Package 'mixAK'

June 2, 2020
Version 5.3
Date 2020-06-02
Title Multivariate Normal Mixture Models and Mixtures of GeneralizedLinear Mixed Models Including Model Based Clustering
Author Arnošt Komárek arnost.komarek@mff.cuni.cz
Maintainer Arnošt Komárek arnost.komarek@mff.cuni.cz
Depends R (>= 3.0.0), colorspace, lme4 (>= 1.0)
Imports graphics, stats, splines, fastGHQuad, mnormt, parallel, coda
Description Contains a mixture of statistical methods including the MCMC methods to analyze nor-mal mixtures. Additionally, model based clustering methods are implemented to perform classi-fication based on (multivariate) longitudinal (or otherwise correlated) data. The ba-sis for such clustering is a mixture of multivariate generalized linear mixed models.
Encoding UTF-8
License GPL (>= 3)
URL http://msekce.karlin.mff.cuni.cz/~komarek
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-06-02 09:50:06 UTC
R topics documented:
Acidity 3
autolayout 4
BLA 4
BsBasis 6
cbplot 7
Dirichlet 9
Enzyme 10
Faithful 11
fitted.GLMM_MCMC 12
Galaxy 13
generatePermutations 14
getProfiles 14
GLMM_longitDA 15
GLMM_longitDA2 17
GLMM_MCMC 18
MatMPpinv 27
MatSqrt 28
MVN 30
MVNmixture 32
MVT 36
NMixChainComp 38
NMixChainsDerived 39
NMixCluster 40
NMixEM 41
NMixMCMC 43
NMixPlugCondDensJoint2 54
NMixPlugCondDensMarg 56
NMixPlugDA 58
NMixPlugDensJoint2 58
NMixPlugDensMarg 60
NMixPredCDFMarg 61
NMixPredCondCDFMarg 63
NMixPredCondDensJoint2 65
NMixPredCondDensMarg 66
NMixPredDA 68
NMixPredDensJoint2 69
NMixPredDensMarg 71
NMixPseudoGOF 73
NMixRelabel 74
NMixSummComp 78
PBC910 79
PBCseq 80
plot.NMixPlugCondDensJoint2 82
plot.NMixPlugCondDensMarg 84
plot.NMixPlugDensJoint2 85
plot.NMixPlugDensMarg 86
plot.NMixPredCDFMarg 87
plot.NMixPredCondCDFMarg 88
plot.NMixPredCondDensJoint2 89
plot.NMixPredCondDensMarg 90
plot.NMixPredDensJoint2 92
plot.NMixPredDensMarg 93
plotProfiles 95
rRotationMatrix 97
rSamplePair 98
SimData 99
SP2Rect 100
summaryDiff 100
Tandmob 101
TandmobEmer 104
TMVN 106
TNorm 108
tracePlots 111
Wishart 113
Y2T 116
Index 118
Acidity Acidity index of lakes in North-Central Wisconsin

Description

Acidity index measured in a sample of 155 lakes in North-Central Wisconsin.
Crawford et al. (1992) and Crawford (1994) analyzed these data as a mixture of normal distributions on the log-scale. Richardson and Green (1997) used a normal mixture estimated using reversible jump MCMC.

Usage

data(Acidity)

Format

A numeric vector with observed values.

Source

http://www.stats.bris.ac.uk/~peter/mixdata

References

Crawford, S. L. (1994). An application of the Laplace method to finite mixture distribution. Journal of the American Statistical Association, 89, 259-267.
Crawford, S. L., DeGroot, M. H., Kadane, J. B., and Small, M. J. (1994). Modeling lake chemistry distributions: Approximate Bayesian methods for estimating a finite mixture model. Technometrics, 34, 441-453.
Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with unknown number of components (with Discussion). Journal of the Royal Statistical Society, Series B, 59, 731-792.

Examples

```
data(Acidity)
summary(Acidity)
```

autolayout Automatic layout for several plots in one figure

Description

Returns a matrix which can be used in layout function as its mat argument.

Usage

autolayout(np)

Arguments

$\mathrm{np} \quad$ number of plots that are to be produced on 1 figure

Value

A matrix.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

> par.

Examples

autolayout(10)

BLA \quad| Best linear approximation with respect to the mean square error (the- |
| :--- |
| oretical linear regression). |

Description

For a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$ for which a mean and a covariance matrix are given computes coefficients of the best linear approximations with respect to the mean square error of each component of \boldsymbol{X} given the remaining components of \boldsymbol{X}.

Usage

BLA(mean=c(0, 0), Sigma=diag(2))

Arguments

mean	a numeric vector of means.
Sigma	a covariance matrix.

Value

A list with the following components:

beta	computed regression coefficients
sigmaR2	residual variances

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Anděl, J. (2007, odd. 2.5). Základy matematické statistiky. Praha: MATFYZPRESS.

Examples

```
##### X = (U(1), U(2), U(3))'
##### * U(1) <= U(2) <= U(3)
##### * ordered uniform Unif(0, 1) variates
EX <- (1:3)/4
varX <- matrix(c(3,2,1, 2,4,2, 1,2,3), ncol=3)/80
BLA(EX, Sigma=varX)
##### Uroda sena
##### * Y1 = uroda sena [cent/akr]
##### * Y2 = jarni srazky [palce]
##### * Y3 = kumulovana teplota nad 42 F
EY <- c(28.02, 4.91, 28.7)
varY <- matrix(c(19.54, 3.89, -3.76, 3.89, 1.21, -1.31, -3.76, -1.31, 4.52), ncol=3)
BLA(EY, Sigma=varY)
##### Z=(X, Y) ~ uniform distribution on a triangle
##### M = {(x,y): x>=0, y>=0, x+y<=3}
EZ <- c(1, 1)
varZ <- matrix(c(2, -1, -1, 2), nrow=2)/4
BLA(EZ, Sigma=varZ)
```

\#\#\#\#\# $W=(X, Y)$ ~ uniform distribution on
\#\#\#\#\# $M=\{(x, y): x>=0,0<=y<=1, y<=x<=y+1\}$
EW <- c $(1,1 / 2)$
varW <- matrix(c(2, 1, 1, 1), nrow=2)/12
BLA(EW, Sigma=varW)
BsBasis B-spline basis

Description

It creates a B-spline basis based on a specific dataset. B-splines are assumed to have common boundary knots and equidistant inner knots.

Usage

BsBasis(degree, ninner, knotsBound, knots, intercept=FALSE, x, tgrid, Bname="B", plot=FALSE, lwd=1, col="blue", xlab="Time", ylab="B(t)", pch=16, cex.pch=1, knotcol="red")

Arguments

degree ninner	degree of the B-spline. nnotsBound nnots
number of inner knots.	
2-component vector with boundary knots.	
knots of the B-spline (including boundary ones). If knots is given ninner and	
knotsBound are ignored.	
logical, if FALSE, the first basis B-spline is removed from the B-spline basis and	
it is assumed that intercept is added to the statistical models used afterwards.	

Value

A matrix with the B-spline basis. Number of rows is equal to the length of x.
Additionally, the resulting matrix has attributes:

degree	B-spline degree
intercept	logical indicating the presence of the intercept B-spline
knots	a numeric vector of knots
knotsInner	a numeric vector of innner knots
knotsBound	a numeric vector of boundary knots

$\begin{array}{ll}\text { df } & \text { the length of the B-spline basis (number of columns of the resulting object). } \\ \text { tgrid } & \text { a numeric vector which can be used on x-axis to plot the basis. } \\ \text { Xgrid } & \begin{array}{l}\text { a matrix with length(tgrid) rows and df columns which can be used to plot } \\ \text { the basis. }\end{array}\end{array}$

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

bs.

Examples

```
set.seed(20101126)
t <- runif(20, 0, 100)
oldPar <- par(mfrow=c(1, 2), bty="n")
Bs <- BsBasis(degree=3, ninner=3, knotsBound=c(0, 100), intercept=FALSE,
    x=t, tgrid=0:100, plot=TRUE)
print(Bs)
Bs2 <- BsBasis(degree=3, ninner=3, knotsBound=c(0, 100), intercept=TRUE,
    x=t, tgrid=0:100, plot=TRUE)
print(Bs2)
par(oldPar)
print(Bs)
print(Bs2)
```

cbplot

Plot a function together with its confidence/credible bands

Description

This routine typically plots a function together with its confidence or credible bands. The credible band can be indicated either by additional lines or by a shaded region or by both.

Usage

cbplot(x, y, low, upp, type=c("l", "s"), band.type=c("ls", "s", "l"), add=FALSE, col="darkblue", lty=1, lwd=2, cbcol=col, cblty=4, cblwd=lwd, scol=rainbow_hcl(1, start=180, end=180), slwd=5, xlim, ylim, xlab, ylab, main="", sub="", cex.lab=1, cex.axis=1, ...)

Arguments

$x \quad$ a numeric vector with x coordinates corresponding to y, low, upp.
$y \quad a$ numeric vector with y coordinates of the function to plot.
low a numeric vector with y coordinates of the lower limit of the credible band.
upp a numeric vector with y coordinates of the upper limit of the credible band.
type argument with the same meaning as type in plot.default.
band.type a character which specifies the graphical way to show the credible band, "Is" stands for line and shaded region, " s " stands for shaded region only and " l " stands for line only.
add if TRUE then everything is added to the current plot.
col, lty, lwd graphical paramters to draw the x-y line.
cbcol, cblty, cblwd
graphical parameters to draw the x -low and x -upp lines.
scol, slwd graphical parameters for the shaded region between the credible/confidence bounds.
xlim, ylim, xlab, ylab, main, sub, cex.lab, cex.axis other graphical parameters.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

Examples

```
### Artificial credible bands around the CDF's of N(100, 15*15)
### and N(80, 10*10)
iq <- seq(55, 145, length=100)
Fiq <- pnorm(iq, 100, 15)
low <- Fiq - 0.1
upp <- Fiq + 0.1
iq2 <- seq(35, 125, length=100)
Fiq2 <- pnorm(iq, 80, 10)
low2 <- Fiq2 - 0.1
upp2 <- Fiq2 + 0.1
cbplot(iq, Fiq, low, upp, xlim=c(35, 145))
cbplot(iq2, Fiq2, low2, upp2, add=TRUE, col="red4",
    scol=rainbow_hcl(1, start=20, end=20))
```


Description

Random number generation for the Dirichlet distribution $D\left(\alpha_{1}, \ldots, \alpha_{K}\right)$.

Usage

rDirichlet(n, alpha=c(1, 1))

Arguments

$\mathrm{n} \quad$ number of observations to be sampled.
alpha parameters of the Dirichlet distribution ('prior sample sizes').

Value

Some objects.

Value for rDirichlet

A matrix with sampled values.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer-Verlag, Chap. XI.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. Second Edition. Boca Raton: Chapman and Hall/CRC, pp. 576, 582.

See Also

rbeta.

Examples

```
set.seed(1977)
alpha <- c(1, 2, 3)
Mean <- alpha/sum(alpha)
Var <- -(alpha %*% t(alpha))
diag(Var) <- diag(Var) + alpha*sum(alpha)
Var <- Var/(sum(alpha)^2*(1+sum(alpha)))
```

```
    x <- rDirichlet(1000, alpha=alpha)
    x[1:5,]
    apply(x, 1, sum)[1:5] ### should be all ones
    rbind(Mean, apply(x, 2, mean))
    var(x)
    print(Var)
```

 Enzyme Enzymatic activity in the blood

Description

Enzymatic activity in the blood, for an enzyme involved in the metabolism of carcinogenic substances, among a group of 245 unrelated individuals.

Bechtel et al. (1993) identified a mixture of two skewed distributions by using maximum-likelihood estimation. Richardson and Green (1997) used a normal mixture estimated using reversible jump MCMC to estimate the distribution of the enzymatic activity.

Usage
 data(Enzyme)

Format

A numeric vector with observed values.

Source

http://www.stats.bris.ac.uk/~peter/mixdata

References

Bechtel, Y. C., Bonaïti-Pellié, C., Poisson, N., Magnette, J., and Bechtel, P. R.(1993). A population and family study of N-acetyltransferase using caffeine urinary metabolites. Clinical Pharmacology and Therapeutics, 54, 134-141.

Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with unknown number of components (with Discussion). Journal of the Royal Statistical Society, Series B, 59, 731-792.

Examples

```
data(Enzyme)
summary(Enzyme)
```


Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA, version used in Härdle, W. (1991).

Usage

data(Faithful)

Format

A data frame with 272 observations on 2 variables.
eruptions eruption time in minutes
waiting waiting time to the next eruption in minutes

Details

There are many versions of this dataset around. Azzalini and Bowman (1990) use a more complete version.

Source

R package MASS

References

Härdle, W. (1991). Smoothing Techniques with Implementation in S. New York: Springer.
Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics, 39, 357-365.

See Also

geyser.

Examples

```
data(Faithful)
summary(Faithful)
```

fitted.GLMM_MCMC Fitted profiles in the GLMM model

Description

It calculates fitted profiles in the (multivariate) GLMM with a normal mixture in the random effects distribution based on selected posterior summary statistic of the model parameters.

Usage

\#\# S3 method for class 'GLMM_MCMC'
fitted(object, x, z, statistic=c("median", "mean", "Q1", "Q3", "2.5\%", "97.5\%"), overall=FALSE, glmer=TRUE, nAGQ=100, ...)

Arguments

object object of class GLMM_MCMC.
$x \quad$ matrix or list of matrices (in the case of multiple responses) for "fixed effects" part of the model used in the calculation of fitted values.
z matrix or list of matrices (in the case of multiple responses) for "random effects" part of the model used in the calculation of fitted values.
statistic character which specifies the posterior summary statistic to be used to calculate fitted profiles. Default is the posterior median. It applies only to the overall fit.
overall logical. If TRUE, fitted profiles based on posterior mean/median/Q1/Q3/2.5\%/97.5\% of the model parameters are computed.
If FALSE, fitted profiles based on posterior means given mixture component are calculated. Note that this depends on used re-labelling of the mixture components and hence might be misleading if re-labelling is not succesfull!
glmer a logical value. If TRUE, the real marginal means are calculated using Gaussian quadrature.
nAGQ number of quadrature points used when glmer is TRUE.
... possibly extra arguments. Nothing useful at this moment.

Value

A list (one component for each of multivariate responses from the model) with fitted values calculated using the x and z matrices. If overall is FALSE, these are then matrices with one column for each mixture component.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

GLMM_MCMC.

Examples

\#\#\# WILL BE ADDED.
Galaxy Velocities of distant galaxies

Description

Velocities (in $\mathrm{km} / \mathrm{sec}$) of 82 distant galaxies, diverging from our own galaxy.
The dataset was first described by Roeder (1990) and subsequently analysed under different mixture models by several researchers including Escobar and West (1995) and Phillips and Smith (1996). Richardson and Green (1997) used a normal mixture estimated using reversible jump MCMC to estimate the distribution of the velocities.

REMARK: 78th observation is here 26.96 whereas it should be 26.69 (see galaxies). A value of 26.96 used in Richardson and Green (1997) is kept here.

Usage

data(Galaxy)

Format

A numeric vector with observed values.

Source

http://www.stats.bris.ac.uk/~peter/mixdata

References

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577-588.

Phillips, D. B. and Smith, A. F. M. (1996). Bayesian model comparison via jump diffusions. In Practical Markov Chain Monte Carlo, eds: W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, ch. 13, pp. 215-239. London: Chapman and Hall.
Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with unknown number of components (with Discussion). Journal of the Royal Statistical Society, Series B, 59, 731-792.
Roeder, K. (1990). Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. Journal of the American Statistical Association, 85, 617-624.

See Also

galaxies.

Examples

```
data(Galaxy)
summary(Galaxy)
```

generatePermutations Generate all permutations of (1, ..., K)

Description

It generates a matrix containing all permutations of $(1, \ldots, K)$.

Usage

generatePermutations(K)

Arguments

K integer value of K.

Value

A matrix of dimension $K!\times K$ with generated permutations in rows.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

Examples

generatePermutations(1)
generatePermutations(2)
generatePermutations(3)
generatePermutations(4)
getProfiles Individual longitudinal profiles of a given variable

Description

It creates a list with individual longitudinal profiles of a given variable.

Usage

getProfiles(t, y, id, data)

Arguments

t
data
$y \quad$ a character string giving the names of the responses variables to keep in the resulting object.
id a character string giving the name of the variable which identifies subjects.
a character string giving the name of the variable with "time".
a data. frame with all the variables.

Value

A list of data.frames, one for each subject identified by id in the original data.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

```
plotProfiles.
```


Examples

```
data(PBCseq, package="mixAK")
ip <- getProfiles(t="day", y=c("age", "lbili", "platelet", "spiders"),
            id="id", data=PBCseq)
print(ip[[2]])
print(ip[[34]])
XLIM <- c(0, 910)
lcol1 <- rainbow_hcl(1, start=40, end=40)
oldPar <- par(mfrow=c(1, 3), bty="n")
plotProfiles(ip=ip, data=PBCseq, xlim=XLIM, var="lbili", tvar="day",
    xlab="Time (days)", col=lcol1, auto.layout=FALSE, main="Log(bilirubin)")
plotProfiles(ip=ip, data=PBCseq, xlim=XLIM, var="platelet", tvar="day",
    xlab="Time (days)", col=lcol1, auto.layout=FALSE, main="Platelet count")
plotProfiles(ip=ip, data=PBCseq, xlim=XLIM, var="spiders", tvar="day",
            xlab="Time (days)", col=lcol1, auto.layout=FALSE)
par(oldPar)
```

GLMM_longitDA Discriminant analysis for longitudinal profiles based on fitted GLMM's

Description

The idea is that we fit (possibly different) GLMM's for data in training groups using the function GLMM_MCMC and then use the fitted models for discrimination of new observations. For more details we refer to Komárek et al. (2010).
Currently, only continuous responses for which linear mixed models are assumed are allowed.

Usage

GLMM_longitDA(mod, w.prior, y, id, time, x, z, xz.common=TRUE, info)

Arguments

mod	a list containing models fitted with the GLMM_MCMC function. Each component of the list is the GLMM fitted in the training dataset of each cluster.
w. prior	a vector with prior cluster weights. The length of this argument must be the same as the length of argument mod. Can also be given relatively, e.g., as $c(1,1)$ which means that both prior weights are equal to $1 / 2$.
y	vector, matrix or data frame (see argument y of GLMM_MCMC function) with responses of objects that are to be clustered.
id	vector which determines clustered observations (see also argument y of GLMM_MCMC function).
time	vector which gives indeces of observations within clusters. It appears (together with id) in the output as identifier of observations
x	see $x z$. common below.
z	see $x z$. common below.
xz.common	a logical value.
	If TRUE then it is assumed that the X and Z matrices are the same for GLMM in each cluster. In that case, arguments x and z have the same structure as arguments x and z of GLMM_MCMC function.
	If FALSE then X and Z matrices for the GLMM may differ across clusters. In that case, arguments x and z are both lists of length equal to the number of clusters and each component of lists x and z has the same structure as arguments x and z of GLMM_MCMC function.
info	interval in which the function prints the progress of computation

Details

This function complements a paper Komárek et al. (2010).

Value

A list with the following components:

ident	ADD DESCRIPTION
marg	ADD DESCRIPTION
cond	ADD DESCRIPTION
ranef	ADD DESCRIPTION

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A., Hansen, B. E., Kuiper, E. M. M., van Buuren, H. R., and Lesaffre, E. (2010). Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution. Statistics in Medicine, 29(30), 3267-3283.

