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mixggm-package Mixtures of Gaussian graphical models

Description

Mixtures of Gaussian graphical models for model-based clustering with sparse covariance and con-
centration matrices.

Details

A package implementing mixtures of Gaussian graphical models for model-based clustering with
sparse covariance and concentration matrices. Model fitting is carried out by means of a structural-
EM algorithm for parameter estimation and graph structure search.

The main functions are mixGGM, searchGGM and fitGGM.

Author(s)

Michael Fop, Luca Scrucca and Thomas Brendan Murphy.

Maintainer: Michael Fop <michael. fop@ucd.ie>

References

Fop, M., Murphy, T.B., and Scrucca, L. (2018). Model-based clustering with sparse covariance
matrices. Statistics and Computing. To appear.

control-parameters Set control parameters for various purposes

Description

Set control parameters for graphical model estimation, graph structure search via stepwise or genetic
algorithm, mixture model fitting via structural-EM algorithm, and Bayesian regularization.

Usage
ctrlICF(tol = 1e-04, maxiter = 1e03)

ctrlSTEP(occamAdd = Inf, occamRem = Inf, start = NULL)

ctrlGA(popSize = 50, pcrossover = 0.8, pmutation = 0.1,
maxiter = 100, run = maxiter/2,
elitism = base::max(1, round(popSizex@.05)))

ctrlEM(tol = 1e-05, maxiter = 1e@2, subset = NULL, printMsg = FALSE)
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ctrlREG(data, K, scaleType = c("full”, "fixed”, "one", "diag"),

scale

Arguments

tol

maxiter

NULL, psi = NULL)

Tolerance value for judging when convergence has been reached. Used in esti-
mation of a Gaussian graphical model and in the structural-EM algorithm.

Maximum number of iterations in the Gaussian graphical model estimation al-
gorithm, the genetic algorithm for structure search, and the structural-EM algo-
rithm.

occamAdd, occamRem

start

popSize

run

pcrossover
pmutation

elitism

subset

printMsg

data

K

scaleType

scale

psi

Set the bounds of the Occam’s window for stepwise search. See "Details". De-
fault is Inf, corresponding to the case of no deletion of candidate graph struc-
tures through the search.

Provide in input a user-defined starting adjacency matrix for stepwise structure
search.

Population size. This number corresponds to the number of different graph
structures to be considered at each iteration of the genetic algorithm.

Number of consecutive generations without any improvement in the best fitness
value of the structure search procedure before the genetic algorithm is stopped.

Probability of crossover between pairs of binary adjacency matrices.
Probability of mutation in a parent adjacency matrix.

Number of best fitness graph structures to survive at each iteration of the genetic
algorithm in the graph structure search procedure.

A logical or numeric vector specifying a subset of the data to be used in the ini-
tial hierarchical clustering phase employed in the initialization of the structural-
EM algorithm. By default no subset is used.

A logical value indicating whether or not certain warnings (usually related to
singularity) should be issued.

A matrix or data frame of observations. Categorical variables are not allowed.
Rows correspond to observations and columns correspond to variables.

The number of mixture components.

The type of scale hyperparameter for the prior on the covariance matrix in the
case of Bayesian regularization for Gaussian covariance graph model. See "De-
tails". Default is "full”.

The scale hyperparameter for the prior on the covariance matrix in the case of
Bayesian regularization for Gaussian covariance graph model.

The degrees of freedom hyperparameter for the prior on the covariance matrix
in the case of Bayesian regularization for Gaussian covariance graph model.
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Details

Function ctr1ICF is used to set control parameters of the algorithms employed to estimate a Gaus-
sian covariance or concentration graph model.

Function ctrlSTEP mainly controls the Occam’s window used in the stepwise graph structure
search. Default is Inf, corresponding to no Occam’s window reduction is implemented. The ra-
tionale of the Occam’s window is too reduce the space of candidate adjacency matrices during the
search by discarding those with a value of the penalized objective function that is too distant from
the current optimal value. Graph candidate structures whose penalized objective function value is
within occamAdd from the current optimal value are considered in the next edge-add step of the
search. Likewise, graph candidate structures whose penalized objective function value is within
occamRem from the current optimal value are considered in the next edge-remove step of the search.
Small values for occamRem and occamAdd significantly reduce the space of candidate solutions and
the computational cost of the greedy search.

Function ctrlGA sets parameters of the genetic algorithm used for graph structure search. Argu-
ments correspond to those of function ga in the GA package.

