cv_glmnet
and glmnet
(#99)predict.gamma
and newoffset
arg (#98)inst/paramtest
was added. This test checks against the arguments of the upstream train & predict functions and ensures that all parameters are implemented in the respective mlr3 learner. (#96)interaction_constraints
to {xgboost} learners (#97).classif.multinom
from package nnet
.regr.lm
and classif.log_reg
now ignore the global option "contrasts"
.additional-learners.Rmd
listing all mlr3 custom learnerslogical()
to multiple learners.regr.glmnet
, regr.km
, regr.ranger
, regr.svm
, regr.xgboost
, classif.glmnet
, classif.lda
, classif.naivebayes
, classif.qda
, classif.ranger
and classif.svm
.glmnet
: Added relax
parameter (v3.0)xgboost
: Updated parameters for v0.90.0.2*.xgboost
and *.svm
which was triggered if columns were reordered between $train()
and $predict()
.Changes to work with new mlr3::Learner
API.
Improved documentation.
Added references.
add new parameters of xgboost version 0.90.2
add parameter dependencies for xgboost