See Also

GLMM_MCMC, GLMM_longitDA2.

Examples

\#\#\# WILL BE ADDED.

GLMM_longitDA2 | Discriminant analysis for longitudinal profiles based on fitted |
| :--- |
| GLMM's |

Description

WILL BE ADDED.

Usage

```
GLMM_longitDA2(mod, w.prior, y, id, x, z, xz.common = TRUE,
    keep.comp.prob = FALSE, level = 0.95,
    info, silent = FALSE)
```


Arguments

mod a list containing models fitted with the GLMM_MCMC function. Each component of the list is the GLMM fitted in the training dataset of each cluster.
w.prior a vector with prior cluster weights. The length of this argument must be the same as the length of argument mod. Can also be given relatively, e.g., as $c(1,1)$ which means that both prior weights are equal to $1 / 2$.
y vector, matrix or data frame (see argument y of GLMM_MCMC function) with responses of objects that are to be clustered.
id vector which determines clustered observations (see also argument y of GLMM_MCMC function).
x see $x z$. common below.
z
see $x z$. common below.
$x z$.common a logical value.
If TRUE then it is assumed that the X and Z matrices are the same for GLMM in each cluster. In that case, arguments x and z have the same structure as arguments x and z of GLMM_MCMC function.

If FALSE then X and Z matrices for the GLMM may differ across clusters. In that case, arguments x and z are both lists of length equal to the number of clusters and each component of lists x and z has the same structure as arguments x and z of GLMM_MCMC function.
keep. comp. prob a logical value indicating whether the allocation probabilities should be kept for all MCMC iterations. This may ask for quite some memory but it is necessary if credible intervals etc. should be calculated for the component probabilities.
level level of HPD credible intervals that are calculated for the component probabilities if keep. comp. prob is TRUE.
info interval in which the function prints the progress of computation (unless silent is TRUE).
silent logical value indicating whether to switch-off printing the information during calculations.

Details

This function complements a paper being currently in preparation.
GLMM_longitDA2 differs in many aspects from GLMM_longitDA2!

Value

A list with the following components:

ADD ADD DESCRIPTION

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

GLMM_MCMC, GLMM_longitDA.

Examples

\#\#\# WILL BE ADDED.

GLMM_MCMC
MCMC estimation of a (multivariate) generalized linear mixed model with a normal mixture in the distribution of random effects

Description

This function runs MCMC for a generalized linear mixed model with possibly several response variables and possibly normal mixtures in the distributions of random effects.

Usage

```
GLMM_MCMC(y, dist = "gaussian", id, x, z, random.intercept,
    prior.alpha, init.alpha, init2.alpha,
        scale.b, prior.b, init.b, init2.b,
        prior.eps, init.eps, init2.eps,
        nMCMC = c(burn = 10, keep = 10, thin = 1, info = 10),
        tuneMCMC = list(alpha = 1, b = 1),
        store = c(b = FALSE), PED = TRUE, keep.chains = TRUE,
        dens.zero = 1e-300, parallel = FALSE, cltype, silent = FALSE)
    ## S3 method for class 'GLMM_MCMC'
print(x, ...)
## S3 method for class 'GLMM_MCMClist'
print(x, ...)
```


Arguments

$y \quad$ vector, matrix or data frame with responses. If y is vector then there is only one response in the model. If y is matrix or data frame then each column gives values of one response. Missing values are allowed.
If there are several responses specified then continuous responses must be put in the first columns and discrete responses in the subsequent columns.
dist character (vector) which determines distribution (and a link function) for each response variable. Possible values are: "gaussian" for gaussian (normal) distribution (with identity link), "binomial(logit)" for binomial (0/1) distribution with a logit link. "poisson(log)" for Poisson distribution with a log link. Single value is recycled if necessary.
id vector which determines longitudinally or otherwise dependent observations. If not given then it is assumed that there are no clusters and all observations of one response are independent.
x
matrix or a list of matrices with covariates (intercept not included) for fixed effects. If there is more than one response, this must always be a list. Note that intercept in included in all models. Use a character value "empty" as a component of the list x if there are no covariates for a particular response.
z
matrix or a list of matrices with covariates (intercept not included) for random effects. If there is more than one response, this must always be a list. Note that random intercept is specified using the argument random. intercept.
REMARK: For a particular response, matrices x and z may not have the same columns. That is, matrix x includes covariates which are not involved among random effects and matrix z includes covariates which are involved among random effects (and implicitely among fixed effects as well).
random.intercept
logical (vector) which determines for which responses random intercept should be included.
prior.alpha a list which specifies prior distribution for fixed effects (not the means of random effects). The prior distribution is normal and the user can specify the mean and variances. The list prior. alpha can have the components listed below.
mean a vector with prior means, defaults to zeros.
var a vector with prior variances, defaults to 10000 for all components.
init.alpha a numeric vector with initial values of fixed effects (not the means of random effects) for the first chain. A sensible value is determined using the maximumlikelihood fits (using lmer functions) and does not have to be given by the user.
init2.alpha a numeric vector with initial values of fixed effects for the second chain.
scale.b
prior.b a list which specifies prior distribution for (shifted and scaled) random effects. The prior is in principle a normal mixture (being a simple normal distribution if we restrict the number of mixture components to be equal to one).
The list prior.b can have the components listed below. Their meaning is analogous to the components of the same name of the argument prior of function NMixMCMC (see therein for details).
distribution a character string which specifies the assumed prior distribution for random effects. It can be either "normal" (multivaruate normal - default) or "MVT" (multivariate Student t distribution).
priorK a character string which specifies the type of the prior for K (the number of mixture components).
priormuQ a character string which specifies the type of the prior for mixture means and mixture variances.
Kmax maximal number of mixture components.
lambda see vignette PBCseq.pdf for details
delta see vignette PBCseq.pdf for details
xi see vignette PBCseq.pdf for details
ce see vignette PBCseq.pdf for details
D see vignette PBCseq.pdf for details
zeta see vignette PBCseq.pdf for details
gD see vignette PBCseq.pdf for details
hD see vignette PBCseq.pdf for details
gdf shape parameter of the prior distribution for the degrees of freedom if the random effects are assumed to follow the MVT distribution
hdf rate parameter of the prior distribution for the degrees of freedom if the random effects are assumed to follow the MVT distribution
init.b a list with initial values of the first chain for parameters related to the distribution of random effects and random effects themselves. Sensible initial values are determined by the function itself and do not have to be given by the user.
b
K
w
mu
Sigma
Li
gammaInv
df
r
init2.b a list with initial values of the second chain for parameters related to the distribution of random effects and random effects themselves.
prior.eps a list specifying prior distributions for error terms for continuous responses. The list prior.eps can have the components listed below. For all components, a sensible value leading to weakly informative prior distribution can be determined by the function.
zeta see vignette PBCseq.pdf for details
g see vignette PBCseq.pdf for details
h see vignette PBCseq.pdf for details
init.eps a list with initial values of the first chain for parameters related to the distribution of error terms of continuous responses. The list init.eps can have the components listed below. For all components, a sensible value can be determined by the function.
sigma a numeric vector with the initial values for residual standard deviations for each continuous response.
gammaInv a numeric vector with the initial values for the inverted components of the hyperparameter gamma for each continuous response.
init2.eps a list with initial values of the second chain for parameters related to the distribution of error terms of continuous responses.
nMCMC numeric vector of length 4 giving parameters of the MCMC simulation. Its components may be named (ordering is then unimportant) as:
burn length of the burn-in (after discarding the thinned values), can be equal to zero as well.
keep length of the kept chains (after discarding the thinned values), must be positive.
thin thinning interval, must be positive.
info interval in which the progress information is printed on the screen.
In total $\left(M_{\text {burn }}+M_{\text {keep }}\right) \cdot M_{\text {thin }}$ MCMC scans are performed.
tuneMCMC a list with tuning scale parameters for proposal distribution of fixed and random effects. It is used only when there are some discrete response profiles. The components of the list have the following meaning:
alpha scale parameters by which we multiply the proposal covariance matrix when updating the fixed effects pertaining to the discrete response profiles. There is one scale parameter for each DISCRETE profile. A single value is recycled if necessary.
b a scale parameter by which we multiply the proposal covariance matrix when updating the random effects. It is used only when there are some discrete response profiles in the model.
store logical vector indicating whether the chains of parameters should be stored. Its components may be named (ordering is then unimportant) as:
b if TRUE then the sampled values of random effects are stored. Defaults to FALSE.
PED a logical value which indicates whether the penalized expected deviance (see Plummer, 2008 for more details) is to be computed (which requires two parallel chains).
keep. chains logical. If FALSE, only summary statistics are returned in the resulting object. This might be useful in the model searching step to save some memory.
dens.zero a small value used instead of zero when computing deviance related quantities.
parallel a logical value which indicates whether parallel computation (based on a package parallel) should be used when running two chains for the purpose of PED calculation.
cltype optional argument applicable if parallel is TRUE. If cltype is given, it is passed as the type argument into the call to makeCluster.
silent a logical value indicating whether the information on the MCMC progress is to be supressed.
additional arguments passed to the default print method.

Details

See accompanying papers (Komárek et al., 2010, Komárek and Komárková, 2013).

Value

An object of class GLMM_MCMClist (if PED argument is TRUE) or GLMM_MCMC (if PED argument is FALSE).

Object of class GLMM_MCMC

Object of class GLMM_MCMC can have the following components (some of them may be missing according to the context of the model):
iter index of the last iteration performed.
nMCMC used value of the argument nMCMC.
dist a character vector of length R corresponding to the dist argument.
\mathbf{R} a two component vector giving the number of continuous responses and the number of discrete responses.
\mathbf{p} a numeric vector of length R giving the number of non-intercept alpha parameters for each response.
q a numeric vector of length R giving the number of non-intercept random effects for each response.
fixed.intercept a logical vector of length R which indicates inclusion of fixed intercept for each response.
random.intercept a logical vector of length R which indicates inclusion of random intercept for each response.
lalpha length of the vector of fixed effects.
dimb dimension of the distribution of random effects.
prior.alpha a list containing the used value of the argument prior. alpha.
prior.b a list containing the used value of the argument prior.b.
prior.eps a list containing the used value of the argument prior.eps.
init.alpha a numeric vector with the used value of the argument init.alpha.
init.b a list containing the used value of the argument init.b.
init.eps a list containing the used value of the argument init.eps.
state.first.alpha a numeric vector with the first stored (after burn-in) value of fixed effects α.
state.last.alpha a numeric vector with the last sampled value of fixed effects α. It can be used as argument init. alpha to restart MCMC.
state.first.b a list with the first stored (after burn-in) values of parameters related to the distribution of random effects. It has components named b, K, w, mu, Sigma, Li, Q, gammaInv, r.
state.last.b a list with the last sampled values of parameters related to the distribution of random effects. It has components named b, K, w, mu, Sigma, Li, Q, gammaInv, r. It can be used as argument init.b to restart MCMC.
state.first.eps a list with the first stored (after burn-in) values of parameters related to the distribution of residuals of continuous responses. It has components named sigma, gammaInv.
state.last.eps a list with the last sampled values of parameters related to the distribution of residuals of continuous responses. It has components named sigma, gammaInv. It can be used as argument init.eps to restart MCMC.
prop.accept.alpha acceptance proportion from the Metropolis-Hastings algorithm for fixed effects (separately for each response type). Note that the acceptance proportion is equal to one for continuous responses since the Gibbs algorithm is used there.
prop.accept.b acceptance proportion from the Metropolis-Hastings algorithm for random effects (separately for each cluster). Note that the acceptance proportion is equal to one for models with continuous responses only since the Gibbs algorithm is used there.
scale.b a list containing the used value of the argument scale.b.
summ.Deviance a data.frame with posterior summary statistics for the deviance (approximated using the Laplacian approximation) and conditional (given random effects) devience.
summ.alpha a data.frame with posterior summary statistics for fixed effects.
summ.b.Mean a matrix with posterior summary statistics for means of random effects.
summ.b.SDCorr a matrix with posterior summary statistics for standard deviations of random effects and correlations of each pair of random effects.
summ.sigma_eps a matrix with posterior summary statistics for standard deviations of the error terms in the (mixed) models of continuous responses.
poster.comp.prob_u a matrix which is present in the output object if the number of mixture components in the distribution of random effects is fixed and equal to K. In that case, poster.comp.prob_u is a matrix with K columns and I rows (I is the number of subjects defining the longitudinal profiles or correlated observations) with estimated posterior component probabilities - posterior means of the components of the underlying $0 / 1$ allocation vector.
WARNING: By default, the labels of components are based on artificial identifiability constraints based on ordering of the mixture means in the first margin. Very often, such identifiability constraint is not satisfactory!
poster.comp.prob_b a matrix which is present in the output object if the number of mixture components in the distribution of random effects is fixed and equal to K. In that case, poster.comp.prob_b is a matrix with K columns and I rows (I is the number of subjects defining the longitudinal profiles or correlated observations) with estimated posterior component probabilities - posterior mean over model parameters including random effects.
WARNING: By default, the labels of components are based on artificial identifiability constraints based on ordering of the mixture means in the first margin. Very often, such identifiability constraint is not satisfactory!
freqK_b frequency table for the MCMC sample of the number of mixture components in the distribution of the random effects.
propK_b posterior probabilities for the numbers of mixture components in the distribution of random effects.
poster.mean.y a list with data.frames, one data.frame per response profile. Each data.frame with columns labeled id, observed, fitted, stres, eta.fixed and eta.random holding identifier for clusters of grouped observations, observed values and posterior means for fitted values (response expectation given fixed and random effects), standardized residuals (derived from fitted values), fixed effect part of the linear predictor and the random effect part of the linear predictor. In each column, there are first all values for the first response, then all values for the second response etc.
poster.mean.profile a data.frame with columns labeled b1, ..., bq, Logpb, Cond.Deviance, Deviance with posterior means of random effects for each cluster, posterior means of $\log \{p(\boldsymbol{b})\}$, conditional deviances, i.e., minus twice the conditional (given random effects) log-likelihood for each cluster and GLMM deviances, i.e., minus twice the marginal (random effects integrated out) log-likelihoods for each cluster. The value of the marginal (random effects integrated out) log-likelihood at each MCMC iteration is obtained using the Laplacian approximation.
poster.mean.w_b a numeric vector with posterior means of mixture weights after re-labeling. It is computed only if K_{b} is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.mu_b a matrix with posterior means of mixture means after re-labeling. It is computed only if K_{b} is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.Q_b a list with posterior means of mixture inverse variances after re-labeling. It is computed only if K_{b} is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.Sigma_b a list with posterior means of mixture variances after re-labeling. It is computed only if K_{b} is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.Li_b a list with posterior means of Cholesky decompositions of mixture inverse variances after re-labeling. It is computed only if K_{b} is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.

Deviance numeric vector with a chain for the GLMM deviances, i.e., twice the marginal (random effects integrated out) log-likelihoods of the GLMM. The marginal log-likelihood is obtained using the Laplacian approximation at each iteration of MCMC.
Cond.Deviance numeric vector with a chain for the conditional deviances, i.e., twice the conditional (given random effects) log-likelihoods.

K_b numeric vector with a chain for K_{b} (number of mixture components in the distribution of random effects).
$\mathbf{w} _\mathbf{b}$ numeric vector or matrix with a chain for w_{b} (mixture weights for the distribution of random effects). It is a matrix with K_{b} columns when K_{b} is fixed. Otherwise, it is a vector with weights put sequentially after each other.
mu_b numeric vector or matrix with a chain for μ_{b} (mixture means for the distribution of random effects). It is a matrix with $\operatorname{dimb} \cdot K_{b}$ columns when K_{b} is fixed. Otherwise, it is a vector with means put sequentially after each other.

Q_b numeric vector or matrix with a chain for lower triangles of Q_{b} (mixture inverse variances for the distribution of random effects). It is a matrix with $\frac{\operatorname{dimb(dimb+1)}}{2} \cdot K_{b}$ columns when K_{b} is fixed. Otherwise, it is a vector with lower triangles of \boldsymbol{Q}_{b} matrices put sequentially after each other.
Sigma_b numeric vector or matrix with a chain for lower triangles of Σ_{b} (mixture variances for the distribution of random effects). It is a matrix with $\frac{\operatorname{dimb}(\operatorname{dimb+1)}}{2} \cdot K_{b}$ columns when K_{b} is fixed. Otherwise, it is a vector with lower triangles of Σ_{b} matrices put sequentially after each other.

Li_b numeric vector or matrix with a chain for lower triangles of Cholesky decompositions of \boldsymbol{Q}_{b} matrices. It is a matrix with $\frac{\operatorname{dimb}(\operatorname{dimb+1)}}{2} \cdot K_{b}$ columns when K_{b} is fixed. Otherwise, it is a vector with lower triangles put sequentially after each other.
gammaInv_b matrix with dimb columns with a chain for inverses of the hyperparameter γ_{b}.
order_b numeric vector or matrix with order indeces of mixture components in the distribution of random effects related to artificial identifiability constraint defined by ordering of the first component of the mixture means.
It is a matrix with K_{b} columns when K_{b} is fixed. Otherwise it is a vector with orders put sequentially after each other.
rank_b numeric vector or matrix with rank indeces of mixture components in the distribution of random effects related to artificial identifiability constraint defined by ordering of the first component of the mixture means.
It is a matrix with K_{b} columns when K_{b} is fixed. Otherwise it is a vector with ranks put sequentially after each other.
mixture_b data.frame with columns labeled b.Mean.*, b.SD.*, b.Corr.*.* containing the chains for the means, standard deviations and correlations of the distribution of the random effects based on a normal mixture at each iteration.
b a matrix with the MCMC chains for random effects. It is included only if store[b] is TRUE.
alpha numeric vector or matrix with the MCMC chain(s) for fixed effects.
sigma_eps numeric vector or matrix with the MCMC chain(s) for standard deviations of the error terms in the (mixed) models for continuous responses.
gammaInv_eps matrix with dimb columns with MCMC chain(s) for inverses of the hyperparameter γ_{b}.
relabel_b a list which specifies the algorithm used to re-label the MCMC output to compute order_b, rank_b, poster.comp.prob_u, poster.comp.prob_b, poster.mean.w_b, poster.mean.mu_b, poster.mean.Q_b, poster.mean.Sigma_b, poster.mean.Li_b.
Cpar a list with components useful to call underlying C++ functions (not interesting for ordinary users).