Function ctrlEM controls standard parameters of the structural-EM algorithm.

Function ctrlREG is used to set hyperparameters of the conjugate prior on the covariance matrix
for Bayesian regularization in Gaussian covariance graph models. The function creates a list of
hyperparameters to be given in input in argument regHyperPar of functions fitGGM, searchGGM
and mixGGM. If not provided in input, the scale hyperparameter is computed on the data via the
sample covariance matrix according to the argument scaleType. If scaleType = "full”, the scale
matrix is proportional to the data covariance matrix; if scaleType = "fixed", the scale matrix has
determinant equal to (&Km)(l/v) (Baudry, Celeux, 2015; Fop et al. 2018); if scaleType = "one"
the scale matrix has determinant 1; if scaleType = "diag" the scale matrix is diagonal. Note
that in the case V > N, if not provided in input the scale matrix is forced to be diagonal. The
hyperparameter psi controlling the degrees of freedom is setto V + 2 by default.

Value

A list of parameters values.

References

Baudry, J.P. and Celeux, G. (2015). EM for mixtures: Initialization requires special care. Statistics
and Computing, 25(4):713-726.

Fop, M., Murphy, T.B., and Scrucca, L. (2018). Model-based clustering with sparse covariance
matrices. Statistics and Computing. To appear.

Examples

## Not run:

# ga search with increased mutation probability

data(banknote, package = "mclust”)

mod1 <- searchGGM(banknote[,-1], model = "concentration”, search = "ga",
ctrlGa = ctrlGA(pmutation = 0.3))
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# regularization

library(MASS)
vV <-10
N <- 20

mu <- rep(@, V)
sigma <- matrix(0.9, V,V)
diag(sigma) <- 1
X <= cbind( MASS::mvrnorm(N, mu, sigma),
MASS: :mvrnorm(N, mu, sigma),
MASS: :mvrnorm(N, mu, sigma)) # high-dimensional data V = 30, N = 20

#

hyperPar <- ctrlREG(x, K = 1, scaleType = "diag")

mod2 <- searchGGM(x, model = "covariance", penalty = "ebic”) # throws an error
mod2 <- searchGGM(x, model = "covariance”, penalty = "ebic”, # regularization

regularize = TRUE, regHyperPar = hyperPar)
plot(mod2, "adjacency")

# occam's window

library(MASS)
V <- 20
N <- 500

mu <- rep(@, V)

sigma <- matrix(@.9, V,V)

diag(sigma) <- 1

edges <- rbinom(choose(V,2), 1, 0.3)

A <- matrix(Q, V,V)

Allower.tri(A)] <- edges

A<= A+ t(A)

fit <- fitGGM(S = sigma, N = N, graph = A, model = "concentration”,
ctrllicf = ctrlICF(tol = 1e-06))

sigma <- fit$sigma

#

X <= MASS:::mvrnorm(N, mu, sigma)

#

mod3 <- searchGGM(x, model = "concentration”, search = "step-back”,

ctrlStep
par(mfrow = c(1,2))
plot(fit, what = "adjacency")
plot(mod3, what = "adjacency")

ctrlSTEP(occamAdd = 5, occamRem = 5))

## End(Not run)

fitGGM Fit a Gaussian graphical model




Description

fitGGM

Estimation of a Gaussian graphical model given the graph structure corresponding to marginal or
conditional independence restrictions.

Usage
fitGGM(data = NULL,
S = NULL, N = NULL,
graph,
model = c("covariance"”, "concentration"),
start = NULL,
ctrlIcf = ctrlICF(Q),
regularize = FALSE,
regHyperPar = NULL,
verbose = FALSE, ...)
Arguments

data A dataframe or matrix, where rows correspond to observations and columns to
variables. Categorical variables are not allowed.

S The sample covariance matrix of the data. If S = NULL, the maximum likeli-
hood estimate of the covariance matrix is used in the estimation of the graphical
model.

N The number of observations. If data = NULL and S is provided in input, N must
be provided in input as well.

graph A square symmetric binary adjacency matrix corresponding to the association
structure of the graph. See "Details".

model The type of Gaussian graphical model. Default is "covariance”. See "Details".

start A starting matrix for the estimation algorithm. If NULL, the starting value is the
diagonal sample covariance matrix. Used only when model = "covariance”.

ctrlIcf A list of control parameters for the numerical algorithm for estimation of graph-
ical model parameters; see also ctrl1ICF.

regularize A logical argument indicating if Bayesian regularization should be performed.
Default to FALSE. Used only when model = "covariance”.

regHyperPar A list of hyper parameters for Bayesian regularization. Only used when
regularization = TRUE; see also ctrlREG.

verbose A logical argument controlling whether iterations of the estimation procedure
need to be shown or not.

