$
- Minimize: FALSE
- Required prediction: response

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tpr(), tp()

tn

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
tn(truth, response, positive = "a")
```

tnr

True Negative Rate

Description

Binary classification measure defined as

$$\frac{\mathrm{TN}}{\mathrm{FP} + \mathrm{TN}}.$$

Also know as "specificity".

Usage

tnr(truth, response, positive, na_value = NaN, ...)

```
specificity(truth, response, positive, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

54

Meta Information

- Type: "binary"
- Range: [0,1]
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined if FP + TN = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tn(), tpr(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
tnr(truth, response, positive = "a")
```

tp

True Positives

Description

Binary classification measure counting the true positives, i.e. the number of predictions correctly indicating a positive class label.

Usage

```
tp(truth, response, positive, ...)
```

Arguments

truth	:: factor()
	True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same
	length as truth.

tp

positive	:: character(1)
	Name of the positive class.
	:: any
	Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: $[0,\infty)$
- Minimize: FALSE
- Required prediction: response

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tpr()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
tp(truth, response, positive = "a")
```

tpr

True Positive Rate

Description

Binary classification measure defined as

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$
.

Also know as "recall" or "sensitivity".

Usage

```
tpr(truth, response, positive, na_value = NaN, ...)
recall(truth, response, positive, na_value = NaN, ...)
sensitivity(truth, response, positive, na_value = NaN, ...)
```

Arguments

truth	:: factor() True (observed) labels. Must have the exactly same two levels and the same length as response.
response	:: factor() Predicted response labels. Must have the exactly same two levels and the same length as truth.
positive	:: character(1) Name of the positive class.
na_value	:: numeric(1) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
	:: any Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

- Type: "binary"
- Range: [0, 1]
- Minimize: FALSE
- Required prediction: response

Note

This measure is undefined if TP + FN = 0.

References

https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram

See Also

Other Binary Classification Measures: auc(), bbrier(), dor(), fbeta(), fdr(), fnr(), fn(), fomr(), fpr(), fp(), mcc(), npv(), ppv(), tnr(), tn(), tp()

Examples

```
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
tpr(truth, response, positive = "a")
```

Index

*Topic datasets measures, 33 acc, 3, 7, 10, 24, 28, 31 auc, 4, 8, 12, 14-16, 18-20, 22, 32, 38, 41, 53, 55-57 bacc, 4, 6, 10, 24, 28, 31 bbrier, 5, 7, 12, 14-16, 18-20, 22, 32, 38, 41, 53, 55-57 bbrier(), 30 bias, 8, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46 - 52ce, 4, 7, 9, 24, 28, 31 confusion_matrix, 10 dor, 5, 8, 11, 14-16, 18-20, 22, 32, 38, 41, 53, 55-57 environment(), 33 fbeta, 5, 8, 12, 13, 15, 16, 18-20, 22, 32, 38, 41, 53, 55-57 fdr, 5, 8, 12, 14, 14, 16, 18-20, 22, 32, 38, 41, 53, 55-57 fn, 5, 8, 12, 14, 15, 16, 18-20, 22, 32, 38, 41, 53.55-57 fnr, 5, 8, 12, 14–16, 17, 19, 20, 22, 32, 38, 41, 53, 55-57 fomr, 5, 8, 12, 14-16, 18, 18, 20, 22, 32, 38, 41, 53, 55-57 fp, 5, 8, 12, 14–16, 18, 19, 19, 22, 32, 38, 41, 53, 55-57 fpr, 5, 8, 12, 14–16, 18–20, 21, 32, 38, 41, 53, 55-57 ktau, 9, 22, 25, 26, 29, 30, 34-37, 39, 42-44, 46-52 logloss, 4, 7, 10, 23, 28, 31

mae, 9, 23, 24, 26, 29, 30, 34-37, 39, 42-44, 46-52 mape, 9, 23, 25, 25, 29, 30, 34-37, 39, 42-44, 46-52 mauc_au1p (mauc_aunu), 26 mauc_au1u (mauc_aunu), 26 mauc_aunp (mauc_aunu), 26 mauc_aunu, 4, 7, 10, 24, 26, 31 maxae, 9, 23, 25, 26, 28, 30, 34-37, 39, 42-44, 46-52 maxse, 9, 23, 25, 26, 29, 29, 34-37, 39, 42-44, 46 - 52mbrier, 4, 7, 10, 24, 28, 30 mbrier(), 7 mcc, 5, 8, 12, 14-16, 18-20, 22, 31, 38, 41, 53, 55-57 measures, 33 medae, 9, 23, 25, 26, 29, 30, 33, 35-37, 39, 42-44, 46-52 medse, 9, 23, 25, 26, 29, 30, 34, 34, 36, 37, 39, 42-44, 46-52 mlr3measures (mlr3measures-package), 3 mlr3measures-package, 3 mse, 9, 23, 25, 26, 29, 30, 34, 35, 35, 37, 39, 42-44.46-52 msle, 9, 23, 25, 26, 29, 30, 34-36, 36, 39, 42-44, 46-52 npv, 5, 8, 12, 14–16, 18–20, 22, 32, 37, 41, 53, 55-57 pbias, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46-52 ppv, 5, 8, 12, 14–16, 18–20, 22, 32, 38, 40, 53, 55-57 precision, 14 precision (ppv), 40 precision(), 13 rae, 9, 23, 25, 26, 29, 30, 34-37, 39, 41, 43, 44, 46-52

INDEX

recall, **14** recall (tpr), 56 recall(), *13* rmse, 9, 23, 25, 26, 29, 30, 34-37, 39, 42, 43, 44, 46–52 rmsle, 9, 23, 25, 26, 29, 30, 34-37, 39, 42, 43, 44, 46–52 rrse, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 45, 47–52 rse, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46, 46, 48–52 rse(), 47 rsq, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46, 47, 47, 49–52 sae, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46-48, 48, 50-52 sensitivity (tpr), 56 smape, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46-49, 49, 51, 52 specificity (tnr), 54 srho, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46-50, 51, 52 sse, 9, 23, 25, 26, 29, 30, 34-37, 39, 42-44, 46–51, 52 stats::cor(), 22, 51 tn, 5, 8, 12, 14-16, 18-20, 22, 32, 38, 41, 53, 55-57 tnr, 5, 8, 12, 14-16, 18-20, 22, 32, 38, 41, 53, 54, 56, 57 tp, 5, 8, 12, 14-16, 18-20, 22, 32, 38, 41, 53, 55, 55, 57 tpr, 5, 8, 12, 14-16, 18-20, 22, 32, 38, 41, 53, 55, 56, 56

60