Object of class GLMM_MCMClist

Object of class NMixMCMClist is the list having two components of class NMixMCMC representing two parallel chains and additionally the following components:

PED values of penalized expected deviance and related quantities. It is a vector with five components: D.expect = estimated expected deviance, where the estimate is based on two parallel chains; popt $=$ estimated penalty, where the estimate is based on simple MCMC average based on two parallel chains; PED $=$ estimated penalized expected deviance $=$ D.expect + popt; wpopt $=$ estimated penalty, where the estimate is based on weighted MCMC average (through importance sampling) based on two parallel chains; wPED $=$ estimated penalized expected deviance $=$ D. expect + wpopt.
D posterior mean of the deviance for each subject.
popt contributions to the unweighted penalty from each subject.
wpopt contributions to the weighted penalty from each subject.
inv.D for each subject, number of iterations (in both chains), where the deviance was in fact equal to infinity (when the corresponding density was lower than dens.zero) and was not taken into account when computing D. expect.
inv.popt for each subject, number of iterations, where the penalty was in fact equal to infinity and was not taken into account when computing popt.
inv.wpopt for each subject, number of iterations, where the importance sampling weight was in fact equal to infinity and was not taken into account when computing wpopt.
sumISw for each subject, sum of importance sampling weights.
Deviance1 sampled value of the observed data deviance from chain 1
Deviance2 sampled values of the obserbed data deviance from chain 2
Deviance_repl1_ch1 sampled values of the deviance of data replicated according to the chain 1 evaluated under the parameters from chain 1
Deviance_repl1_ch2 sampled values of the deviance of data replicated according to the chain 1 evaluated under the parameters from chain 2

Deviance_repl2_ch1 sampled values of the deviance of data replicated according to the chain 2 evaluated under the parameters from chain 1
Deviance_repl2_ch2 sampled values of the deviance of data replicated according to the chain 2 evaluated under the parameters from chain 2

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A. and Komárková, L. (2013). Clustering for multivariate continuous and discrete longitudinal data. The Annals of Applied Statistics, 7(1), 177-200.
Komárek, A. and Komárková, L. (2014). Capabilities of R package mixAK for clustering based on multivariate continuous and discrete longitudinal data. Journal of Statistical Software, 59(12), 1-38. http://www.jstatsoft.org/v59/i12/.

Komárek, A., Hansen, B. E., Kuiper, E. M. M., van Buuren, H. R., and Lesaffre, E. (2010). Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution. Statistics in Medicine, 29(30), 3267-3283.
Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics, 9(3), 523-539.

See Also

NMixMCMC.

Examples

```
## See also additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## - files http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/PBCseq.pdf,
## PBCseq.R
## =============================================
```

MatMPpinv Moore-Penrose pseudoinverse of a squared matrix

Description

For a matrix \boldsymbol{A} its Moore-Penrose pseudoinverse is such a matrix \boldsymbol{A}^{+}which satisfies
(i) $\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{A}$,
(ii) $\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}^{+}$,
(iii) $\left(\boldsymbol{A} \boldsymbol{A}^{+}\right)^{\prime}=\boldsymbol{A} \boldsymbol{A}^{+}$,
(iv) $\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)=\boldsymbol{A}^{+} \boldsymbol{A}$.

Computation is done using spectral decomposition. At this moment, it is implemented for symmetric matrices only.

Usage

MatMPpinv(A)

Arguments

A
either a numeric vector in which case inverse of each element of A is returned or a squared matrix.

Value

Either a numeric vector or a matrix.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

References

Golub, G. H. and Van Loan, C. F. (1996, Sec. 5.5). Matrix Computations. Third Edition. Baltimore: The Johns Hopkins University Press.

Examples

```
set.seed(770328)
A <- rWISHART(1, 5, diag(4))
Ainv <- MatMPpinv(A)
### Check the conditions
prec <- 13
round(A - A %*% Ainv %*% A, prec)
round(Ainv - Ainv %*% A %*% Ainv, prec)
round(A %*% Ainv - t(A %*% Ainv), prec)
round(Ainv %*% A - t(Ainv %*% A), prec)
```

MatSqrt Square root of a matrix

Description

For a matrix \boldsymbol{A} its square root is such a matrix \boldsymbol{B} which satisfies $\boldsymbol{A}=\boldsymbol{B} \boldsymbol{B}$.
Computation is done using spectral decomposition. When calculating the square roots of eigenvalues, always a root with positive real part and a sign of the imaginary part the same as the sign of the imaginary eigenvalue part is taken.

Usage

MatSqrt(A)

Arguments

A
either a numeric vector in which case square roots of each element of A is returned or a squared matrix.

Value

Either a numeric vector or a matrix.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

Examples

```
MatSqrt(0:4)
MatSqrt((-4):0)
MatSqrt(c(-1, 1, -2, 2))
A <- (1:4) %*% t(1:4)
sqrtA <- MatSqrt(A)
sqrtA
round(sqrtA %*% sqrtA - A, 13)
### The following example crashes on r-devel Windows x64 x86_64,
### on r-patched Linux x86_64
### due to failure of LAPACK zgesv routine
###
### Commented on 16/01/2010
###
# B <- -A
# sqrtB <- MatSqrt(B)
# sqrtB
# round(Re(sqrtB %*% sqrtB - B), 13)
# round(Im(sqrtB %*% sqrtB - B), 13)
V <- eigen(A)$vectors
sqrtV <- MatSqrt(V)
sqrtV
round(sqrtV %*% sqrtV - V, 14)
Sigma <- matrix(c(1, 1, 1.5, 1, 4, 4.2, 1.5, 4.2, 9), nrow=3)
sqrtSigma <- MatSqrt(Sigma)
sqrtSigma
round(sqrtSigma %*% sqrtSigma - Sigma, 13)
D4 <- matrix(c(5, -4, 1, 0, 0,
    -4, 6, -4, 1, 0,
    1, -4, 6, -4, 1,
```

```
    0, 1, -4, 6, -4,
    0, 0, 1, -4, 5), nrow=5)
    sqrtD4 <- MatSqrt(D4)
    sqrtD4[abs(sqrtD4) < 1e-15] <- 0
    sqrtD4
    round(sqrtD4 %*% sqrtD4 - D4, 14)
    X <- matrix(c(7, 15, 10, 22), nrow=2)
    sqrtX <- MatSqrt(X)
    sqrtX %*% sqrtX - X
```

 MVN Multivariate normal distribution

Description

Density and random generation for the multivariate normal distribution with mean equal to mean, precision matrix equal to Q (or covariance matrix equal to Sigma).

Function r cMVN samples from the multivariate normal distribution with a canonical mean b, i.e., the mean is $\mu=Q^{-1} b$.

Usage

dMVN(x, mean=0, $\mathrm{Q}=1$, Sigma, log=FALSE)
$r \operatorname{MVN}(\mathrm{n}$, mean $=0, \mathrm{Q}=1$, Sigma)
$\operatorname{rcMVN}(\mathrm{n}, \mathrm{b}=0, \mathrm{Q}=1$, Sigma)

Arguments

mean vector of mean.
b vector of a canonical mean.
Q precision matrix of the multivariate normal distribution. Ignored if Sigma is given.
Sigma covariance matrix of the multivariate normal distribution. If Sigma is supplied, precision is computed from Σ as $Q=\Sigma^{-1}$.
n number of observations to be sampled.
$x \quad$ vector or matrix of the points where the density should be evaluated.
log logical; if TRUE, log-density is computed

Value

Some objects.

Value for dMVN

A vector with evaluated values of the (log-)density

Value for rMVN

A list with the components:
\mathbf{x} vector or matrix with sampled values
log.dens vector with the values of the log-density evaluated in the sampled values

Value for rcMVN

A list with the components:
\mathbf{x} vector or matrix with sampled values
mean vector or the mean of the normal distribution
log.dens vector with the values of the log-density evaluated in the sampled values

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Boca Raton: Chapman and Hall/CRC.

See Also

dnorm, Mvnorm.

Examples

```
set.seed(1977)
### Univariate normal distribution
### ============================
c(dMVN(0), dnorm(0))
c(dMVN(0, log=TRUE), dnorm(0, log=TRUE))
rbind(dMVN(c(-1, 0, 1)), dnorm(c(-1, 0, 1)))
rbind(dMVN(c(-1, 0, 1), log=TRUE), dnorm(c(-1, 0, 1), log=TRUE))
c(dMVN(1, mean=1.2, Q=0.5), dnorm(1, mean=1.2, sd=sqrt(2)))
c(dMVN(1, mean=1.2, Q=0.5, log=TRUE), dnorm(1, mean=1.2, sd=sqrt(2), log=TRUE))
rbind(dMVN(0:2, mean=1.2, Q=0.5), dnorm(0:2, mean=1.2, sd=sqrt(2)))
rbind(dMVN(0:2, mean=1.2, Q=0.5, log=TRUE), dnorm(0:2, mean=1.2, sd=sqrt(2), log=TRUE))
### Multivariate normal distribution
```

```
### ==================================
mu <- c(0, 6, 8)
L <- matrix(1:9, nrow=3)
L[upper.tri(L, diag=FALSE)] <- 0
Sigma <- L %*% t(L)
Q <- chol2inv(chol(Sigma))
b <- solve(Sigma, mu)
dMVN(mu, mean=mu, Q=Q)
dMVN(mu, mean=mu, Sigma=Sigma)
dMVN(mu, mean=mu, Q=Q, log=TRUE)
dMVN(mu, mean=mu, Sigma=Sigma, log=TRUE)
xx <- matrix(c(0,6,8, 1,5,7, -0.5,5.5,8.5, 0.5,6.5,7.5), ncol=3, byrow=TRUE)
dMVN(xx, mean=mu, Q=Q)
dMVN(xx, mean=mu, Sigma=Sigma)
dMVN(xx, mean=mu, Q=Q, log=TRUE)
dMVN(xx, mean=mu, Sigma=Sigma, log=TRUE)
zz <- rMVN(1000, mean=mu, Sigma=Sigma)
rbind(apply(zz$x, 2, mean), mu)
var(zz$x)
Sigma
cbind(dMVN(zz$x, mean=mu, Sigma=Sigma, log=TRUE), zz$log.dens)[1:10,]
zz <- rcMVN(1000, b=b, Sigma=Sigma)
rbind(apply(zz$x, 2, mean), mu)
var(zz$x)
Sigma
cbind(dMVN(zz$x, mean=mu, Sigma=Sigma, log=TRUE), zz$log.dens)[1:10,]
zz <- rMVN(1000, mean=rep(0, 3), Sigma=Sigma)
rbind(apply(zz$x, 2, mean), rep(0, 3))
var(zz$x)
Sigma
cbind(dMVN(zz$x, mean=rep(0, 3), Sigma=Sigma, log=TRUE), zz$log.dens)[1:10,]
### The same using the package mvtnorm
### ===================================
# require(mvtnorm)
# c(dMVN(mu, mean=mu, Sigma=Sigma), dmvnorm(mu, mean=mu, sigma=Sigma))
# c(dMVN(mu, mean=mu, Sigma=Sigma, log=TRUE), dmvnorm(mu, mean=mu, sigma=Sigma, log=TRUE))
#
# rbind(dMVN(xx, mean=mu, Sigma=Sigma), dmvnorm(xx, mean=mu, sigma=Sigma))
# rbind(dMVN(xx, mean=mu, Sigma=Sigma, log=TRUE), dmvnorm(xx, mean=mu, sigma=Sigma, log=TRUE))
```


Description

Density and random generation for the mixture of the p-variate normal distributions with means given by mean, precision matrix given by Q (or covariance matrices given bySigma).

Usage

dMVNmixture(x, weight, mean, Q, Sigma, log=FALSE)
dMVNmixture2(x, weight, mean, Q, Sigma, log=FALSE)
rMVNmixture(n, weight, mean, Q , Sigma)
rMVNmixture2(n, weight, mean, Q, Sigma)

Arguments

weight vector of length K with the mixture weights or values which are proportional to the weights.
mean vector or matrix of mixture means.
For $p=1$ this should be a vector of length K, for $p>1$ this should be a $K \times p$ matrix with mixture means in rows.
Q precision matrices of the multivariate normal distribution. Ignored if Sigma is given.
For $p=1$ this should be a vector of length K, for $p>1$ this should be a list of length K with the mixture precision matrices as components of the list.
Sigma covariance matrix of the multivariate normal distribution. If Sigma is supplied, precisions are computed from Σ as $Q=\Sigma^{-1}$.
For $p=1$ this should be a vector of length K, for $p>1$ this should be a list of length K with the mixture covariance matrices as components of the list.
$\mathrm{n} \quad$ number of observations to be sampled.
$x \quad$ vector or matrix of the points where the density should be evaluated.
log logical; if TRUE, log-density is computed

Details

Functions dMVNmixture and dMVNmixture2 differ only internally in the way they compute the mixture density. In dMVNmixture, only multivariate normal densities are evaluated in compiled C++ code and mixing is done directly in R. In dMVNmixture2, everything is evaluated in compiled C++ code. Normally, both dMVNmixture and dMVNmixture2 should return the same results.
Similarly for rMVNmixture and rMVNmixture2. Another difference is that rMVNmixture returns only random generated points and rMVNmixture2 also values of the density evaluated in the generated points.

Value

Some objects.

Value for dMVNmixture

A vector with evaluated values of the (log-)density.

Value for dMVNmixture2

A vector with evaluated values of the (log-)density.

Value for rMVNmixture

A vector (for $n=1$ or for univariate mixture) or matrix with sampled values (in rows of the matrix).

Value for rMVNmixture2

A list with components named x which is a vector (for $\mathrm{n}=1$ or for univariate mixture) or matrix with sampled values (in rows of the matrix) and dens which are the values of the density evaluated in x .

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

dnorm, MVN, Mvnorm.

Examples

```
set.seed(1977)
##### Univariate normal mixture
##### =========================
mu <- c(-1, 1)
Sigma <- c(0.25^2, 0.4^2)
Q <- 1/Sigma
w <- c(0.3, 0.7)
xx <- seq(-2, 2.5, length=100)
yyA <- dMVNmixture(xx, weight=w, mean=mu, Sigma=Sigma)
yyB <- dMVNmixture(xx, weight=w, mean=mu, Q=Q)
yyC <- dMVNmixture2(xx, weight=w, mean=mu, Sigma=Sigma)
yyD <- dMVNmixture2(xx, weight=w, mean=mu, Q=Q)
xxSample <- rMVNmixture(1000, weight=w, mean=mu, Sigma=Sigma)
xxSample2 <- rMVNmixture2(1000, weight=w, mean=mu, Sigma=Sigma)
sum(abs(xxSample2$dens - dMVNmixture(xxSample2$x, weight=w, mean=mu, Sigma=Sigma)) > 1e-15)
xxSample2 <- xxSample2$x
par(mfrow=c(2, 2), bty="n")
plot(xx, yyA, type="l", col="red", xlab="x", ylab="f(x)")
points(xx, yyB, col="darkblue")
hist(xxSample, col="lightblue", prob=TRUE, xlab="x", xlim=range(xx), ylim=c(0, max(yyA)),
```

```
    main="Sampled values")
lines(xx, yyA, col="red")
plot(xx, yyC, type="l", col="red", xlab="x", ylab="f(x)")
points(xx, yyD, col="darkblue")
hist(xxSample2, col="sandybrown", prob=TRUE, xlab="x", xlim=range(xx), ylim=c(0, max(yyA)),
    main="Sampled values")
lines(xx, yyC, col="red")
```

```
##### Bivariate normal mixture
```


Bivariate normal mixture

=======================

=======================

Choice 1

Choice 1

sd11 <- sd12 <- 1.1
sd11 <- sd12 <- 1.1
sd21 <- 0.5
sd21 <- 0.5
sd22<- 1.5
sd22<- 1.5
rho2 <- 0.7
rho2 <- 0.7
Xlim <- c(-3, 4)
Xlim <- c(-3, 4)
Ylim <- c(-6, 4)
Ylim <- c(-6, 4)

Choice 2

Choice 2

sd11 <- sd12 <- 0.3
sd11 <- sd12 <- 0.3
sd21 <- 0.5
sd21 <- 0.5
sd22 <- 0.3
sd22 <- 0.3
rho2 <- 0.8
rho2 <- 0.8
Xlim <- c(-3, 2.5)
Xlim <- c(-3, 2.5)
Ylim <- c(-2.5, 2.5)
Ylim <- c(-2.5, 2.5)
mu <- matrix(c(1,1, -1,-1), nrow=2, byrow=TRUE)
mu <- matrix(c(1,1, -1,-1), nrow=2, byrow=TRUE)
Sigma <- list(diag(c(sd11^2, sd12^2)),
Sigma <- list(diag(c(sd11^2, sd12^2)),
matrix(c(sd21^2, rho2*sd21*sd22, rho2*sd21*sd22, sd22^2), nrow=2))
matrix(c(sd21^2, rho2*sd21*sd22, rho2*sd21*sd22, sd22^2), nrow=2))
Q <- list(chol2inv(chol(Sigma[[1]])), chol2inv(chol(Sigma[[2]])))
Q <- list(chol2inv(chol(Sigma[[1]])), chol2inv(chol(Sigma[[2]])))
w <- c(0.3, 0.7)
w <- c(0.3, 0.7)
xx1 <- seq(mu[2,1]-3*sd21, mu[1,1]+3*sd11, length=100)
xx1 <- seq(mu[2,1]-3*sd21, mu[1,1]+3*sd11, length=100)
xx2 <- seq(mu[2,2]-3*sd22, mu[1,2]+3*sd12, length=90)
xx2 <- seq(mu[2,2]-3*sd22, mu[1,2]+3*sd12, length=90)
XX <- cbind(rep(xx1, length(xx2)), rep(xx2, each=length(xx1)))
XX <- cbind(rep(xx1, length(xx2)), rep(xx2, each=length(xx1)))
yyA <- matrix(dMVNmixture(XX, weight=w, mean=mu, Sigma=Sigma), nrow=length(xx1), ncol=length(xx2))
yyA <- matrix(dMVNmixture(XX, weight=w, mean=mu, Sigma=Sigma), nrow=length(xx1), ncol=length(xx2))
yyB <- matrix(dMVNmixture(XX, weight=w, mean=mu, Q=Q), nrow=length(xx1), ncol=length(xx2))
yyB <- matrix(dMVNmixture(XX, weight=w, mean=mu, Q=Q), nrow=length(xx1), ncol=length(xx2))
yyC <- matrix(dMVNmixture2(XX, weight=w, mean=mu, Sigma=Sigma), nrow=length(xx1), ncol=length(xx2))
yyC <- matrix(dMVNmixture2(XX, weight=w, mean=mu, Sigma=Sigma), nrow=length(xx1), ncol=length(xx2))
yyD <- matrix(dMVNmixture2(XX, weight=w, mean=mu, Q=Q), nrow=length(xx1), ncol=length(xx2))
yyD <- matrix(dMVNmixture2(XX, weight=w, mean=mu, Q=Q), nrow=length(xx1), ncol=length(xx2))
\#xxSample <- rMVNmixture(1000, weight=w, mean=mu, Sigma=Sigma)
\#xxSample <- rMVNmixture(1000, weight=w, mean=mu, Sigma=Sigma)

Starting from version 3.6, the above command led to SegFault

Starting from version 3.6, the above command led to SegFault

on CRAN r-patched-solaris-sparc check.

on CRAN r-patched-solaris-sparc check.

Commented here on 20140806 (version 3.6-1).