Additional internal arguments not to be provided by the user.
Details

The function estimates a Gaussian graphical model given the graph association structure provided
in input by the binary adjacency matrix. In the adjacency matrix, a zero entry corresponds to two
variables being independent, marginally or conditionally according to the model.
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If model = "covariance”, a Gaussian covariance graph model is estimated, and the joint dis-
tribution of the V' dimensional vector of variables X is parameterized in terms of the covariance
matrix . It is assumed:

X ~NwX) SeCi(A)

where Cé“ (A) is the collection of sparse positive definite matrices whose zero patterns are given by
graph G represented by the adjacency matrix A. In this type of model, the graph/adjacency matrix
corresponds to marginal independence constraints among the variables, i.e. the variables associated
to two non-connected edges in the graph are marginally independent. As a result, the covariance
matrix sigma is estimated to be sparse according to the graph.

If model = "concentration”, a Gaussian concentration graph model is estimated, and the joint
distribution of the V' dimensional vector of variables X is parameterized in terms of the concentra-
tion matrix (inverse covariance or precision matrix) {2. It is assumed:

X~ N, Q) Qe Ch(A)

where C’g (A) is the collection of sparse positive definite matrices whose zero patterns are given
by graph G embedded in the adjacency matrix A. For this type of model, the graph/adjacency
matrix corresponds to conditional independence constraints among the variables, i.e. the variables
associated to two non-adjacent edges in the graph are conditionally independent given their common
neighbors. It results in the concentration matrix omega being estimated to be sparse according to
the structure of the graph.

Note that conditional independence does not imply marginal independence, and marginal inde-
pendence does not imply conditional independence, therefore a sparse concentration matrix and a
sparse covariance matrix do not necessarily match; See Whittaker (1990).

The Gaussian covariance graph model is estimated using the Iterative Conditional Fitting algorithm
by Chaudhuri et al. (2007), while the Gaussian concentration graph model is estimated using the
algorithm by Hastie et al. (2009).

Bayesian regularization is performed by means of a conjugate prior on the covariance/concentration
matrix, similarly to what described in Fop et al. (2018). In the case of covariance graph model, an
Inverse-Wishart distribution is used as a prior for 3, while a Wishart distribution is used for {2 in the
case of a concentration graph model. Regularization can be useful when the number of variables is
larger than the number of observations.

Value

An object of class 'fitGGM' containing the estimated Gaussian graphical model.

The output is a list containing:

sigma The estimated covariance matrix.

omega The estimated concentration (inverse covariance) matrix.

graph The adjacency matrix given in input corresponding to the marginal or condi-
tional independence graph.

model Estimated model type, whether "covariance” or "concentration”.

loglik Value of the maximized log-likelihood.

nPar Number of estimated parameters.

N Number of observations.



8 fitGGM

\ Number of variables, corresponding to the number of nodes in the graph.
iter Number of iterations for the algorithm to converge.
References

Chaudhuri, S., Drton M., and Richardson, T. S. (2007). Estimation of a covariance matrix with
zeros. Biometrika, 94(1), 199-216.

Fop, M., Murphy, T.B., and Scrucca, L. (2018). Model-based clustering with sparse covariance
matrices. Statistics and Computing. To appear.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Springer.
Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.

See Also

plot.fitGGM

Examples

# Gaussian covariance graph model

data(mtcars)

x <- mtcars[,c(1,3:7)]

R <- cor(x)

#

# model where variables with correlation less than 0.5 are marginally independent
graph <- ( abs(R) < 0.5 )*1

diag(graph) <- @

fitl <- fitGGM(data = x, graph = graph)

plot(fit1)

# Gaussian concentration graph model
data(swiss)

#

# fit a conditional independence model:
V <- ncol(swiss)

graph <- matrix( c(0,1,0,1,1,1,
1,0,1,1,0,0,
9,1,0,1,1,0,
1,1,1,0,1,0,
1,0,1,1,0,0,
1,0,0,0,0,0), V,V, byrow = TRUE )
fit2 <- fitGGM(swiss, graph = graph, model = "concentration”)
plot(fit2)
## Not run:

data(marks, package = "ggm")
#
# the conditional independence model of Whittaker (1990), pag. 6
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V <- ncol(marks)

graph <- matrix( c(0,

1,1,0,0
1,0,1,0,0,
1,1,0,1,1,
0,0,1,0,1,
0,0,1,1,0), V,V, byrow = TRUE )
fit3 <- fitGGM(marks, graph = graph, model = "concentration”)
plot(fit3)

## End(Not run)

mixGGM

Mixture of Gaussian graphical models

Description

Estimation of a mixture of Gaussian covariance or concentration graph models using structural-EM
algorithm. The mixture model returned is the optimal model according to BIC.