Commented here on 20140806 (version 3.6-1).

xxSample2 <- rMVNmixture2(1000, weight=w, mean=mu, Sigma=Sigma)
xxSample2 <- rMVNmixture2(1000, weight=w, mean=mu, Sigma=Sigma)
sum(abs(xxSample2$dens - dMVNmixture(xxSample2$x, weight=w, mean=mu, Sigma=Sigma)) > 1e-15)
sum(abs(xxSample2$dens - dMVNmixture(xxSample2$x, weight=w, mean=mu, Sigma=Sigma)) > 1e-15)
xxSample2 <- xxSample2$x
xxSample2 <- xxSample2$x
par(mfrow=c(1, 2), bty="n")
par(mfrow=c(1, 2), bty="n")
plot(xxSample, col="darkblue", xlab="x1", ylab="x2", xlim=Xlim, ylim=Ylim)
plot(xxSample, col="darkblue", xlab="x1", ylab="x2", xlim=Xlim, ylim=Ylim)
contour(xx1, xx2, yyA, col="red", add=TRUE)

```
contour(xx1, xx2, yyA, col="red", add=TRUE)
```

```
plot(xxSample2, col="darkblue", xlab="x1", ylab="x2", xlim=Xlim, ylim=Ylim)
contour(xx1, xx2, yyC, col="red", add=TRUE)
par(mfrow=c(2, 2), bty="n")
contour(xx1, xx2, yyA, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyA, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)")
contour(xx1, xx2, yyB, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyB, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)", phi=30, theta=30)
par(mfrow=c(2, 2), bty="n")
contour(xx1, xx2, yyC, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyC, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)")
contour(xx1, xx2, yyD, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyD, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)", phi=30, theta=30)
```


Description

Density and random generation for the multivariate Student t distribution with location equal to mu , precision matrix equal to Q (or scale matrix equal to Sigma).

Mentioned functions implement the multivariate Student t distribution with a density given by

$$
p(\boldsymbol{z})=\frac{\Gamma\left(\frac{\nu+p}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \nu^{\frac{p}{2}} \pi^{\frac{p}{2}}}|\Sigma|^{-\frac{1}{2}}\left\{1+\frac{(\boldsymbol{z}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\boldsymbol{z}-\boldsymbol{\mu})}{\nu}\right\}^{-\frac{\nu+p}{2}}
$$

where p is the dimension, $\nu>0$ degrees of freedom, $\boldsymbol{\mu}$ the location parameter and Σ the scale matrix.

For $\nu>1$, the mean in equal to $\boldsymbol{\mu}$, for $\nu>2$, the covariance matrix is equal to $\frac{\nu}{\nu-2} \Sigma$.

Usage

dMVT(x, df, mu=0, Q=1, Sigma, log=FALSE)
rMVT(n, df, mu=0, $\mathrm{Q}=1$, Sigma)

Arguments

$\mathrm{df} \quad$ degrees of freedom of the multivariate Student t distribution.
mu vector of the location parameter.
Q precision (inverted scale) matrix of the multivariate Student t distribution. Ignored if Sigma is given.

Sigma	scale matrix of the multivariate Student t distribution. If Sigma is supplied, precision is computed from Σ as $Q=\Sigma^{-1}$.
n	number of observations to be sampled.
x	vector or matrix of the points where the density should be evaluated.
log	logical; if TRUE, log-density is computed

Value

Some objects.

Value for dMVT

A vector with evaluated values of the (log-)density

Value for rMVT

A list with the components:
\mathbf{x} vector or matrix with sampled values
log.dens vector with the values of the log-density evaluated in the sampled values

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

dt, Mvt.

Examples

```
set.seed(1977)
### Univariate central t distribution
z <- rMVT(10, df=1, mu=0, Q=1)
ldz <- dMVT(z$x, df=1, log=TRUE)
boxplot(as.numeric(z$x))
cbind(z$log.dens, ldz, dt(as.numeric(z$x), df=1, log=TRUE))
### Multivariate t distribution
mu <- c(1, 2, 3)
Sigma <- matrix(c(1, 1, -1.5, 1, 4, 1.8, -1.5, 1.8, 9), nrow=3)
Q <- chol2inv(chol(Sigma))
nu <- 3
z <- rMVT(1000, df=nu, mu=mu, Sigma=Sigma)
apply(z$x, 2, mean) ## should be close to mu
((nu - 2) / nu) * var(z$x) ## should be close to Sigma
dz <- dMVT(z$x, df=nu, mu=mu, Sigma=Sigma)
ldz <- dMVT(z$x, df=nu, mu=mu, Sigma=Sigma, log=TRUE)
```

```
### Compare with mvtnorm package
#require(mvtnorm)
#ldz2 <- dmvt(z$x, sigma=Sigma, df=nu, delta=mu, log=TRUE)
#plot(z$log.dens, ldz2, pch=21, col="red3", bg="orange", xlab="mixAK", ylab="mvtnorm")
#plot(ldz, ldz2, pch=21, col="red3", bg="orange", xlab="mixAK", ylab="mvtnorm")
```

NMixChainComp Chains for mixture parameters

Description

This function returns chains for parameters derived from the (re-labeled) mixture weights, means, covariance matrices.

First, mixture means and shifted-scaled to the original (data) scale, mixture covariance matrices are scaled to the original (data) scale (see argument scale in NMixMCMC function or argument scale.b in GLMM_MCMC). Possible derived parameters are standard deviations and correlation coefficients.

Usage

```
NMixChainComp(x, relabel = TRUE, param)
    ## Default S3 method:
    NMixChainComp(x, relabel = TRUE, param)
    ## S3 method for class 'NMixMCMC'
    NMixChainComp(x, relabel = TRUE,
        param = c("w", "mu", "var", "sd", "cor", "Sigma", "Q", "Li"))
    ## S3 method for class 'GLMM_MCMC'
    NMixChainComp(x, relabel = TRUE,
        param = c("w_b", "mu_b", "var_b", "sd_b", "cor_b", "Sigma_b", "Q_b", "Li_b"))
```


Arguments

x
relabel
param
an object of class NMixMCMC or GLMM_MCMC.
a logical argument indicating whether the chains are to be returned with components being re-labeled (see NMixRelabel) or whether the chains are to be returned as originally sampled.
a character string indicating which sample is to be returned:
\mathbf{w}, \mathbf{w} _b mixture weights;
$\mathbf{m u}, \mathbf{m u}$ _b mixture means;
var, var_b mixture variances;
sd, sd_b mixture standard deviations;
cor, cor_b correlations derived from the mixture covariance matrices;
Sigma, Sigma_b mixture covariance matrices (their lower triangles);

Q, Q_b mixture inverted covariance matrices (their lower triangles);
$\mathbf{L i}, \mathbf{L i}$ _b Cholesky factors (their lower triangles) of the mixture inverted covariance matrices.

Value

A matrix with sampled values in rows, parameters in columns.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixMCMC, GLMM_MCMC.

NMixChainsDerived Create MCMC chains derived from previously sampled values

Description

Currently, this function creates chains for marginal means of exp(data) from previously sampled values (see NMixMCMC). This is useful in survival context when a density of $Y=\log (T)$ is modelled using the function NMixMCMC and we are interested in inference on $\mathrm{E} T=\mathrm{E} \exp (Y)$.

Usage

NMixChainsDerived(object)

Arguments

object an object of class NMixMCMC or NMixMCMClist

Value

An object of the same class as argument object. When object was of class NMixMCMC, the resulting object contains additionally the following components:
chains.derived a data.frame with columns labeled expy.Mean. 1, ..., expy.Mean.p containing the sampled values of $\operatorname{Eexp}\left(Y_{1}\right), \ldots, \mathrm{E} \exp \left(Y_{p}\right)$.
summ. expy.Mean posterior summary statistics for $\operatorname{Eexp}\left(Y_{1}\right), \ldots, \mathrm{E} \exp \left(Y_{p}\right)$.
When object was of the class NMixMCMClist then each of its components (chains) is augmented by new components chains.derived and summ. expy.Mean.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

NMixMCMC.

Description

TO BE ADDED.

This function only works for models with a fixed number of mixture components.

```
Usage
    NMixCluster(object, ...)
    ## Default S3 method:
    NMixCluster(object, ...)
    ## S3 method for class 'GLMM_MCMC'
    NMixCluster(object,
        prob = c("poster.comp.prob", "quant.comp.prob", "poster.comp.prob_b",
                            "quant.comp.prob_b", "poster.comp.prob_u"),
        pquant = 0.5, HPD = FALSE, pHPD = 0.95, pthresh = -1, unclass.na = FALSE, ...)
```


Arguments

object an object of apropriate class.
prob character string which identifies estimates of the component probabilities to be used for clustering.
pquant when prob is either "quant.comp.prob" or "quant.comp.prob_b", argument pquant is the probability of the quantile of the component probabilities to be used for clustering.
HPD logical value. If TRUE then only those subjects are classified for which the lower limit of the pHPD* 100% HPD credible interval of the component probability exceeds the value of ptrash.
PHPD credible level of the HPD credible interval, see argument HPD.
pthresh an optional threshold for the estimated component probability (when HPD is FALSE) or for the lower limit of the HPD credible interval (when HPD is TRUE) to classify a subject. No effect when pthresh is negative.
unclass.na logical value taken into account when pthresh is positive. If unclass.na is TRUE, unclassified subjects get classification NA. If unclass.na is FALSE, unclassified subjects create a separate (last) group.
... optional additional arguments.

Value

A data.frame with three (when HPD is FALSE) or five (when HPD is TRUE) columns.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

NMixMCMC, GLMM_MCMC.

Examples

\#\# TO BE ADDED.

```
NMixEM
```

EM algorithm for a homoscedastic normal mixture

Description

This function computes ML estimates of the parameters of the p-dimensional K-component normal mixture using the EM algorithm

Usage

NMixEM(y, K, weight, mean, Sigma, toler=1e-5, maxiter=500)
\#\# S3 method for class 'NMixEM'
print(x, ...)

Arguments

y vector (if $p=1$) matrix or data frame (if $p>1$) with data. Rows correspond to observations, columns correspond to margins.

K
weight a numeric vector with initial mixture weights.
If not given, initial weights are all equal to $1 / K$.
mean vector or matrix of initial mixture means.
For $p=1$ this should be a vector of length K, for $p>1$ this should be a $K \times p$ matrix with mixture means in rows.
Sigma number or $p \times p$ matrix giving the initial variance/covariance matrix.
toler tolerance to determine convergence.
maxiter maximum number of iterations of the EM algorithm.
x
... additional arguments passed to the default print method.

Value

An object of class NMixEM which has the following components:

K	number of mixture components
weight	estimated mixture weights
mean	estimated mixture means
Sigma	estimated covariance matrix
loglik	log-likelihood value at fitted values
aic	Akaike information criterion $(-2 \hat{\ell}+2 \nu)$, where $\hat{\ell}$ stands for the log-likelihood value at fitted values and ν for the number of free model parameters
bic	Bayesian (Schwarz) information criterion $(-2 \hat{\ell}+\log (n) \nu)$, where $\hat{\ell}$ stands for the log-likelihood value at fitted values and ν for the number of free model parameters, and n for the sample size
iter	number of iterations of the EM algorithm used to get the solution
iter.loglik	values of the log-likelihood at iterations of the EM algorithm
iter.Qfun	values of the EM objective function at iterations of the EM algorithm
dim	dimension p
nobs	number of observations n

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.

Examples

```
## Not run:
## Estimates for 3-component mixture in Anderson's iris data
## =========================================================
data(iris, package="datasets")
summary(iris)
VARS <- names(iris)[1:4]
fit <- NMixEM(iris[, VARS], K = 3)
print(fit)
apply(subset(iris, Species == "versicolor")[, VARS], 2, mean)
apply(subset(iris, Species == "setosa")[, VARS], 2, mean)
apply(subset(iris, Species == "virginica")[, VARS], 2, mean)
## Estimates of 6-component mixture in Galaxy data
## ===============================================
data(Galaxy, package="mixAK")
```

```
summary(Galaxy)
fit2 <- NMixEM(Galaxy, K = 6)
y <- seq(5, 40, length=300)
fy <- dMVNmixture(y, weight=fit2$weight, mean=fit2$mean,
    Sigma=rep(fit2$Sigma, fit2$K))
hist(Galaxy, prob=TRUE, breaks=seq(5, 40, by=0.5),
    main="", xlab="Velocity (km/sec)", col="sandybrown")
lines(y, fy, col="darkblue", lwd=2)
## End(Not run)
```

NMixMCMC MCMC estimation of (multivariate) normal mixtures with possibly
censored data.

Description

This function runs MCMC for a model in which unknown density is specified as a normal mixture with either known or unknown number of components. With a prespecified number of components, MCMC is implemented through Gibbs sampling (see Diebolt and Robert, 1994) and dimension of the data can be arbitrary. With unknown number of components, currently only univariate case is implemented using the reversible jump MCMC (Richardson and Green, 1997).
Further, the data are allowed to be censored in which case additional Gibbs step is used within the MCMC algorithm

Usage

```
NMixMCMC(y0, y1, censor, x_w, scale, prior,
            init, init2, RJMCMC,
            nMCMC = c(burn = 10, keep = 10, thin = 1, info = 10),
            PED, keep.chains = TRUE, onlyInit = FALSE, dens.zero = 1e-300,
            parallel = FALSE, cltype)
## S3 method for class 'NMixMCMC'
print(x, dic, ...)
## S3 method for class 'NMixMCMClist'
print(x, ped, dic, ...)
```


Arguments

y0 numeric vector of length n or $n \times p$ matrix with observed data. It contains exactly observed, right-censored, left-censored data and lower limits for intervalcensored data.
y1 numeric vector of length n or $n \times p$ matrix with upper limits for intervalcensored data. Elements corresponding to exactly observed, right-censored or left-censored data are ignored and can be filled arbitrarily (by NA's) as well.
It does not have to be supplied if there are no interval-censored data.

censor	numeric vector of length n or $n \times p$ matrix with censoring indicators. The following values indicate:
	0 right-censored observation, 1 exactly observed value, 2 left-censored observation, 3 interval-censored observation.
x_w	If it is not supplied then it is assumed that all values are exactly observed. optional vector providing a categorical covariate that may influence the mixture weights. Internally, it is converted into a factor.
	Added in version 4.0 (03/2015).
scale	a list specifying how to scale the data before running MCMC. It should have two components:
	shift a vector of length 1 or p specifying shift vector \boldsymbol{m}, scale a vector of length 1 or p specifying diagonal of the scaling matrix \boldsymbol{S}.
	If there is no censoring, and argument scale is missing then the data are scaled to have zero mean and unit variances, i.e., scale (y0) is used for MCMC. In the case there is censoring and scale is missing, scale\$shift is taken to be a sample mean of init\$y and scale\$scale are sample standard deviations of columns of init\$y.
	If you do not wish to scale the data before running MCMC, specify scale=list (shift=0, scale=1).
prior	a list with the parameters of the prior distribution. It should have the following components (for some of them, the program can assign default values and the user does not have to specify them if he/she wishes to use the defaults):
	priorK a character string which specifies the type of the prior for K (the number of mixture components). It should have one of the following values:
	"fixed"
	Number of mixture components is assumed to be fixed to $K_{\max }$. This is a default value.

"uniform"
A priori $K \sim \operatorname{Unif}\left\{1, \ldots, K_{\max }\right\}$.
"tpoisson"
A priori $K \sim$ truncated-Poiss $\left(\lambda, K_{\max }\right)$.
priormuQ a character string which specifies the type of the prior for $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K_{\max }}$ (mixture means) and $\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K_{\max }}$ (inverted mixture covariance matrices). It should have one of the following values:
"independentC"
\equiv independent conjugate prior (this is a default value). That is, a priori

$$
\left(\boldsymbol{\mu}_{j}, \boldsymbol{Q}_{j}\right) \sim \mathrm{N}\left(\boldsymbol{\xi}_{j}, \boldsymbol{D}_{j}\right) \times \operatorname{Wishart}(\zeta, \boldsymbol{\Xi})
$$

independently for $j=1, \ldots, K$, where normal means $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{K}$, normal variances $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{K}$, and Wishart degrees of freedom ζ are specified further as $x i, D$, zeta components of the list prior.
"naturalC"
\equiv natural conjugate prior. That is, a priori

$$
\left(\boldsymbol{\mu}_{j}, \boldsymbol{Q}_{j}\right) \sim \mathrm{N}\left(\boldsymbol{\xi}_{j}, c_{j}^{-1} \boldsymbol{Q}_{j}^{-1}\right) \times \operatorname{Wishart}(\zeta, \boldsymbol{\Xi})
$$

independently for $j=1, \ldots, K$, where normal means $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{K}$, precisions c_{1}, \ldots, c_{K}, and Wishart degrees of freedom ζ are specified further as xi, ce, zeta components of the list prior.

For both, independent conjugate and natural conjugate prior, the Wishart scale matrix $\boldsymbol{\Xi}$ is assumed to be diagonal with $\gamma_{1}, \ldots, \gamma_{p}$ on a diagonal. For $\gamma_{j}^{-1}(j=1, \ldots, K)$ additional gamma hyperprior $\mathrm{G}\left(g_{j}, h_{j}\right)$ is assumed. Values of g_{1}, \ldots, g_{p} and h_{1}, \ldots, h_{p} are further specified as g and h components of the prior list.
Kmax maximal number of mixture components $K_{\max }$. It must always be specified by the user.
lambda parameter λ for the truncated Poisson prior on K. It must be positive and must always be specified if priork is "tpoisson".
delta parameter δ for the Dirichlet prior on the mixture weights w_{1}, \ldots, w_{K}. It must be positive. Its default value is 1.
$\mathbf{x i}$ a numeric value, vector or matrix which specifies $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{K_{\max }}$ (prior means for the mixture means $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K_{\max }}$). Default value is a matrix $K_{\max } \times p$ with midpoints of columns of init\$y in rows which follows Richardson and Green (1997).

If $p=1$ and $\mathrm{xi}=\xi$ is a single value then $\xi_{1}=\cdots=\xi_{K_{\max }}=\xi$.
If $p=1$ and $\mathrm{xi}=\boldsymbol{\xi}$ is a vector of length $K_{\max }$ then the j-th element of xi gives $\xi_{j}\left(j=1, \ldots, K_{\max }\right)$.

If $p>1$ and $\mathbf{x i}=\boldsymbol{\xi}$ is a vector of length p then $\boldsymbol{\xi}_{1}=\cdots=\boldsymbol{\xi}_{K_{\max }}=\boldsymbol{\xi}$.
If $p>1$ and xi is a $K_{\max } \times p$ matrix then the j-th row of xi gives $\boldsymbol{x} \boldsymbol{i}_{j}$ $\left(j=1, \ldots, K_{\max }\right)$.
ce a numeric value or vector which specifies prior precision parameters $c_{1}, \ldots, c_{K_{\max }}$ for the mixture means $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K_{\max }}$ when priormuQ is "naturalC". Its default value is a vector of ones which follows Cappe, Robert and Ryden (2003).

If $\mathrm{ce}=c$ is a single value then $c_{1}=\cdots=c_{K_{\max }}=c$.
If ce $=\boldsymbol{c}$ is a vector of length $K_{\max }$ then the j-th element of ce gives c_{j} $\left(j=1, \ldots, K_{\max }\right)$.
D a numeric vector or matrix which specifies $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{K_{\max }}$ (prior variances or covariance matrices of the mixture means $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K_{\max }}$ when priormuQ is "independentC".) Its default value is a diagonal matrix with squared ranges of each column of init\$y on a diagonal.

If $p=1$ and $\mathrm{D}=d$ is a single value then $d_{1}=\cdots=d_{K_{\max }}=d$.
If $p=1$ and $\mathrm{D}=\boldsymbol{d}$ is a vector of length $K_{\max }$ then the j-th element of D gives $d_{j}\left(j=1, \ldots, K_{\max }\right)$.

If $p>1$ and $\mathrm{D}=\boldsymbol{D}$ is a $p \times p$ matrix then $\boldsymbol{D}_{1}=\cdots=\boldsymbol{D}_{K_{\max }}=\boldsymbol{D}$.
If $p>1$ and D is a $\left(K_{\max } \cdot p\right) \times p$ matrix then the the first p rows of D give \boldsymbol{D}_{1}, rows $p+1, \ldots, 2 p$ of D give \boldsymbol{D}_{2} etc.
zeta degrees of freedom ζ for the Wishart prior on the inverted mixture variances $\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K_{\max } .}$. It must be higher then $p-1$. Its default value is $p+1$.
\mathbf{g} a value or a vector of length p with the shape parameters g_{1}, \ldots, g_{p} for the Gamma hyperpriors on $\gamma_{1}, \ldots, \gamma_{p}$. It must be positive. Its default value is a vector $(0.2, \ldots, 0.2)^{\prime}$.
h a value or a vector of length p with the rate parameters h_{1}, \ldots, h_{p} for the Gamma hyperpriors on $\gamma_{1}, \ldots, \gamma_{p}$. It must be positive. Its default value is a vector containing $10 / R_{l}^{2}$, where R_{l} is a range of the l-th column of init\$y.
init2 a list with the initial values for the second chain needed to estimate the penalized expected deviance of Plummer (2008). The list init2 has the same structure as the list init. All initials in init2 can be determined by the program (differently than the values in init) if they are not specified.
Ignored when PED is FALSE.
RJMCMC a list with the parameters needed to run reversible jump MCMC for mixtures with varying number of components. It does not have to be specified if the number of components is fixed. Most of the parameters can be determined by the program if they are not specified. The list may have the following components:
Paction probabilities (or proportionalit constants) which are used to choose an action of the sampler within each iteration of MCMC to update the mixture related parameters. Let Paction $=\left(p_{1}, p_{2}, p_{3}\right)^{\prime}$. Then with probability p_{1} only steps assuming fixed k (number of mixture components) are
performed, with probability p_{2} split-combine move is proposed and with probability p_{3} birth-death move is proposed.
If not specified (default) then in each iteration of MCMC, all sampler actions are performed.
Psplit a numeric vector of length prior\$Kmax giving conditional probabilities of the split move given k as opposite to the combine move.
Default value is $(1,0.5, \ldots, 0.5,0)^{\prime}$.
Pbirth a numeric vector of length prior\$Kmax giving conditional probabilities of the birth move given k as opposite to the death move.
Default value is $(1,0.5, \ldots, 0.5,0)^{\prime}$.
par.u1 a two component vector with parameters of the beta distribution used to generate an auxiliary value u_{1}.
A default value is par. $\mathrm{u} 1=(2,2)^{\prime}$, i.e., $u_{1} \sim \operatorname{Beta}(2,2)$.
par.u2 a two component vector (for $p=1$) or a matrix (for $p>1$) with two columns with parameters of the distributions of the auxiliary values $u_{2,1}, \ldots, u_{2, p}$ in rows.
A default value leads to $u_{2, d} \sim \operatorname{Unif}(-1,1)(d=1, \ldots, p-1), u_{2, p} \sim$ $\operatorname{Beta}(1,2 p)$.
par.u3 a two component vector (for $p=1$) or a matrix (for $p>1$) with two columns with parameters of the distributions of the auxiliary values $u_{3,1}, \ldots, u_{3, p}$ in rows.
A default value leads to $u_{3, d} \sim \operatorname{Unif}(0,1)(d=1, \ldots, p-1), u_{3, p} \sim$ $\operatorname{Beta}(1, p)$,
numeric vector of length 4 giving parameters of the MCMC simulation. Its components may be named (ordering is then unimportant) as:
burn length of the burn-in (after discarding the thinned values), can be equal to zero as well.
keep length of the kept chains (after discarding the thinned values), must be positive.
thin thinning interval, must be positive.
info interval in which the progress information is printed on the screen.
In total $\left(M_{\text {burn }}+M_{\text {keep }}\right) \cdot M_{\text {thin }}$ MCMC scans are performed.
PED a logical value which indicates whether the penalized expected deviance (see Plummer, 2008 for more details) is to be computed (which requires two parallel chains). If not specified, PED is set to TRUE for models with fixed number of components and is set to FALSE for models with numbers of components estimated using RJ-MCMC.
keep.chains logical. If FALSE, only summary statistics are returned in the resulting object. This might be useful in the model searching step to save some memory.
onlyInit logical. If TRUE then the function only determines parameters of the prior distribution, initial values, values of scale and parameters for the reversible jump MCMC.
dens.zero a small value used instead of zero when computing deviance related quantities.

dic	logical which indicates whether DIC should be printed. By default, DIC is printed only for models with a fixed number of mixture components.
ped	logical which indicates whether PED should be printed. By default, PED is printed only for models with a fixed number of mixture components. a logical value which indicates whether parallel computation (based on a pack- age parallel) should be used when running two chains for the purpose of PED calculation
cltype	optional argument applicable if parallel is TRUE. If cltype is given, it is passed as the type argument into the call to makeCluster.
\ldots	additional arguments passed to the default print method.

Details

See accompanying paper (Komárek, 2009). In the rest of the helpfile, the same notation is used as in the paper, namely, n denotes the number of observations, p is dimension of the data, K is the number of mixture components, w_{1}, \ldots, w_{K} are mixture weights, $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ are mixture means, $\boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{K}$ are mixture variance-covariance matrices, $\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K}$ are their inverses.
For the data $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$ the following $g_{y}(\boldsymbol{y})$ density is assumed

$$
g_{y}(\boldsymbol{y})=|\boldsymbol{S}|^{-1} \sum_{j=1}^{K} w_{j} \varphi\left(\boldsymbol{S}^{-1}\left(\boldsymbol{y}-\boldsymbol{m} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)\right)
$$

where $\varphi(\cdot \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ denotes a density of the (multivariate) normal distribution with mean $\boldsymbol{\mu}$ and a~variance-covariance matrix $\boldsymbol{\Sigma}$. Finally, \boldsymbol{S} is a pre-specified diagonal scale matrix and \boldsymbol{m} is a prespecified shift vector. Sometimes, by setting \boldsymbol{m} to sample means of components of \boldsymbol{y} and diagonal of \boldsymbol{S} to sample standard deviations of \boldsymbol{y} (considerable) improvement of the MCMC algorithm is achieved.

Value

An object of class NMixMCMC or class NMixMCMClist. Object of class NMixMCMC is returned if PED is FALSE. Object of class NMixMCMClist is returned if PED is TRUE.

Object of class NMixMCMC

Objects of class NMixMCMC have the following components:
iter index of the last iteration performed.
nMCMC used value of the argument nMCMC .
dim dimension p of the distribution of data
$\mathbf{n x} \mathbf{w}$ number of levels of a factor covariate on mixture weights (equal to 1 if there were no covariates on mixture weights)
prior a list containing the used value of the argument prior.
init a list containing the used initial values for the MCMC (the first iteration of the burn-in).
state.first a list having the components labeled $\mathrm{y}, \mathrm{K}, \mathrm{w}, \mathrm{mu}, \mathrm{Li}, \mathrm{Q}, \mathrm{Sigma}$, gammaInv, r containing the values of generic parameters at the first stored (after burn-in) iteration of the MCMC.
state.last a list having the components labeled $\mathrm{y}, \mathrm{K}, \mathrm{w}, \mathrm{mu}, \mathrm{Li}, \mathrm{Q}, \mathrm{Sigma}$, gammaInv, r containing the last sampled values of generic parameters.
RJMCMC a list containing the used value of the argument RJMCMC.
scale a list containing the used value of the argument scale.
freqK frequency table of K based on the sampled chain.
propK posterior distribution of K based on the sampled chain.
DIC a data.frame having columns labeled DIC, pD, D.bar, D.in.bar containing values used to compute deviance information criterion (DIC). Currently only $D I C_{3}$ of Celeux et al. (2006) is implemented.
moves a data.frame which summarizes the acceptance probabilities of different move types of the sampler.

K numeric vector with a chain for K (number of mixture components).
\mathbf{w} numeric vector or matrix with a chain for w (mixture weights). It is a matrix with K columns when K is fixed. Otherwise, it is a vector with weights put sequentially after each other.
mu numeric vector or matrix with a chain for μ (mixture means). It is a matrix with $p \cdot K$ columns when K is fixed. Otherwise, it is a vector with means put sequentially after each other.
Q numeric vector or matrix with a chain for lower triangles of \boldsymbol{Q} (mixture inverse variances). It is a matrix with $\frac{p(p+1)}{2} \cdot K$ columns when K is fixed. Otherwise, it is a vector with lower triangles of Q matrices put sequentially after each other.
Sigma numeric vector or matrix with a chain for lower triangles of Σ (mixture variances). It is a matrix with $\frac{p(p+1)}{2} \cdot K$ columns when K is fixed. Otherwise, it is a vector with lower triangles of Σ matrices put sequentially after each other.
$\mathbf{L i}$ numeric vector or matrix with a chain for lower triangles of Cholesky decompositions of \boldsymbol{Q} matrices. It is a matrix with $\frac{p(p+1)}{2} \cdot K$ columns when K is fixed. Otherwise, it is a vector with lower triangles put sequentially after each other.
gammaInv matrix with p columns with a chain for inverses of the hyperparameter γ.
order numeric vector or matrix with order indeces of mixture components related to artificial identifiability constraint defined by a suitable re-labeling algorithm (by default, simple ordering of the first component of the mixture means is used).
It is a matrix with K columns when K is fixed. Otherwise it is a vector with orders put sequentially after each other.
rank numeric vector or matrix with rank indeces of mixture components. related to artificial identifiability constraint defined by a suitable re-labeling algorithm (by default, simple ordering of the first component of the mixture means is used).
It is a matrix with K columns when K is fixed. Otherwise it is a vector with ranks put sequentially after each other.
mixture data.frame with columns labeled y.Mean.*, y.SD.*, y.Corr.*.*, z.Mean.*, z.SD.*, z.Corr.*.* containing the chains for the means, standard deviations and correlations of the distribution of the original (y) and scaled (z) data based on a normal mixture at each iteration.
deviance data.frame with columns labeles LogL0, LogL1, dev.complete, dev. observed containing the chains of quantities needed to compute DIC.
pm.y a data.frame with p columns with posterior means for (latent) values of observed data (useful when there is censoring).
pm.z a data. frame with p columns with posterior means for (latent) values of scaled observed data (useful when there is censoring).
pm.indDev a data.frame with columns labeled LogL0, LogL1, dev.complete, dev.observed, pred. dens containing posterior means of individual contributions to the deviance.
pred.dens a numeric vector with the predictive density of the data based on the MCMC sample evaluated at data points.
Note that when there is censoring, this is not exactly the predictive density as it is computed as the average of densities at each iteration evaluated at sampled values of latent observations at iterations.
poster.comp.prob_u a matrix which is present in the output object if the number of mixture components in the distribution of random effects is fixed and equal to K. In that case, poster.comp.prob_u is a matrix with K columns and n rows with estimated posterior component probabilities - posterior means of the components of the underlying $0 / 1$ allocation vector.
WARNING: By default, the labels of components are based on artificial identifiability constraints based on ordering of the mixture means in the first margin. Very often, such identifiability constraint is not satisfactory!
poster.comp.prob_b a matrix which is present in the output object if the number of mixture components in the distribution of random effects is fixed and equal to K. In that case, poster. comp.prob_b is a matrix with K columns and n rows with estimated posterior component probabilities - posterior mean over model parameters.
WARNING: By default, the labels of components are based on artificial identifiability constraints based on ordering of the mixture means in the first margin. Very often, such identifiability constraint is not satisfactory!
summ.y.Mean Posterior summary statistics based on chains stored in y.Mean.* columns of the data. frame mixture.
summ.y.SDCorr Posterior summary statistics based on chains stored in y.SD.* and y.Corr.*.* columns of the data.frame mixture.
summ.z.Mean Posterior summary statistics based on chains stored in z.Mean.* columns of the data. frame mixture.
summ.z.SDCorr Posterior summary statistics based on chains stored in z.SD.* and z.Corr.*.* columns of the data.frame mixture.
poster.mean.w a numeric vector with posterior means of mixture weights after re-labeling. It is computed only if K is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.mu a matrix with posterior means of mixture means after re-labeling. It is computed only if K is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean. \mathbf{Q} a list with posterior means of mixture inverse variances after re-labeling. It is computed only if K is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.Sigma a list with posterior means of mixture variances after re-labeling. It is computed only if K is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
poster.mean.Li a list with posterior means of Cholesky decompositions of mixture inverse variances after re-labeling. It is computed only if K is fixed and even then I am not convinced that these are useful posterior summary statistics (see label switching problem mentioned above). In any case, they should be used with care.
relabel a list which specifies the algorithm used to re-label the MCMC output to compute order, rank, poster.comp.prob_u, poster.comp.prob_b, poster.mean.w, poster.mean.mu, poster.mean.Q, poster.mean. Sigma, poster.mean.Li.
Cpar a list with components useful to call underlying C++ functions (not interesting for ordinary users).

Object of class NMixMCMClist

Object of class NMixMCMClist is the list having two components of class NMixMCMC representing two parallel chains and additionally the following components:

PED values of penalized expected deviance and related quantities. It is a vector with five components: D.expect = estimated expected deviance, where the estimate is based on two parallel chains; popt $=$ estimated penalty, where the estimate is based on simple MCMC average based on two parallel chains; PED $=$ estimated penalized expected deviance $=$ D.expect + popt; wpopt $=$ estimated penalty, where the estimate is based on weighted MCMC average (through importance sampling) based on two parallel chains; wPED $=$ estimated penalized expected deviance $=$ D. expect + wpopt .
popt contributions to the unweighted penalty from each observation.
wpopt contributions to the weighted penalty from each observation.
inv.D for each observation, number of iterations (in both chains), where the deviance was in fact equal to infinity (when the corresponding density was lower than dens.zero) and was not taken into account when computing D. expect.
inv.popt for each observation, number of iterations, where the penalty was in fact equal to infinity and was not taken into account when computing popt.
inv.wpopt for each observation, number of iterations, where the importance sampling weight was in fact equal to infinity and was not taken into account when computing wpopt.
sumISw for each observation, sum of importance sampling weights.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1(4), 651-674.

Cappé, Robert and Rydén (2003). Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers. Journal of the Royal Statistical Society, Series B, 65(3), 679-700.
Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, Series B, 56(2), 363-375.

Jasra, A., Holmes, C. C., and Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modelling. Statistical Science, 20(1), 50-67.
Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics, 9(3), 523-539.
Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with unknown number of components (with Discussion). Journal of the Royal Statistical Society, Series B, 59(4), 731-792.

Spiegelhalter, D. J.,Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with Discussion). Journal of the Royal Statistical Society, Series B, 64(4), 583-639.

See Also

NMixPredDensMarg, NMixPredDensJoint2.

Examples

```
## Not run:
## See also additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## - files Galaxy.R, Faithful.R, Tandmob.R and
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Galaxy.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Faithful.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Tandmob.pdf
##
## ===========================================
## Simple analysis of Anderson's iris data
## =============================================
library("colorspace")
data(iris, package="datasets")
summary(iris)
VARS <- names(iris)[1:4]
#COLS <- rainbow_hcl(3, start = 60, end = 240)
COLS <- c("red", "darkblue", "darkgreen")
names(COLS) <- levels(iris[, "Species"])
### Prior distribution and the length of MCMC
Prior <- list(priorK = "fixed", Kmax = 3)
```

```
nMCMC <- c(burn=5000, keep=10000, thin=5, info=1000)
### Run MCMC
set.seed(20091230)
fit <- NMixMCMC(y0 = iris[, VARS], prior = Prior, nMCMC = nMCMC)
### Basic posterior summary
print(fit)
### Univariate marginal posterior predictive densities
### based on chain #1
pdens1 <- NMixPredDensMarg(fit[[1]], lgrid=150)
plot(pdens1)
plot(pdens1, main=VARS, xlab=VARS)
### Bivariate (for each pair of margins) predictive densities
### based on chain #1
pdens2a <- NMixPredDensJoint2(fit[[1]])
plot(pdens2a)
plot(pdens2a, xylab=VARS)
plot(pdens2a, xylab=VARS, contour=TRUE)
### Determine the grid to compute bivariate densities
grid <- list(Sepal.Length=seq(3.5, 8.5, length=75),
    Sepal.Width=seq(1.8, 4.5, length=75),
    Petal.Length=seq(0, 7, length=75),
    Petal.Width=seq(-0.2, 3, length=75))
pdens2b <- NMixPredDensJoint2(fit[[1]], grid=grid)
plot(pdens2b, xylab=VARS)
### Plot with contours
ICOL <- rev(heat_hcl(20, c=c(80, 30), l=c(30, 90), power=c(1/5, 2)))
oldPar <- par(mfrow=c(2, 3), bty="n")
for (i in 1:3){
    for (j in (i+1):4){
        NAME <- paste(i, "-", j, sep="")
        MAIN <- paste(VARS[i], "x", VARS[j])
        image(pdens2b$x[[i]], pdens2b$x[[j]], pdens2b$dens[[NAME]], col=ICOL,
                xlab=VARS[i], ylab=VARS[j], main=MAIN)
        contour(pdens2b$x[[i]], pdens2b$x[[j]], pdens2b$dens[[NAME]], add=TRUE, col="brown4")
    }
}
### Plot with data
for (i in 1:3){
    for (j in (i+1):4){
        NAME <- paste(i, "-", j, sep="")
        MAIN <- paste(VARS[i], "x", VARS[j])
        image(pdens2b$x[[i]], pdens2b$x[[j]], pdens2b$dens[[NAME]], col=ICOL,
                xlab=VARS[i], ylab=VARS[j], main=MAIN)
        for (spec in levels(iris[, "Species"])){
            Data <- subset(iris, Species==spec)
```

```
                points(Data[,i], Data[,j], pch=16, col=COLS[spec])
        }
    }
}
### Set the graphical parameters back to their original values
par(oldPar)
### Clustering based on posterior summary statistics of component allocations
### or on the posterior distribution of component allocations
### (these are two equivalent estimators of probabilities of belonging
### to each mixture components for each observation)
p1 <- fit[[1]]$poster.comp.prob_u
p2 <- fit[[1]]$poster.comp.prob_b
### Clustering based on posterior summary statistics of mixture weight, means, variances
p3 <- NMixPlugDA(fit[[1]], iris[, VARS])
p3 <- p3[, paste("prob", 1:3, sep="")]
    ### Observations from "setosa" species (all would be allocated in component 1)
apply(p1[1:50,], 2, quantile, prob=seq(0, 1, by=0.1))
apply(p2[1:50,], 2, quantile, prob=seq(0, 1, by=0.1))
apply(p3[1:50,], 2, quantile, prob=seq(0, 1, by=0.1))
    ### Observations from "versicolor" species (almost all would be allocated in component 2)
apply(p1[51:100,], 2, quantile, prob=seq(0, 1, by=0.1))
apply(p2[51:100,], 2, quantile, prob=seq(0, 1, by=0.1))
apply(p3[51:100,], 2, quantile, prob=seq(0, 1, by=0.1))
    ### Observations from "virginica" species (all would be allocated in component 3)
apply(p1[101:150,], 2, quantile, prob=seq(0, 1, by=0.1))
apply(p2[101:150,], 2, quantile, prob=seq(0, 1, by=0.1))
apply(p3[101:150,], 2, quantile, prob=seq(0, 1, by=0.1))
## End(Not run)
```


NMixPlugCondDensJoint2

Pairwise bivariate conditional densities: plug-in estimate

Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes estimates of pairwise bivariate conditional densities (given one margin) obtained by using posterior summary statistics (e.g., posterior means) of mixture weights, means and variances (plug-in estimate).