Usage

mixGGM(data, K = 1:3,

Arguments

data

model

search

model = c("covariance”, "concentration”),
search = c("step-forw”, "step-back”, "ga"),
penalty = c("bic”, "ebic", "erdos"”, "power"),
beta = NULL,

regularize = FALSE, regHyperPar = NULL,
ctrlEm = ctrlEM(),

ctrlStep = ctrlSTEP(), ctrlGa = ctrlGA(Q),
ctrlIcf = ctrlICF(),

keepAll = FALSE,

parallel = FALSE,

verbose = TRUE)

A dataframe or matrix, where rows correspond to observations and columns to
variables. Categorical variables are not allowed.

An integer vector specifying the numbers of mixture components (clusters) for
which the BIC is to be calculated.

The type of Gaussian graphical model. Default is "covariance”. See "Details".

The type of structure search algorithm. If search = "step-forw”, a greedy
forward-stepwise search is used to find the optimal graph association structure.
If search = "step-back”, a greedy backward-stepwise search is implemented.
If search = "ga" a stochastic search based on a genetic algorithm is employed.
Default is "step-forw”.
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penalty The penalty function used to define a criterion for scoring the candidate graph
configurations. Default is "bic”. See "Details" and penalty.

beta The hyperparameter of the penalty function. See "Details" and penalty.

regularize A logical argument indicating if Bayesian regularization should be performed.
Default to FALSE. Used only when model = "covariance”.

regHyperPar A list of hyper parameters for Bayesian regularization. Only used when
regularization = TRUE; see also ctrlREG.

ctrlEm A list of control parameters used in the structural-EM algorithm; see also ctrlEM.

ctrlStep A list of control parameters used in the stepwise search; see also ctr1STEP.

ctrlGa A list of control parameters for the genetic algorithm; see also ctr1GA.

ctrlIcf A list of control parameters employed in the algorithm for estimation of graphi-

cal model parameters; see also ctr1ICF.

keepAll A logical argument. If TRUE, also all the mixture models estimated for the values
of K given in input are returned

parallel A logical argument indicating if parallel computation should be used for struc-
ture search in the M step of the structural-EM algorithm. If TRUE, all the avail-
able cores are used. The argument could also be set to a numeric integer value
specifying the number of cores to be employed.

verbose If TRUE a progress bar will be shown.

Details

Estimation of a mixture of Gaussian graphical models by means of maximization of a penalized log-
likelihood via structural-EM algorithm. The mixture model in output is the optimal model selected
by BIC.

If model = "covariance”, a mixture of Gaussian covariance graph models is estimated. The
Gaussian mixture is parameterized in terms of the components covariance matrices and the compo-
nent adjacency matrices correspond to marginal independence constraints among the variables:

K
X ~ ZTkN(Mk,Ek) Xk € Cg(Ak)
k

Variables associated to two non-connected edges in the graphs are marginally independent and have
different marginal association patterns across the mixture components. As a result, the covariance
matrices sigma are estimated to be sparse according to the inferred graph structures.

If model = "concentration”, estimation of a mixture of Gaussian concentration graph model
is performed. The Gaussian mixture is parameterized in terms of the components concentration
matrices and the component adjacency matrices correspond to conditional independence constraints
among the variables:

K
X ~ ZTkN(,Uank) Q€ CL(Ay)
3

Variables associated to two non-adjacent edges in the graph are conditionally independent given
their common neighbors and have different conditional dependence patterns across the mixture
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components. It results in the concentration matrices omega being estimated to be sparse according
to the inferred graph structures.

Arguments penalty and search are used to define the type of penalty on the graph configuration
and the structure search method in the structural-EM algorithm. The penalization term depends on
the hyperparameter beta according to the type of penalty function. See searchGGM and penalty

for more details.