Usage

NMixPlugCondDensJoint2(x, ...)

```
## Default S3 method:
NMixPlugCondDensJoint2(x, icond, scale, w, mu, Sigma, ...)
## S3 method for class 'NMixMCMC'
NMixPlugCondDensJoint2(x, icond, grid, lgrid=50, scaled=FALSE, ...)
## S3 method for class 'GLMM_MCMC'
NMixPlugCondDensJoint2(x, icond, grid, lgrid=50, scaled=FALSE, ...)
```


Arguments

x
an object of class NMixMCMC for NMixPlugCondDensJoint2. NMixMCMC function. An object of class GLMM_MCMC for NMixPlugCondDensJoint2. GLMM_MCMC function.
A list with the grid values (see below) for NMixPlugCondDensJoint2. default function.
icond index of the margin by which we want to condition
scale a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
w a numeric vector with posterior summary statistics for the mixture weights. The length of this vector determines the number of mixture components.
$\mathrm{mu} \quad$ a matrix with posterior summary statistics for mixture means in rows. That is, mu has K rows and p columns, where K denotes the number of mixture components and p is dimension of the mixture distribution.

Sigma a list with posterior summary statistics for mixture covariance matrices.
grid a list with the grid values for each margin in which the density should be evaluated. The value of grid[[icond]] determines the values by which we condition.

If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x .
lgrid a length of the grid used to create the grid if that is not specified.
scaled if TRUE, the density of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x.
... optional additional arguments.

Value

An object of class NMixPlugCondDensJoint2 which has the following components:
$x \quad a \operatorname{list}$ with the grid values for each margin. The components of the list are named $\mathrm{x} 1, \ldots$ or take names from grid argument.
icond index of the margin by which we condition.
dens a list with the computed conditional densities for each value of $\times[[i$ cond $]$. Each dens $[[j]]$ is again a list with conditional densities for each pair of margins given margin icond equal to $x[[i$ cond $]][j]$. The value of dens $[[j]][[i-k]]$ gives values of conditional density of the (i,k)-th margins given margin icond equal to $\times[$ [icond] $][j]$.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

plot.NMixPlugCondDensJoint2, NMixMCMC, GLMM_MCMC, NMixPredCondDensJoint2.

NMixPlugCondDensMarg Univariate conditional densities: plug-in estimate

Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes estimates of univariate conditional densities obtained by using posterior summary statistics (e.g., posterior means) of mixture weights, means and variances (plug-in estimate).

Usage

NMixPlugCondDensMarg(x, ...)
\#\# Default S3 method:
NMixPlugCondDensMarg(x, icond, scale, w, mu, Sigma, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPlugCondDensMarg(x, icond, grid, lgrid=50, scaled=FALSE, ...)
\#\# S3 method for class 'GLMM_MCMC'
NMixPlugCondDensMarg(x, icond, grid, lgrid=50, scaled=FALSE, ...)

Arguments

x
an object of class NMixMCMC for NMixPlugCondDensMarg. NMixMCMC function.
An object of class GLMM_MCMC for NMixPlugCondDensMarg.GLMM_MCMC function.
A list with the grid values (see below) for NMixPlugCondDensMarg. default function.
icond index of the margin by which we want to condition

scale	a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
w	a numeric vector with posterior summary statistics for the mixture weights. The length of this vector determines the number of mixture components.
mu	a matrix with posterior summary statistics for mixture means in rows. That is, mu has K rows and p columns, where K denotes the number of mixture components and p is dimension of the mixture distribution.
Sigma	a list with posterior summary statistics for mixture covariance matrices.
grid	a list with the grid values for each margin in which the density should be evaluated. The value of grid[[icond]] determines the values by which we condition.
	If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x .
lgrid	a length of the grid used to create the grid if that is not specified.
scaled	if TRUE, the density of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x.
	optional additional arguments.

Value

An object of class NMixPlugCondDensMarg which has the following components:
$x \quad a \operatorname{list}$ with the grid values for each margin. The components of the list are named $\mathrm{x} 1, \ldots$ or take names from grid argument.
icond index of the margin by which we condition.
dens a list with the computed conditional densities for each value of $\times[$ [icond]]. Each dens $[[j]]$ is again a list with conditional densities for each margin given margin icond equal to $x[[i$ cond] $][j]$. The value of dens[[j]][[imargin]] gives a value of a marginal density of the imargin-th margin at $x[[i$ cond $]][j]$.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

plot.NMixPlugCondDensMarg, NMixMCMC, GLMM_MCMC, NMixPredCondDensMarg.

NMixPlugDA Discriminant analysis based on plug-in estimates from the mixture model

Description

It performs discriminant analysis based on posterior summary for (re-labeled) mixture components in a model with fixed number of components fitted with NMixMCMC function.

Usage

NMixPlugDA(object, y)

Arguments

object an object of class NMixMCMC
$y \quad$ vector, matrix or data frame with observations to be clustered

Value

A data.frame with columns labeled prob1,..., probp giving plug-in estimates of probabilities of belonging to each component and a column labeled component giving the index of the component with the highest component probability.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixMCMC, NMixPredDA.

Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes marginal (pairwise bivariate) plug-in densities obtained by using posterior summary statistics (e.g., posterior means) of mixture weights, means and variances.

Usage

```
NMixPlugDensJoint2(x, ...)
## Default S3 method:
NMixPlugDensJoint2(x, scale, w, mu, Sigma, ...)
## S3 method for class 'NMixMCMC'
NMixPlugDensJoint2(x, grid, lgrid=50, scaled=FALSE, ...)
## S3 method for class 'GLMM_MCMC'
NMixPlugDensJoint2(x, grid, lgrid=50, scaled=FALSE, ...)
```


Arguments

$x \quad$ an object of class NMixMCMC for NMixPlugDensJoint2.NMixMCMC function. An object of class GLMM_MCMC for NMixPlugDensJoint2.GLMM_MCMC function. A list with the grid values (see below) for NMixPlugDensJoint2. default function.
scale a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
w a numeric vector with posterior summary statistics for the mixture weights. The length of this vector determines the number of mixture components.
mu a matrix with posterior summary statistics for mixture means in rows. That is, mu has K rows and p columns, where K denotes the number of mixture components and p is dimension of the mixture distribution.
Sigma a list with posterior summary statistics for for mixture covariance matrices.
grid a list with the grid values for each margin in which the density should be evaluated.
If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x .
lgrid a length of the grid used to create the grid if that is not specified.
scaled if TRUE, the density of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x.
... optional additional arguments.

Value

An object of class NMixPlugDensJoint2 which has the following components:
x
dens a list with the computed densities for each pair of margins. The components of the list are named $1-2,1-3, \ldots$, i.e., dens[[1]]=dens[["1-2"]] is the pairwise predictive density for margins 1 and 2 , etc. Each component of the list is a matrix in such a form that it can be directly passed together with the proper components of x to the plotting functions like contour or image.
There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

plot.NMixPlugDensJoint2, NMixMCMC, GLMM_MCMC, NMixPredDensJoint2.

```
NMixPlugDensMarg Marginal (univariate) densities: plug-in estimate
```


Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes marginal (univariate) plug-in densities obtained by using posterior summary statistics (e.g., posterior means) of mixture weights, means and variances.

Usage

NMixPlugDensMarg(x, ...)
\#\# Default S3 method:
NMixPlugDensMarg(x, scale, w, mu, Sigma, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPlugDensMarg(x, grid, lgrid=500, scaled=FALSE, ...)
\#\# S3 method for class 'GLMM_MCMC'
NMixPlugDensMarg(x, grid, lgrid=500, scaled=FALSE, ...)

Arguments

x
a list with the grid values (see below) for NMixPlugDensMarg. default function.
An object of class NMixMCMC for NMixPlugDensMarg. NMixMCMC function.
An object of class GLMM_MCMC for NMixPlugDensMarg. GLMM_MCMC function.
scale a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
w
mu a matrix with posterior summary statistics for mixture means in rows. That is, mu has K rows and p columns, where K denotes the number of mixture components and p is dimension of the mixture distribution.
Sigma a list with posterior summary statistics for mixture covariance matrices.

grid	a list with the grid values for each margin in which the density should be evalu- ated. If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x.
lgrid	a length of the grid used to create the grid if that is not specified. if TRUE, the density of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x.
\ldots	optional additional arguments.

Value

An object of class NMixPlugDensMarg which has the following components:
x
a list with the grid values for each margin. The components of the list are named $\mathrm{x} 1, \ldots$ or take names from grid argument.
dens a list with the computed densities for each margin. The components of the list are named $1, \ldots$, i.e., dens[[1]]=dens[["1"]] is the predictive density for margin 1 etc.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

plot.NMixPlugDensMarg, NMixMCMC, GLMM_MCMC, NMixPredDensMarg.

Description

This function serves as an inference tool for the MCMC output obtained using the function NMI It computes estimated posterior predictive cumulative distribution function for each margin.

Usage

```
NMixPredCDFMarg(x, ...)
## Default S3 method:
NMixPredCDFMarg(x, scale, K, w, mu, Li, Krandom=TRUE, ...)
## S3 method for class 'NMixMCMC'
NMixPredCDFMarg(x, grid, lgrid=500, scaled=FALSE, ...)
## S3 method for class 'GLMM_MCMC'
NMixPredCDFMarg(x, grid, lgrid=500, scaled=FALSE, ...)
```


Arguments

x
an object of class NMixMCMC for NMixPredCDFMarg. NMixMCMC function.
An object of class GLMM_MCMC for NMixPredCDFMarg. GLMM_MCMC function.
A list with the grid values (see below) for NMixPredCDFMarg. default function.
scale a two component list giving the shift and the scale.
K
either a number (when Krandom=FALSE) or a numeric vector with the chain for the number of mixture components.
w a numeric vector with the chain for the mixture weights.
mu a numeric vector with the chain for the mixture means.
$\mathrm{Li} \quad$ a numeric vector with the chain for the mixture inverse variances (lower triangles only).
Krandom a logical value which indicates whether the number of mixture components changes from one iteration to another.
grid a numeric vector or a list with the grid values in which the predictive CDF should be evaluated.
If $x \$$ dim is 1 then grid may be a numeric vector. If $\times \$ d i m$ is higher than then grid must be a list with numeric vectors as components giving the grids for each margin.
If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x .
lgrid a length of the grid used to create the grid if that is not specified.
scaled if TRUE, the CDF of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x.
... optional additional arguments.

Value

An object of class NMixPredCDFMarg which has the following components:
$x \quad$ a list with the grid values for each margin. The components of the list are named $\mathrm{x} 1, \ldots$ or take names from grid argument.
freqK frequency table for the values of K (numbers of mixture components) in the MCMC chain.
propK proportions derived from freqK.
MCMC. length the length of the MCMC used to compute the predictive cdf's.
cdf a list with the computed predictive CDF's for each margin. The components of the list are named $1, \ldots$, i.e., $\operatorname{cdf}[[1]]=\operatorname{cdf}[[" 1 "]]$ is the predictive cdf for margin 1 etc.
cdfK a list with the computed predictive CDF's for each margin, conditioned further by K. The components of the list are named $1, \ldots$. That is, $\operatorname{cdf}[[1]][[1]]$ $=\operatorname{cdf}[[" 1 "]][[1]]$ is the predictive CDF for margin 1 conditioned by $K=$ 1 , $\operatorname{cdf}[[1]][[2]]=\operatorname{cdf}[[" 1 "]][[2]]$ is the predictive CDF for margin 1 conditioned by $K=2$ etc.
Note that cdfK provides some additional information only when Krandom $=$ TRUE or when x results from the NMixMCMC call to the reversible jump MCMC.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

See Also

plot. NMixPredCDFMarg, NMixMCMC, GLMM_MCMC.

```
NMixPredCondCDFMarg Univariate conditional predictive cumulative distribution function
```


Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes (posterior predictive) estimates of univariate conditional cumulative distribution functions.

Usage

NMixPredCondCDFMarg(x, ...)
\#\# Default S3 method:
NMixPredCondCDFMarg(x, icond, prob, scale, K, w, mu, Li, Krandom=FALSE, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPredCondCDFMarg(x, icond, prob, grid, lgrid=50, scaled=FALSE, ...)
\#\# S3 method for class 'GLMM_MCMC'
NMixPredCondCDFMarg(x, icond, prob, grid, lgrid=50, scaled=FALSE, ...)

Arguments

x
an object of class NMixMCMC for NMixPredCondCDFMarg. NMixMCMC function. An object of class GLMM_MCMC for NMixPredCondCDFMarg.GLMM_MCMC function. A list with the grid values (see below) for NMixPredCondCDFMarg. default function.
icond index of the margin by which we want to condition

prob	a numeric vector. If given then also the posterior pointwise quantiles of the conditional cdf's are computed for probabilities given by prob. These can be used to draw pointwise credible intervals. a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one. either a number (when Krandom=FALSE) or a numeric vector with the chain for the number of mixture components. a numeric vector with the chain for the mixture weights. a numeric vector with the chain for the mixture means. K a numeric vector with the chain for the mixture inverse variances (lower triangles only). a logical value which indicates whether the number of mixture components changes from one iteration to another. mu list with the grid values for each margin in which the cdf should be evaluated.
Li	a The value of grid[[icond] determines the values by which we condition.
Krandom	If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x
grid	a length of the grid used to create the grid if that is not specified. if TRUE, the cdf of shifted and scaled data is summarized. The shift and scale
scaled	vector are taken from the scale component of the object x.
optional additional arguments.	

Value

An object of class NMixPredCondCDFMarg which has the following components:

x	a list with the grid values for each margin. The components of the list are named $\mathrm{x} 1, \ldots$ or take names from grid argument.
icond	index of the margin by which we condition.
cdf	a list with the computed conditional cdf's for each value of $x[$ [icond $]]$. Each $\operatorname{cdf}[[j]]$ is again a list with conditional cdf's for each margin given margin icond equal to $x[[i c o n d]][j]$. The value of $c d f[[j]][[i m a r g i n]]$ gives a value of a marginal cdf of the imargin-th margin at $x[[i c o n d]][j]$.
prob	a value of the argument prob.
' 'qXX\%',	if prob is given then there is one additional component named "qXX\%", e.g., "q50\%" for each value of prob which has the same structure as the component cdf and keeps computed posterior pointwise quantiles.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

plot.NMixPredCondCDFMarg, NMixMCMC, GLMM_MCMC.

NMixPredCondDensJoint2

Pairwise bivariate conditional predictive densities

Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes (posterior predictive) estimates of pairwise bivariate conditional densities (given one margin).

Usage

NMixPredCondDensJoint2(x, ...)
\#\# Default S3 method:
NMixPredCondDensJoint2(x, icond, scale, K, w, mu, Li, Krandom=FALSE, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPredCondDensJoint2(x, icond, grid, lgrid=50, scaled=FALSE, ...)
\#\# S3 method for class 'GLMM_MCMC'
NMixPredCondDensJoint2(x, icond, grid, lgrid=50, scaled=FALSE, ...)

Arguments

x
icond index of the margin by which we want to condition
scale a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
K either a number (when Krandom=FALSE) or a numeric vector with the chain for the number of mixture components.
w a numeric vector with the chain for the mixture weights.
mu a numeric vector with the chain for the mixture means.
$\mathrm{Li} \quad$ a numeric vector with the chain for the mixture inverse variances (lower triangles only).
Krandom a logical value which indicates whether the number of mixture components changes from one iteration to another.
grid a list with the grid values for each margin in which the density should be evaluated. The value of grid[[icond]] determines the values by which we condition.

If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x .
lgrid a length of the grid used to create the grid if that is not specified.
scaled if TRUE, the density of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x.
... optional additional arguments.

Value

An object of class NMixPredCondDensJoint2 which has the following components:
$x \quad a \operatorname{list}$ with the grid values for each margin. The components of the list are named $x 1, \ldots$ or take names from grid argument.
icond index of the margin by which we condition.
dens a list with the computed conditional densities for each value of $\times[[i$ cond $]$. Each dens $[[j]]$ is again a list with conditional densities for each pair of margins given margin icond equal to $x[[i$ cond $]][j]$. The value of dens $[[j]][[i-k]]$ gives values of conditional density of the (i,k)-th margins given margin icond equal to $x[[i$ cond $]][j]$.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

plot.NMixPredCondDensJoint2, NMixMCMC, GLMM_MCMC.

NMixPredCondDensMarg Univariate conditional predictive density

Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes (posterior predictive) estimates of univariate conditional densities.

Usage

NMixPredCondDensMarg(x, ...)
\#\# Default S3 method:
NMixPredCondDensMarg(x, icond, prob, scale, K, w, mu, Li, Krandom=FALSE, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPredCondDensMarg(x, icond, prob, grid, lgrid=50, scaled=FALSE, ...)

```
## S3 method for class 'GLMM_MCMC'
NMixPredCondDensMarg(x, icond, prob, grid, lgrid=50, scaled=FALSE, ...)
```


Arguments

x	an object of class NMixMCMC for NMixPredCondDensMarg. NMixMCMC function. An object of class GLMM_MCMC for NMixPredCondDensMarg.GLMM_MCMC function.
	A list with the grid values (see below) for NMixPredCondDensMarg. default function.
icond	index of the margin by which we want to condition
prob	a numeric vector. If given then also the posterior pointwise quantiles of the conditional densities are computed for probabilities given by prob. These can be used to draw pointwise credible intervals.
scale	a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
K	either a number (when Krandom=FALSE) or a numeric vector with the chain for the number of mixture components.
w	a numeric vector with the chain for the mixture weights.
mu	a numeric vector with the chain for the mixture means.
Li	a numeric vector with the chain for the mixture inverse variances (lower triangles only).
Krandom	a logical value which indicates whether the number of mixture components changes from one iteration to another.
grid	a list with the grid values for each margin in which the density should be evaluated. The value of grid[[icond]] determines the values by which we condition.
	If grid is not specified, it is created automatically using the information from the posterior summary statistics stored in x .
lgrid	a length of the grid used to create the grid if that is not specified.
scaled	if TRUE, the density of shifted and scaled data is summarized. The shift and scale vector are taken from the scale component of the object x. optional additional arguments.

Value

An object of class NMixPredCondDensMarg which has the following components:
a list with the grid values for each margin. The components of the list are named $x 1, \ldots$ or take names from grid argument.
icond index of the margin by which we condition.
dens a list with the computed conditional densities for each value of $\times[$ [icond $]$]. Each dens $[[j]]$ is again a list with conditional densities for each margin given margin icond equal to $x[[i$ cond]][$j]$. The value of dens[[j]][[imargin]] gives a value of a marginal density of the imargin-th margin at $\times[[i$ cond $]][j]$.
prob a value of the argument prob.
' ' $q X \%$ ', if prob is given then there is one additional component named " q XX\%", e.g., " $\mathrm{q} 50 \%$ " for each value of prob which has the same structure as the component dens and keeps computed posterior pointwise quantiles.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

plot. NMixPredCondDensMarg, NMixMCMC, GLMM_MCMC.

NMixPredDA

Description

It performs discriminant analysis based on sampled (re-labeled) MCMC chains from the mixture model fitted with NMixMCMC function. Observations to be discriminated may be censored.

Discrimination is based on posterior predictive probabilities of belonging to (re-labeled) mixture components.

Usage

NMixPredDA(object, y0, y1, censor, inity, info)

Arguments

object an object of class NMixMCMC
y0 vector, matrix or data frame with observations (or limits of censored-observations) to be clustered. See NMixMCMC for details.
If $y 0$ is not given then the function discriminates original observations used to generate MCMC sample stored in object.
y1 vector, matrix or data frame with upper limits of interval-censored observations (if there are any). See NMixMCMC for details.
censor vector, matrix or data frame with censoring indicators (if there are any censored observations). See NMixMCMC for details.
inity optional vector, matrix or data frame with initial values of censored observations (if there are any censored observations)
info number which specifies frequency used to re-display the iteration counter during the computation.

Value

A data.frame with columns labeled prob1,..., probp giving posterior predictive probabilities of belonging to each component and a column labeled component giving the index of the component with the highest component probability.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

NMixMCMC, NMixPlugDA.

```
NMixPredDensJoint2 Pairwise bivariate predictive density
```


Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes estimated posterior predictive densities for each pair of margins.

Usage

NMixPredDensJoint2(x, ...)
\#\# Default S3 method:
NMixPredDensJoint2(x, scale, K, w, mu, Li, Krandom=TRUE, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPredDensJoint2(x, grid, lgrid=50, scaled=FALSE, ...)
\#\# S3 method for class 'GLMM_MCMC'
NMixPredDensJoint2(x, grid, lgrid=50, scaled=FALSE, ...)

Arguments

K either a number (when Krandom=FALSE) or a numeric vector with the chain for
x
scale
w
an object of class NMixMCMC for NMixPredDensJoint2. NMixMCMC function. an object of class GLMM_MCMC for NMixPredDensJoint2. GLMM_MCMC function.
A list with the grid values (see below) for NMixPredDensJoint2. default function.
a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one. the number of mixture components.
a numeric vector with the chain for the mixture weights.
\(\left.$$
\begin{array}{ll}\text { mu } & \begin{array}{l}\text { a numeric vector with the chain for the mixture means. } \\
\text { a numeric vector with the chain for the mixture inverse variances (lower triangles } \\
\text { only). } \\
\text { a logical value which indicates whether the number of mixture components } \\
\text { changes from one iteration to another. }\end{array}
$$

Krandom

a list with the grid values for each margin in which the predictive density should

be evaluated.

If grid is not specified, it is created automatically using the information from

the posterior summary statistics stored in x .\end{array}\right]\)| a length of the grid used to create the grid if that is not specified. |
| :--- |
| if TRUE, the density of shifted and scaled data is summarized. The shift and scale |
| scaled | | vector are taken from the scale component of the object x. |
| :--- |

Value

An object of class NMixPredDensJoint2 which has the following components:
$x \quad a$ list with the grid values for each margin. The components of the list are named $x 1, \ldots$ or take names from grid argument.
freqK frequency table for the values of K (numbers of mixture components) in the MCMC chain.
propK proportions derived from freqK.
MCMC. length the length of the MCMC used to compute the predictive densities.
dens a list with the computed predictive densities for each pair of margins. The components of the list are named $1-2,1-3, \ldots$, i.e., dens[[1] $]=\operatorname{dens[["1-2"]]~is~}$ the pairwise predictive density for margins 1 and 2, etc. Each component of the list is a matrix in such a form that it can be directly passed together with the proper components of x to the plotting functions like contour or image.
densK a list with the computed predictive densities for each margin, conditioned further by K. The components of the list are named $1-2,1-3, \ldots$. That is, dens[[1]][[1]] $=\operatorname{dens[["1-2"]][[1]]~is~the~pairwise~predictive~density~for~}$ margins 1 and 2 conditioned by $K=1$, dens[[1]][[2]] = dens[["1-2"]][[2]] is the pairwise predictive density for margins 1 and 2 conditioned by $K=2$ etc. Note that densK provides some additional information only when Krandom $=$ TRUE or when x results from the NMixMCMC call to the reversible jump MCMC.
There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

See Also

```
plot.NMixPredDensJoint2, NMixMCMC, GLMM_MCMC, NMixPredDensMarg.
```


Examples

```
## See additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Galaxy.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Faithful.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Tandmob.pdf
##
```

NMixPredDensMarg Marginal (univariate) predictive density

Description

This function serves as an inference tool for the MCMC output obtained using the function NMixMCMC. It computes estimated posterior predictive densities for each margin.

Usage

NMixPredDensMarg(x, ...)
\#\# Default S3 method:
NMixPredDensMarg(x, scale, K, w, mu, Li, Krandom=TRUE, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPredDensMarg(x, grid, lgrid=500, scaled=FALSE, ...)
\#\# S3 method for class 'GLMM_MCMC'
NMixPredDensMarg(x, grid, lgrid=500, scaled=FALSE, ...)

Arguments

x
scale
K
w
mu
an object of class NMixMCMC for NMixPredDensMarg. NMixMCMC function. An object of class GLMM_MCMC for NMixPredDensMarg. GLMM_MCMC function. A list with the grid values (see below) for NMixPredDensMarg. default function.
a two component list giving the shift and the scale.
either a number (when Krandom=FALSE) or a numeric vector with the chain for the number of mixture components.
a numeric vector with the chain for the mixture weights.
a numeric vector with the chain for the mixture means.

Li	a numeric vector with the chain for the mixture inverse variances (lower triangles only). a logical value which indicates whether the number of mixture components changes from one iteration to another.
Krandom	
grid numeric vector or a list with the grid values in which the predictive density	
should be evaluated.	
If $x \$ d i m$ is 1 then grid may be a numeric vector. If $x \$$ dim is higher than then	
grid must be a list with numeric vectors as components giving the grids for each	
margin.	
If grid is not specified, it is created automatically using the information from	
the posterior summary statistics stored in x.	

Value

An object of class NMixPredDensMarg which has the following components:
$x \quad a \operatorname{list}$ with the grid values for each margin. The components of the list are named $x 1, \ldots$ or take names from grid argument.
freqK frequency table for the values of K (numbers of mixture components) in the MCMC chain.
propK proportions derived from freqK.
MCMC. length the length of the MCMC used to compute the predictive densities.
dens a list with the computed predictive densities for each margin. The components of the list are named $1, \ldots$, i.e., dens $[[1]]=\operatorname{dens}[[" 1 "]]$ is the predictive density for margin 1 etc.
densK a list with the computed predictive densities for each margin, conditioned further by K. The components of the list are named $1, \ldots$. That is, dens[[1]][[1]] = dens $[[" 1 "]][[1]]$ is the predictive density for margin 1 conditioned by $K=$ 1 , dens[[1]][[2]] $=\operatorname{dens[["1"]][[2]]~is~the~predictive~density~for~margin~}$ 1 conditioned by $K=2$ etc.
Note that densK provides some additional information only when Krandom $=$ TRUE or when x results from the NMixMCMC call to the reversible jump MCMC.

There is also a plot method implemented for the resulting object.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

See Also

plot.NMixPredDensMarg, NMixMCMC, GLMM_MCMC, NMixPredDensJoint2.

Examples

```
## See additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Galaxy.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Faithful.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Tandmob.pdf
##
```

NMixPseudoGOF Pseudo goodness-of-fit test for a normal mixture model

Description

It takes a (fitted) normal mixture, creates hyperrectangles according to a specified grid, computes probability masses in each hyperrectangle derived from the (fitted) normal mixture. From computed probability masses expected frequencies (using the sample size of supplied data) are computed and compared to frequencies observed in supplied data. From expected and observed frequencies, a Pearson chi-squared like statistic is computed and returned together with residuals derived from that statistic.
Also pseudo degrees of freedom are returned which are equal to a number of hyperrectangles minus number of free parameters of the normal mixture. For a K-component mixture of dimension p, the number of free parameters is computed as

$$
q=K-1+K \cdot p+K \cdot p(p+1) / 2
$$

Note that computation of q does not take into account the positive (semi-)definiteness restriction on covariance matrices.

WARNING: There is no statistical theory developed that would guarantee that computed chisquared like statistics follows a chi-squared distribution with computed pseudo degrees of freedom under the null hypothesis that the distribution that generated the data is a normal mixture. This function serves purely for descriptive purposes!

Usage

NMixPseudoGOF (x, ...)
\#\# Default S3 method:
NMixPseudoGOF (x, scale, w, mu, Sigma, breaks, nbreaks=10, digits=3, ...)
\#\# S3 method for class 'NMixMCMC'
NMixPseudoGOF (x, y, breaks, nbreaks=10, digits=3, ...)

Arguments

x
y
scale a two component list giving the shift and the scale. If not given, shift is equal to zero and scale is equal to one.
w a numeric vector with mixture weights. The length of this vector determines the number of mixture components.
mu a matrix with mixture means in rows. That is, mu has K rows and p columns, where K denotes the number of mixture components and p is dimension of the mixture distribution.
Sigma a list with mixture covariance matrices.
breaks a numeric vector or a list with the breaks defining the hyperrectangles. It is a numeric vector if p is equal to one. It is a list of length p of numeric vectors. Each component of the list determines the breaks for each margin.
nbreaks a number or a numeric vector with the number of breaks for each margin. It is only used if the argument breaks is not given to determine sensible break values.
digits a number or a numeric vector with the number of digits to which the breaks should be rounded in the case they are created by the function. If it is a vector then different rounding may be used for each margin.
... optional additional arguments.

Value

ADD DESCRIPTION

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

NMixMCMC.

Description

This function takes an object generated by the NMixMCMC or GLMM_MCMC function and internally relabels the mixture components using selected re-labeling algorithm. It also computes posterior summary statistics for mixture means, weights, variances which correspond to newly labeled MCMC sample. Further, posterior component probabilities (poster .comp.prob_u and poster. comp.prob_b components of the object object) are updated according to the newly labeled MCMC sample.
This function only works for models with a fixed number of mixture components.

Usage

```
NMixRelabel(object, type=c("mean", "weight", "stephens"), par, ...)
## Default S3 method:
NMixRelabel(object, type = c("mean", "weight", "stephens"), par, ...)
## S3 method for class 'NMixMCMC'
NMixRelabel(object, type = c("mean", "weight","stephens"), par,
    prob=c(0.025, 0.5, 0.975), keep.comp.prob = FALSE, info, ...)
## S3 method for class 'NMixMCMClist'
NMixRelabel(object, type = c("mean", "weight","stephens"), par,
    prob=c(0.025, 0.5, 0.975), keep.comp.prob = FALSE, info,
    silent = FALSE, parallel = FALSE, ...)
## S3 method for class 'GLMM_MCMC'
NMixRelabel(object, type = c("mean", "weight", "stephens"), par,
    prob = c(0.025, 0.5, 0.975), keep.comp.prob = FALSE, info,
    silent = FALSE, ...)
## S3 method for class 'GLMM_MCMClist'
NMixRelabel(object, type = c("mean", "weight", "stephens"), par,
    prob = c(0.025, 0.5, 0.975), keep.comp.prob = FALSE, jointly = FALSE,
    info, silent = FALSE, parallel = FALSE, ...)
```


Arguments

object an object of apropriate class.
type character string which specifies the type of the re-labeling algorithm.
par additional parameters for particular re-labeling algorithms.
mean par specifies margin which is used to order the components. It is set to 1 if not given.
weight par is empty.
stephens par is a list with components type.init, par, maxiter. Component type.init is a character string being equal to either of "identity", "mean", "weight". It determines the way which is used to obtain initial re-labeling.

Component par determines the margin in the case that type.init is equal to "mean".
Component maxiter determines maximum number of iterations of the relabeling algorithm.
prob probabilities for which the posterior quantiles of component allocation probabilities are computed.
keep. comp. prob logical. If TRUE, posterior sample of component allocation probabilities (for each subject) is kept in the resulting object.
jointly a logical value. If it is TRUE then both chains are processed together. In the output, all posterior summary statistics are then also related to both chains as if it is one long chain. If it is FALSE then both chains are processed independently.
info number which specifies frequency used to re-display the iteration counter during the computation.
silent a logical value indicating whether the information on the MCMC progress is to be supressed.
parallel a logical value indicating whether parallel computation (based on a package parallel) should be used (if possible) for re-labelling of the two chains.
... optional additional arguments.

Value

An object being equal to the value of the object argument in which the following components are updated according to new labeling of the mixture components.

Value for NMixMCMC object

When the argument object is of class NMixMCMC, the resulting object is equal to object with the following components being modified:
relabel see NMixMCMC
order see NMixMCMC
rank see NMixMCMC
poster.mean.w see NMixMCMC
poster.mean.mu see NMixMCMC
poster.mean.Q see NMixMCMC
poster.mean.Sigma see NMixMCMC
poster.mean.Li see NMixMCMC
poster.comp.prob_u see NMixMCMC
poster.comp.prob_b see NMixMCMC
Additionally, new components are added, namely
quant.comp.prob_b a list with the posterior quantiles of component probabilities. One list component for each quantile specified by prob argument.
comp.prob_b posterior sample of individual component probabilities (also given random effects). It is an $M \times n \cdot K$ matrix where M is the length of the posterior sample, n is the number of subjects, and K is the number of mixture components. Component labels correspond to the re-labelled sample. It is included in the resulting object only if keep. comp. prob argument is TRUE.

Value for GLMM_MCMC object

When the argument object is of class GLMM_MCMC, the resulting object is equal to object with the following components being modified:
relabel_b see GLMM_MCMC
order_b see GLMM_MCMC
rank_b see GLMM_MCMC
poster.mean.w_b see GLMM_MCMC
poster.mean.mu_b see GLMM_MCMC
poster.mean.Q_b see GLMM_MCMC
poster.mean.Sigma_b see GLMM_MCMC
poster.mean.Li_b see GLMM_MCMC
poster.comp.prob_u see GLMM_MCMC
poster.comp.prob_b see GLMM_MCMC
Additionally, new components are added, namely
quant.comp.prob_b a list with the posterior quantiles of component probabilities. One list component for each quantile specified by prob argument.
comp.prob_b posterior sample of individual component probabilities (also given random effects). It is an $M \times I \cdot K$ matrix where M is the length of the posterior sample, I is the number of subjects, and K is the number of mixture components. Component labels correspond to the re-labelled sample. It is included in the resulting object only if keep. comp. prob argument is TRUE.
poster.comp.prob a matrix with the posterior means of component probabilities which are calculated with random effects integrated out.
quant.comp.prob a list with the posterior quantiles of component probabilities. One list component for each quantile specified by prob argument.
comp.prob posterior sample of individual component probabilities (with random effects integrated out). It is an $M \times I \cdot K$ matrix where M is the length of the posterior sample, I is the number of subjects, and K is the number of mixture components. Component labels correspond to the re-labelled sample. It is included in the resulting object only if keep. comp.prob argument is TRUE.
Remark. These are the component probabilities which should normally be used for clustering purposes.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Celeux, G. (1998). Bayesian inference for mixtures: The label-switching problem. In: COMPSTAT 98 (eds. R. Payne and P. Green), pp. 227-232. Heidelberg: Physica-Verlag.
Jasra, A., Holmes, C. C., and Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20, 50-67.
Stephens, M. (1997). Bayesian methods for mixtures of normal distributions. DPhil Thesis. Oxford: University of Oxford. (Available from: http://stephenslab.uchicago.edu/publications. html (accessed on 05/02/2014)).
Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B, 62, 795-809.

See Also

NMixMCMC, GLMM_MCMC.

Examples

```
## See also additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## - file PBCseq.R and
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/PBCseq.pdf
##
## ================================================
```

NMixSummComp Summary for the mixture components

Description

This function returns basic posterior summary for (re-labeled) mixture components in a model with fixed number of components fitted with NMixMCMC or GLMM_MCMC function. The summary also takes into account possible scaling and shifting of the data (see argument scale in NMixMCMC function or argument scale.b in GLMM_MCMC).

Note that even though the mixture components are re-labeled before the summary is computed to achieve some identifiability, posterior summaries of individual mixture means and variances are not always the quantity we would like to see. For density estimation, posterior predictive density (NMixPredDensMarg, NMixPredDensJoint2) is usually the right stuff one should be interested in.

Usage

NMixSummComp (x)
\#\# Default S3 method:
NMixSummComp (x)

```
## S3 method for class 'NMixMCMC'
NMixSummComp(x)
## S3 method for class 'GLMM_MCMC'
NMixSummComp(x)
```


Arguments

X
an object of class NMixMCMC or GLMM_MCMC

Value

Invisible x. The rest is printed on output device.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixMCMC, GLMM_MCMC.
PBC910 Subset of Mayo Clinic Primary Biliary Cirrhosis data

Description

This is a subset of PBCseq data which contains only data from 260 patients known to be alive and without liver transplantation at 910 days of follow-up. Furthermore, only a selection of longitudinal measurements is included and only those measurements that were obtained by 910 days. The PBC910 dataset was used in papers Komárek and Komárková $(2013,2014)$.

Usage

data(PBCseq)

Format

a data frame with 918 rows and the following variables
id identification number of a patient
day number of days between enrollment and this visit date (all measurements below refer to this date)
month number of months between enrollment and this visit date
fu.days total number of follow up days
delta.ltx.death $0 / 1$ censoring indicator for event $=$ death or liver transplantation related to fu. days
lbili natural logarithm of above
platelet platelet count
spiders $0 / 1$ presence of blood vessel malformations in the skin
jspiders jittered version of a variable spiders

Source

URL: http://lib.stat.cmu.edu/datasets/

References

Komárek, A. and Komárková, L. (2013). Clustering for multivariate continuous and discrete longitudinal data. The Annals of Applied Statistics, 7(1), 177-200.

Komárek, A. and Komárková, L. (2014). Capabilities of R package mixAK for clustering based on multivariate continuous and discrete longitudinal data. Journal of Statistical Software, 59(12), 1-38. http://www.jstatsoft.org/v59/i12/.

See Also

PBC910, pbc, pbcseq

Examples

```
data(PBC910)
summary(PBC910)
```

PBCseq Mayo Clinic Primary Biliary Cirrhosis, sequential data

Description

This data is a continuation of the PBC data set (pbc), and contains the follow-up laboratory data for each study patient. An analysis based on the data can be found in Murtagh et al. (1994).
The primary PBC data set contains only baseline measurements of the laboratory paramters. This data set contains multiple laboratory results, but only on the 312 randomized patients. Some baseline data values in this file differ from the original PBC file, for instance, the data errors in prothrombin time and age which were discovered after the orignal analysis (see Fleming and Harrington, 1991, figure 4.6.7).