Value

An object of class 'mixGGM' containing the optimal estimated mixture of Gaussian graphical mod-

els.

The output is a list containing:

parameters

graph

K

loglik
loglikPen
loglikReg

nPar

classification
bic

BIC

data

model

A list with the following components:

tau A vector containing the estimated mixing proportions.

mu The mean for each mixture component. Columns denote the mixture com-
ponents.

sigma An array containing the components covariance matrices.

omega An array containing the components concentration (inverse covariance)
matrices.

An array with the adjacency matrices corresponding to the optimal marginal or
conditional independence graphs for each mixture component.

Number of observations in the data.

Number of variables in the data, corresponding to the number of nodes in the
graphs.

Number of selected mixture components.
Value of the maximized log-likelihood.
Value of the maximized penalized log-likelihood.

Value of the maximized regularized log-likelihood. If regularize = FALSE,
this value is equal to loglik

A vector with two entries:

depPar Total number of dependence parameters. If model = "covariance”,
this is the total number of non-zero covariance parameters, while if model =
"concentration”, it corresponds to the total number of non-zero concen-
tration parameters.

totPar Total number of mixture parameters.

A matrix whose [1i,k]th entry is the probability that observation i of the data
belongs to the kth class.

Classification corresponding to the maximum a posteriori of matrix z.
Optimal BIC value.

All BIC values.

The data matrix provided in input.

Estimated model type, whether "covariance"” or "concentration”.
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penalty The type of penalty on the graph structure.

search The search method used for graph structure search.

keepAll A list containing all the estimated models. Provided in output only when keepAll = TRUE.
References

Fop, M., Murphy, T.B., and Scrucca, L. (2018). Model-based clustering with sparse covariance
matrices. Statistics and Computing. To appear.

Examples

# fit a mixture of concentration graph models

data(iris)

mod1 <- mixGGM(iris[,-5], model = "concentration”)
plot(mod1, what = "graph")

plot(mod1, what = "classification")

## Not run:

# a simple simulated data example
library(MASS)
N <- 200
tau <- c(0.3, 0.7)
Nk <- rowSums( rmultinom(N, 1, tau) )
class <- rep(1:2, Nk)
sigmal <- diag(2) # independent variables
sigma2 <- matrix( c(1,0.9,0.9,1), 2,2 ) # correlated variables
mul <- c(9, 0)
mu2 <- c(2, 3)
x <= rbind( MASS::mvrnorm(Nk[1], mul, sigmal),
MASS: :mvrnorm(Nk[2], mu2, sigma2)
)
mod2 <- mixGGM(x)
plot(mod2)
plot(mod2, what = "classification”)

# fit a mixture of covariance graph models
data(wine, package = "gclus")

mod3 <- mixGGM(wine[,-1], K = 1:4, model = "covariance”,
penalty = "erdos"”, beta = 0.01)

plot(mod3, what = "graph”)

plot(mod3, what = "classification”, dimens = 1:4)

# complex simulated data example

N <- 500

V <- 20

tau <- c(0.3, 0.7)

Nk <- rowSums( rmultinom(N, 1, tau) )
class <- rep(1:2, Nk)



penalty 13

sigmal <- rWishart(1, V+1, diag(V))[,,1]
mul <- rep(0, V)
mu2 <- rnorm(V, 0.5, 2)
x1 <= MASS::mvrnorm(Nk[1], mul, sigmal)
x2 <- matrix(NA, Nk[2], V)
x2[,1]1 <= rnorm(Nk[2])
for ( j in 2:V ) x2[,j] <= x2[,3j-11 + rnorm(Nk[2], mu2[j], sd = 0.5)
X <= rbind(x1, x2)
#
mod4 <- mixGGM(x, K = 1:4, model = "concentration”,
penalty = "ebic", beta = 0.5)
plot(mod4, what = "classification”, dimens = ¢(1,5,10,15,20) )
plot(mod4, what = "graph")
plot(mod4, what = "adjacency")
table(class, mod4$classification)
#
mc <- mclust::Mclust(x, G = 1:4)
mc$bic
mod4$bic

## End(Not run)

penalty Penalty functions for graph structure search

Description

Collection of penalty functions employed in the structural-EM algorithm and penalized maximum
likelihood estimation for graph structure search.

Details

The choice of the penalty function is via argument penalty in the functions searchGGM and mixGGM.
Possible options are "bic” (default), "ebic"”, "erdos”, and "power". Functions "ebic”, "erdos”,
and "power” depend also on a hyperparameter beta which can be set using the corresponding
argument in searchGGM and mixGGM.

Let denote with E the number of non-zero entries in the adjacency matrix corresponding to the
graph structure of a covariance/concentration graph model (i.e. the number of edges); N and V
denote number of observations and number of variables (or nodes). The above options correspond
to the following penalty functions:

e "bic" — A BIC-like penalty term is placed on the structure of a graph. This penalty is given
by:
0.5F log N

The hyperparameter beta is not used.
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* "ebic” — An EBIC-like penalty term for graphical models is placed on the structure of a
graph. This penalty is given by:

0.5FElog N +2B8FElogV

For this penalty function, beta is a value in the range [@, 1]. Defaultis beta = 1, encouraging
sparser models. Clearly the case beta = @ corresponds to "bic”.

* "erdos” — Let denote by T the number of all possible edges in a graph, i.e. T' = (‘2/) The
penalty function is given by:

—Elog — (T — E)log(1— )

For this penalty function, beta is a value in the range (0,1). For small values of beta the
penalization tends to favor situations where the graph decomposes into disjoint blocks. Default
is beta = log(V)/T, a value for which the expected number of arcs is equal to log(V) and
such that the graph will almost surely have disconnected components.

* "power” — Let denote with d_j the degree of node j, i. e. the number of nodes connected to
it. This penalty function is defined as:

v
8 Z log(d; + 1)
J

In this case, beta is a positive value. Default is beta = log(NV), a value which place the
penalty term on a similar magnitude of "bic” and "ebic”, but denser graphs will tend to be
less penalized.

An user-defined penalty function can be also provided in input of argument penalty in the functions
searchGGM and mixGGM. In this case, the penalty must be an object of class "function” and have
as argument graph, like for example "f <- function(graph, beta)"; see "Examples".

See also searchGGM and mixGGM for some examples.

References

Fop, M., Murphy, T.B., and Scrucca, L. (2018). Model-based clustering with sparse covariance
matrices. Statistics and Computing. To appear.

Examples

# fit concentration graph model with power law penalty
data(ability.cov)
N <- ability.cov$n.obs
mod1 <- searchGGM(S = ability.cov$cov, N = ability.cov$n.obs,
model = "concentration”, penalty = "power”, beta = 2*log(N))
mod1
plot(mod1)

## Not run:
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# two disconnected blocks of correlated variables

library(MASS)
vV <- 10
N <- 500

mu <- rep(@, V)

sigma <- matrix(@.9, V,V)

diag(sigma) <- 1

X <- cbind( MASS::mvrnorm(N, mu, sigma),
MASS: :mvrnorm(N, mu, sigma) )

#
# fit a covariance graph with erdos penalty
mod2 <- searchGGM(x, model = "covariance",

penalty = "erdos")
plot(mod2, "adjacency")

# user defined penalty function
data(iris)

X <- iris[,-5]

N <= nrow(x)

V <= ncol(x)
ref <- matrix(e, V, V)
#

# penalize graphs different from a reference graph structure
myPenalty <- function(graph, beta)

{
beta * sum( abs(graph - ref) )
3
#
mod3 <- mixGGM(x, K = 3, model = "covariance”,
penalty = myPenalty, beta = 2xVxlog(N))
plot(mod3)

## End(Not run)
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Plotting functionalities for Gaussian covariance and concentration
graph models and their mixture

Description

Plotting functionalities for objects of class fitGGM or mixGGM.

Usage

## S3 method for class 'fitGGM'
plot(x, what = c("graph”, "adjacency"),
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layout = c("circle”, "random”), ...)

## S3 method

for class 'mixGGM'

plot(x, what = c("graph”, "classification”, "adjacency”, "common"),
layout = c("circle”, "random"),
colors = NULL, symb = NULL, dimens = NULL, ...)
Arguments
X An object of class fitGGM or mixGGM.
what The type of plot to be produced. If what = "graph” (default), the graph(s) cor-
responding to the association structure(s) among the variables is displayed; if
what = "adjacency” and heat-map representing the binary entries of the adja-
cency matrix is produced; if what = "classification” the function produces
a scatterplot showing the clustering of the observations; if what = "common” the
graph intersection of the mixture components graphs is produced, which display
the edges common across the clusters. See "Details".
layout Layout of the graph, either circular (default) or random.
colors A vector of user defined colors
symb A vector of user defined symbols
dimens A vector giving the integer dimensions of the desired variables for multivariate
data in case of what = "classification”.
Other arguments.
Details

These functions are used to visualize graph association structures and clustering results for single

and mixtures of Gaussian covariance and concentration models.

In the case of what = "graph”, the graph of a Gaussian covariance graph model is bi-directed, while
the graph of a Gaussian concentration model is un-directed. Thickness of the edges is proportional

to the estimated association parameters.

See "Examples" for various cases.

Examples

# covariance graph

data(mtcars)

x <- mtcars[,c(1,3:7)]

R <- cor(x)

graph <- ( abs(R) < 0.5 )*1

diag(graph) <- @

fitl <- fitGGM(data = x, graph = graph)
plot(fit1)

plot(fit1, what = "adjacency")
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# concentration graph
data(swiss)

V <- ncol(swiss)

graph <- matrix( c(o,1,0,1,

y by

0,1,0

1,0,1,1,0,0,
0,1,0,
1,1,1
1,0,1
1,0,0

1,1,1
1,0,0
1,1,0,
,0,1,0,
,0,1,1,0,0
0,0,0

» Yy

1Yy Y,

), V,V, byrow

TRUE )

fit2 <- fitGGM(swiss, graph = graph, model = "concentration”)

plot(fit2)
plot(fit2, layout = "random")
plot(fit2, what = "adjacency")

## Not run:

# mixture of Gaussian concentration graph models

data(banknote, package = "mclust”)

mod3 <- mixGGM(banknote[,-1], model = "concentration”, K = 2)

plot(mod3, what = "graph”)
plot(mod3, what = "adjacency")

plot(mod3, what = "classification”)
plot(mod3, what = "classification”, dimens
plot(mod3, what = "common")

# mixture of Gaussian covariance graph models

c(1,4,5))

data(wine, package = "gclus")

mod4 <- mixGGM(wine[,-1], model = "covariance”, K = 3)
clb <- c("#999999", "#E69F0Q", "#56B4E9")

plot(mod4, what = "graph”, colors = clb)

plot(mod4, what = "adjacency”, colors = clb)

plot(mod4, what = "classification”, colors = clb, dimens

plot(mod4, what = "common")

## End(Not run)

c(1,7,8,12))
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# colorblind friendly palette

searchGGM

Structure search and estimation for Gaussian graphical models

Description

Graph structure search and estimation for Gaussian covariance and concentration graph models.

Usage

searchGGM(data = NULL,
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S = NULL, N = NULL,

model = c("covariance”, "concentration"),
search = c("step-forw”, "step-back”, "ga"),
penalty = c("bic”, "ebic"”, "erdos"”, "power"),
beta = NULL,

start = NULL,

regularize = FALSE, regHyperPar = NULL,
ctrlStep = ctrlSTEP(), ctrlGa = ctrlGA(), ctrllIcf = ctrlICF(),

parallel = FALSE,
verbose = FALSE, ...)
Arguments

data A dataframe or matrix, where rows correspond to observations and columns to
variables. Categorical variables are not allowed.

S The sample covariance matrix of the data. If S = NULL, the maximum likeli-
hood estimate of the covariance matrix is used in the estimation of the graphical
model.

N The number of observations. If data = NULL and S is provided in input, N must
be provided in input as well.

model The type of Gaussian graphical model. Default is "covariance”. See "Details".

search The type of structure search algorithm. If search = "step-forw"”, a greedy
forward-stepwise search is used to find the optimal graph association structure.
If search = "step-back”, a greedy backward-stepwise search is implemented.
If search = "ga" a stochastic search based on a genetic algorithm is employed.
Default is "step-forw”.

penalty The penalty function used to define a criterion for scoring the candidate graph
configurations. Default is "bic”. See "Details" and penalty.

beta The hyperparameter of the penalty function. See "Details" and penalty.

start A starting matrix for the estimation algorithm. If NULL, the starting value is the
diagonal sample covariance matrix. Used only when model = "covariance”.

regularize A logical argument indicating if Bayesian regularization should be performed.
Default to FALSE. Used only when model = "covariance”.

regHyperPar A list of hyper parameters for Bayesian regularization. Only used when
regularization = TRUE; see also ctrlREG.

ctrlStep A list of control parameters used in the stepwise search; see also ctr1STEP.

ctrlGa A list of control parameters for the genetic algorithm; see also ctrlGA.

ctrllcf A list of control parameters employed in the algorithm for estimation of graphi-
cal model parameters; see also ctr1ICF.

parallel A logical argument indicating if parallel computation should be used for struc-
ture search. If TRUE, all the available cores are used. The argument could also
be set to a numeric integer value specifying the number of cores to be employed.

verbose A logical argument controlling whether iterations of the structure searching and

estimation procedure need to be shown or not.

Additional internal arguments not to be provided by the user.
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Details

The function performs graph association structure search and maximum penalized likelihood esti-
mation of the optimal Gaussian graphical model given the data provided in input.

A Gaussian covariance graph model is estimated if model = "covariance"”, while estimation
of a Gaussian covariance graph model is performed if model = "concentration”. A Gaussian
covariance graph model postulates that some variables are marginally independent according to the
inferred graph structure. On the other hand, in a Gaussian concentration graph model, variables are
conditionally independent given their neighbors in the inferred graph. See also fitGGM.

Search for the optimal graph structure and parameter estimation is carried out by maximization of
a Gaussian penalized likelihood, given as follows:

Covariance: argmaxy, , ((X|Z,A) — P(4,8) ¥ e Cf(A)

Concentration: argmaxg, 4 (X[, A4) — P(4,8) Q€ CL(A)

where Cég (A) is the collection of sparse positive definite matrices whose zero patterns are given by
graph G represented by the adjacency matrix A.

The penalty function P(A, 3) depends on the structure of graph G through the adjacency matrix A
and a parameter [3; see penalty on how to specify the penalization term and for further information.

For this type of penalized log-likelihood, graph structure search and parameter estimation is a maxi-
mization combinatorial problem. For a given candidate structure (i.e. adjacency matrix), association
parameters in the covariance or concentration matrix are estimated using the estimation algorithms
implemented in fitGGM. Regarding structure search, this can be carried out either using a greedy
forward-stepwise or a greedy backward-stepwise algorithm, by setting search = "step-forw" or
search = "step-back” respectively. Alternatively, a stochastic search via genetic algorithm can
be used by setting search = "ga". The procedure for the forward stepwise search is described in
Fop et al. (2018), and the backward is implemented in a similar way; the genetic algorithm pro-
cedure relies on the GA package. All the structure searching methods can be run in parallel on a
multi-core machine by setting the argument parallel = TRUE.

Value

An object of class ' fitGGM' containing the optimal estimated marginal or conditional independence
Gaussian graphical model.

The output is a list containing:

sigma The estimated covariance matrix.

omega The estimated concentration (inverse covariance) matrix.

graph The adjacency matrix corresponding to the optimal marginal or conditional in-
dependence graph.

model Estimated model type, whether "covariance"” or "concentration”.

loglikPen Value of the maximized penalized log-likelihood.

loglik Value of the maximized log-likelihood.

nPar Number of estimated parameters.

N Number of observations.
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\ Number of variables, corresponding to the number of nodes in the graph.
penalty The type of penalty on the graph structure.
search The search method used for graph structure search.
GA An object of class 'ga-class' with information about the genetic algorithm.
Only present when search = "ga". See ga.
References

Fop, M., Murphy, T.B., and Scrucca, L. (2018). Model-based clustering with sparse covariance
matrices. Statistics and Computing. To appear.

Scrucca, L. (2017). On some extensions to GA package: Hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9(1), 187-206.

Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software,
53(4), 1-3.

Examples

# fit covariance graph model with default forward-stepwise search
data(mtcars)

x <- mtcars[,c(1,3:7)]

mod1 <- searchGGM(x, model = "covariance")

mod1

plot(mod1)

#

# prefer a sparser model

mod2 <- searchGGM(x, model = "covariance”, penalty = "ebic")
mod?2

plot(mod2)

# fit concentration graph model with backward-stepwise structure search
# with a covariance matrix in input
data(ability.cov)
mod3 <- searchGGM(S = ability.cov$cov, N = ability.cov$n.obs,
model = "concentration”, search = "step-back")
mod3
mod3$graph
mod3$omega
plot(mod3)

## Not run:

# generate data from a Markov model

N <- 1000

V <- 20

dat <- matrix(NA, N, V)

dat[,1] <- rnorm(N)

for ( j in 2:V ) dat[,j] <- dat[,j-1] + rnorm(N, sd = 0.5)

mod4 <- searchGGM(data = dat, model = "concentration”) # recover the model
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plot(mod4, what = "adjacency")

## End(Not run)
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