Usage
data(PBCseq)

Format

a data frame with 1945 rows and the following variables
id identification number of a patient
sex $0 / 1$ for male and female
fsex factor of above
drug $0 / 1$ for placebo and D-penicillamine
fdrug factor of above
age age at entry in years
fu.days total number of follow up days
alive number of days when the patient is known to be alive and without liver transplantation
status status at endpoint, $0 / 1 / 2$ for censored, liver transplant, dead
fstatus factor of above
delta.death $0 / 1$ censoring indicator for event $=$ death (i.e., liver transplantation means censoring)
delta.ltx.death $0 / 1$ censoring indicator for event $=$ death or liver transplantation
day number of days between enrollment and this visit date (all measurements below refer to this date)
month number of months between enrollment and this visit date
ascites $0 / 1$ presence of ascites
fascites factor of above
hepatom $0 / 1$ presence of hepatomegaly or enlarged liver
fhepatom factor of above
spiders $0 / 1$ presence of blood vessel malformations in the skin
fspiders factor of above
edema presence and status of edema, 0 for no edema, 0.5 for untreated or successfully treated edema, 1 for edema despite diuretic therapy
fedema factor of above
stage histologic stage of disease (needs biopsy)
fstage factor of above
bili serum bilirubin (mg/dl)
lbili natural logarithm of above
albumin serum albumin ($\mathrm{mg} / \mathrm{dl}$)
lalbumin natural logarithm of above
alk.phos alkaline phosphotase (U/liter)
lalk.phos natural logarithm of above
chol serum cholesterol ($\mathrm{mg} / \mathrm{dl}$)
lchol natural logarithm of above
sgot serum glutamic-oxaloacetic transaminase (the enzyme name has subsequently changed to "ALT" in the medical literature) $(\mathrm{U} / \mathrm{ml})$

Isgot natural logarithm of above
platelet platelet count
Iplatelet natural logarithm of above
protime standardised blood clotting time
lprotime natural logarithm of above

Source

URL: http://lib.stat.cmu.edu/datasets/

References

Dickson, E. R., Grambsch, P. M., Fleming, T. R., Fisher, L. D., and Langworthy, A. (1989). Prognosis in primary biliary-cirrhosis - Model for decision-making. Hepatology, 10, 1-7.
Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York: John Wiley and Sons.

Markus, B. H., Dickson, E. R., Grambsch, P. M., Fleming, T. R., Mazzaferro, V., Klintmalm, G. B. G., Wiesner, R. H., Vanthiel, D. H., and Starzl, T. E. (1989). Efficacy of liver-transplantation in patients with primary biliary-cirrhosis. New England Journal of Medicine, 320, 1709-1713.
Murtaugh, P. A., Dickson, E. R., Van Dam, G. M., Malinchoc, M., Grambsch, P. M., Langworthy, A. L., and Gips, C. H. (1994). Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits. Hepatology, 20, 126-134.

Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.

See Also

pbc, pbcseq

Examples

```
data(PBCseq)
```

summary (PBCseq)

```
plot.NMixPlugCondDensJoint2
```

Plot computed pairwise bivariate conditional densities (plug-in estimate)

Description

This is a basic plotting tool to visualize computed plug-in estimates of pairwise bivariate conditional densities using the image or contour plot. See also NMixPlugCondDensJoint2.

Usage

```
    ## S3 method for class 'NMixPlugCondDensJoint2'
    plot(x, ixcond, imargin,
        contour=FALSE,
        add.contour=TRUE, col.add.contour="brown",
        auto.layout=TRUE,
        col, lwd=1, main, xylab, ...)
```


Arguments

x
ixcond if given then conditional densities of all pairs of margins given $\times[$ [icond]][ixcond] are plotted where icond is taken from x.
imargin vector of length 2. if given then conditional densities of the (imargin[1], imargin[2]) pair of margins given all values of $x[[i c o n d]]$ are plotted.
contour logical. If TRUE then contours are drawn, otherwise image plot is created.
add. contour logical. If TRUE and contour is FALSE (i.e., image plot is drawn) then contours are added to the image plots.
col.add. contour
color of contours which are added to the image plot.
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
col color used to draw the contours or images.
lwd line width.
main main title of the plot.
xylab optional character vector of the length equal to the number of margins with labels used for x and y axes on the plots.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixPlugCondDensJoint2, NMixMCMC.

```
plot.NMixPlugCondDensMarg
```

Plot computed univariate conditional densities (plug-in estimate)

Description

This is a basic plotting tool to visualize computed plug-in estimates of univariate conditional densities, see NMixPlugCondDensMarg.

Usage

```
## S3 method for class 'NMixPlugCondDensMarg'
plot(x, ixcond, imargin, over=FALSE,
    auto.layout=TRUE, type="l", lwd=1, lty, col, main, xlab, ylab, ylim,
    annot=TRUE, ...)
```


Arguments

x

ixcond

imargin if given then conditional densities of the imargin-th margin given all values of $x[[i c o n d]]$ are plotted - either separately or all in one plot.
over logical. If TRUE and imargin is given then all conditional densities are drawn in one plot.
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw the computed densities.
type type of the plot.
lwd line width.
col color used to draw the lines. It can be a vector in which case different lines are drawn in different colors.
lty type of the line. It can be a vector in which case different lines are drawn in different types.
main title of the plot. Either character which is replicated or a vector of characters.
$x l a b \quad$ label for the x -axis. Either character which is replicated or a vector of characters.
ylab label for the y-axis. Either character which is replicated or a vector of characters.
ylim limits for the y-axis.
annot if TRUE and imargin is given and over is TRUE then a legend is added to the plot.
... additional arguments passed to the plot function.

Value

```
    invisible(x)
```


Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

> NMixPlugCondDensMarg, NMixMCMC.

```
plot.NMixPlugDensJoint2
```

Plot computed marginal pairwise bivariate densities (plug-in estimate)

Description

This is a basic plotting tool to visualize computed marginal pairwise bivariate densities (plug-in version) using the contour plot. See also NMixPlugDensJoint2.

Usage

\#\# S3 method for class 'NMixPlugDensJoint2'
plot(x, contour=FALSE,
add.contour=TRUE, col.add.contour="brown",
auto. layout=TRUE,
col, lwd=1, main, xylab, ...)

Arguments

x
contour logical. If TRUE then contours are drawn, otherwise image plot is created.
add. contour logical. If TRUE and contour is FALSE (i.e., image plot is drawn) then contours are added to the image plots.
col.add.contour
color of contours which are added to the image plot.
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
col color used to draw the contours or images.
lwd line width.
main main title of the plot.
xylab optional character vector of the length equal to the number of margins with labels used for x and y axes on the plots.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

NMixPlugDensJoint2, NMixMCMC.

```
plot.NMixPlugDensMarg Plot computed marginal predictive densities
```


Description

This is a basic plotting tool to visualize computed marginal plug-in estimates of densities, see NMixPlugDensMarg.

Usage

```
## S3 method for class 'NMixPlugDensMarg'
plot(x, auto.layout=TRUE,
    type="l", col="darkblue", lty=1, lwd=1, main, xlab, ylab, ...)
```


Arguments

X
auto.layout if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
type type of the plot.
col color used to draw the lines.
lty type of the line.
lwd line width.
main main title of the plot. Either character which is replicated or a vector of characters of the length equal to the number of margins.
$x l a b \quad$ label for the x -axis. Either character which is replicated or a vector of characters of the length equal to the number of margins.
ylab label for the y-axis. Either character which is replicated or a vector of characters of the length equal to the number of margins.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

```
See Also
    NMixPlugDensMarg, NMixMCMC.
```

plot.NMixPredCDFMarg Plot computed marginal predictive cumulative distribution functions

Description

This is a basic plotting tool to visualize computed marginal cumulative distribution functions, see NMixPredCDFMarg.

Usage

```
## S3 method for class 'NMixPredCDFMarg'
plot(x, K=0, auto.layout=TRUE,
    type="l", col="darkblue", lty=1, lwd=1, main, xlab, ylab, ...)
```


Arguments

$\mathrm{x} \quad$ an object of class NMixPredCDFMarg.
K if equal to 0 then the overall predictive CDF's are plotted taken from the dens part of the object x.
If higher than 0 then the predictive CDF conditioned by the value of K is plotted (taken from the densk part of the object x).
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
type type of the plot.
col color used to draw the lines.
lty type of the line.
lwd line width.
main main title of the plot. Either character which is replicated or a vector of characters of the length equal to the number of margins.
$x l a b \quad$ label for the x-axis. Either character which is replicated or a vector of characters of the length equal to the number of margins.
ylab label for the y-axis. Either character which is replicated or a vector of characters of the length equal to the number of margins.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

See Also

NMixPredCDFMarg, NMixMCMC.

```
plot.NMixPredCondCDFMarg
```

Plot computed univariate conditional predictive cumulative distribution functions

Description

This is a basic plotting tool to visualize computed posterior predictive estimates of univariate conditional cdf's, see NMixPredCondCDFMarg.

Usage

```
## S3 method for class 'NMixPredCondCDFMarg'
plot(x, ixcond, imargin, prob, over=FALSE,
    auto.layout=TRUE, type="l", lwd=1, lty, col, qlwd=1, qlty, qcol,
    main, xlab, ylab, ylim,
    annot=TRUE, ...)
```


Arguments

x
ixcond
imargin if given then conditional cdf's of the imargin-th margin given all values of $x[[i c o n d]]$ are plotted - either separately or all in one plot.
prob probabilities of pointwise posterior quantiles which should be added to the plot. Computed values of requested posterior quantiles must be present in the object x (see argument prob of NMixPredCondCDFMarg).
over logical. If TRUE and imargin is given then all conditional cdf's are drawn in one plot.
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw the computed cdf's.

type	type of the plot.
lwd	
lty	line width. type of the line. It can be a vector in which case different lines are drawn in different types. color used to draw the lines. It can be a vector in which case different lines are drawn in different colors.
col	line width for pointwise posterior quantiles. type of the line for pointwise posterior quantiles.
qlwd	
qlty	
qcolor used to draw pointwise posterior quantiles.	
main	main title of the plot. Either character which is replicated or a vector of charac- ters.
xlab	label for the x-axis. Either character which is replicated or a vector of characters. ylab ylim annot
label for the y-axis. Either character which is replicated or a vector of characters. limits for the y-axis.	
if TRUE and imargin is given and over is TRUE then a legend is added to the	

Value
 invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixPredCondCDFMarg, NMixMCMC.

```
plot.NMixPredCondDensJoint2
```

Plot computed predictive pairwise bivariate conditional densities

Description

This is a basic plotting tool to visualize computed predictive pairwise bivariate conditional densities using the image or contour plot. See also NMixPredCondDensJoint2.

Usage

\#\# S3 method for class 'NMixPredCondDensJoint2'
plot(x, ixcond, imargin, contour=FALSE, add.contour=TRUE, col.add.contour="brown", auto. layout=TRUE, col, lwd=1, main, xylab, ...)

Arguments

x

ixcond

imargin vector of length 2. if given then conditional densities of the (imargin[1], imargin[2]) pair of margins given all values of $x[$ [icond] $]$ are plotted.
contour logical. If TRUE then contours are drawn, otherwise image plot is created.
add. contour logical. If TRUE and contour is FALSE (i.e., image plot is drawn) then contours are added to the image plots.
col.add. contour
color of contours which are added to the image plot.
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
col color used to draw the contours or images.
lwd line width.
main main title of the plot.
xylab optional character vector of the length equal to the number of margins with labels used for x and y axes on the plots.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixPredCondDensJoint2, NMixMCMC.

```
plot.NMixPredCondDensMarg
Plot computed univariate conditional predictive densities
```


Description

This is a basic plotting tool to visualize computed posterior predictive estimates of univariate conditional densities, see NMixPredCondDensMarg.

Usage

```
## S3 method for class 'NMixPredCondDensMarg'
plot(x, ixcond, imargin, prob, over=FALSE,
    auto.layout=TRUE, type="l", lwd=1, lty, col, qlwd=1, qlty, qcol,
    main, xlab, ylab, ylim,
    annot=TRUE, ...)
```


Arguments

x
ixcond
imargin if given then conditional densities of the imargin-th margin given all values of $x[[i c o n d]]$ are plotted - either separately or all in one plot.
prob probabilities of pointwise posterior quantiles which should be added to the plot. Computed values of requested posterior quantiles must be present in the object x (see argument prob of NMixPredCondDensMarg).
over logical. If TRUE and imargin is given then all conditional densities are drawn in one plot.
auto.layout if TRUE then the function determines itself how to divide the plotting region to draw the computed densities.
type type of the plot.
lwd line width.
lty type of the line. It can be a vector in which case different lines are drawn in different types.
col color used to draw the lines. It can be a vector in which case different lines are drawn in different colors.
qlwd line width for pointwise posterior quantiles.
qlty type of the line for pointwise posterior quantiles.
qcol color used to draw pointwise posterior quantiles.
main main title of the plot. Either character which is replicated or a vector of characters.
$x l a b \quad$ label for the x -axis. Either character which is replicated or a vector of characters.
ylab label for the y-axis. Either character which is replicated or a vector of characters.
ylim limits for the y-axis.
annot if TRUE and imargin is given and over is TRUE then a legend is added to the plot.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

```
NMixPredCondDensMarg, NMixMCMC.
```

```
plot.NMixPredDensJoint2
```

Plot computed marginal pairwise bivariate predictive densities

Description

This is a basic plotting tool to visualize computed marginal pairwise bivariate predictive densities using the image plot or contour plot. See also NMixPredDensJoint2.

Usage

\#\# S3 method for class 'NMixPredDensJoint2'
plot ($x, K=0$, contour=FALSE, add.contour=TRUE, col.add.contour="brown", auto. layout=TRUE, col, lwd=1, main, xylab, ...)

Arguments

$x \quad$ an object of class NMixPredDensJoint2.
K if equal to 0 then the overall predictive densities are plotted taken from the dens part of the object x.
If higher than 0 then the predictive density conditioned by the value of K is plotted (taken from the densK part of the object x).
contour logical. If TRUE then contours are drawn, otherwise image plot is created.
add. contour logical. If TRUE and contour is FALSE (i.e., image plot is drawn) then contours are added to the image plots.
col.add. contour
color of contours which are added to the image plot.
auto. layout if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
col color used to draw the contours or images.
lwd line width.
main main title of the plot.
xylab optional character vector of the length equal to the number of margins with labels used for x and y axes on the plots.
... additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

See Also

NMixPredDensJoint2, NMixMCMC.

Examples

```
## See additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## - files Galaxy.R, Faithful.R, Tandmob.R and
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Galaxy.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Faithful.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Tandmob.pdf
```

```
plot.NMixPredDensMarg Plot computed marginal predictive densities
```


Description

This is a basic plotting tool to visualize computed marginal predictive densities, see NMixPredDensMarg.

Usage

```
## S3 method for class 'NMixPredDensMarg'
```

plot(x, K=0, auto.layout=TRUE,
type="l", col="darkblue", lty=1, lwd=1, main, xlab, ylab, ...)

Arguments

X
K
an object of class NMixPredDensMarg.
if equal to 0 then the overall predictive densities are plotted taken from the dens part of the object x.
If higher than 0 then the predictive density conditioned by the value of K is plotted (taken from the densK part of the object x).

auto. layout	if TRUE then the function determines itself how to divide the plotting region to draw densities for all margins.
type	type of the plot. color used to draw the lines.
coly	type of the line.
lwd	line width.
main	main title of the plot. Either character which is replicated or a vector of charac- ters of the length equal to the number of margins.
xlab	label for the x-axis. Either character which is replicated or a vector of characters of the length equal to the number of margins.
ylab	label for the y-axis. Either character which is replicated or a vector of characters of the length equal to the number of margins.
\ldots	additional arguments passed to the plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

See Also

NMixPredDensMarg, NMixMCMC.

Examples

```
## See additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Galaxy.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Faithful.pdf
## http://www.karlin.mff.cuni.cz/~komarek/software/mixAK/Tandmob.pdf
##
```

```
plotProfiles
```

Plot individual longitudinal profiles

Description

It creates a plot of individual longitudinal profiles. It is based on the output from getProfiles function.

Usage

```
plotProfiles(ip, data, var, trans, tvar, gvar,
    auto.layout=TRUE, lines=TRUE, points=FALSE, add=FALSE,
    xlab="Time", ylab, xaxt="s", yaxt="s", xlim, ylim, main,
    lcol, col, bg, lty=1, lwd=1, pch=21, cex.points=1,
    highlight, lines.highlight=TRUE, points.highlight=TRUE,
    lcol.highlight="red3", col.highlight="red3", bg.highlight="orange",
    lty.highlight=1, lwd.highlight=2,
    pch.highlight=23, cex.highlight=1)
```


Arguments

ip output from getProfiles function containing extracted individual longitudinal profiles of each subject.
data data.frame used to produce ip. It is used to detect ranges for some variables.
var character string identifying the response variable to plot.
trans possible transformation of the response variable.
tvar character string identifying the time variable.
gvar character string identifying the group variable for which different colors are used.
auto.layout logical. If TRUE, the layout of the plotting region is determined automatically.
lines logical. If TRUE, lines are drawn in the plot connecting observations within individuals.
points logical. If TRUE, points are added to the plot.
add logical. If TRUE, the new plot overlays the old one.
lcol color for lines.
col color for points.
xlab, ylab, xaxt, yaxt, xlim, ylim, main, bg, lty, lwd, pch
arguments passed to standard plotting functions. col might also be a vector in which case different colors are used for profiles from different groups identified by the gvar variable.
cex.points passed as a cex argument to points function used when points = TRUE.
highlight an optional numeric vector giving the indeces of ip for which the longitudinal profiles should be highlighted.
lines.highlight
logical. If TRUE, highlighting is done using lines.
points.highlight
logical. If TRUE, highlighting is done using points.
lcol.highlight, col.highlight, bg.highlight, lty.highlight, lwd.highlight, pch.highlight, cex.highligh arguments col, bg, lty, lwd, pch, cex passed to lines and/or points functions which provide highlighting of selected profiles.

Value

Invisible ip.

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

getProfiles.

Examples

```
data(PBCseq, package="mixAK")
ip <- getProfiles(t="day", y=c("age", "fdrug", "bili", "platelet", "spiders"),
    id="id", data=PBCseq)
XLIM <- c(0, 910)
lcol2 <- c("darkgreen", "red")
oldPar <- par(mfrow=c(1, 3), bty="n")
plotProfiles(ip=ip, data=PBCseq, xlim=XLIM, var="bili", trans=log, tvar="day", gvar="fdrug",
    xlab="Time (days)", col=lcol2, auto.layout=FALSE, main="Log(bilirubin)",
    highlight=c(2, 4), col.highlight="darkblue")
plotProfiles(ip=ip, data=PBCseq, xlim=XLIM, var="platelet", tvar="day", gvar="fdrug",
    xlab="Time (days)", col=lcol2, auto.layout=FALSE, main="Platelet count",
    highlight=c(2, 4), col.highlight="darkblue")
plotProfiles(ip=ip, data=PBCseq, xlim=XLIM, var="spiders", tvar="day", gvar="fdrug",
    xlab="Time (days)", col=lcol2, auto.layout=FALSE,
    lines=FALSE, points=TRUE,
    highlight=c(2, 4), col.highlight="darkblue", bg.highlight="skyblue")
par(oldPar)
```


Description

Generate a random rotation matrix, i.e., a matrix $\boldsymbol{P}=\left(p_{i, j}\right)_{i=1, \ldots, p, j=1, \ldots, p}$, which satisfies
a) $\boldsymbol{P} P^{\prime}=I$,
b) $P^{\prime} P=I$,
c) $\operatorname{det}(\boldsymbol{P})=1$.

Usage

rRotationMatrix(n, dim)

Arguments

$\mathrm{n} \quad$ number of matrices to generate.
$\operatorname{dim} \quad$ dimension of a generated matrix/matrices.

Details

For $\operatorname{dim}=2, p_{2,1}(\sin (\theta))$ is generated from $\operatorname{Unif}(0,1)$ and the rest computed as follows: $p_{1,1}=$ $p_{2,2}=\sqrt{1-p_{2,1}^{2}}(\cos (\theta))$ and $p_{1,2}=-p_{2,1}(-\sin (\theta))$.
For $\operatorname{dim}>2$, the matrix \boldsymbol{P} is generated in the following steps:

1) Generate a $p \times p$ matrix \boldsymbol{A} with independent $\operatorname{Unif}(0,1)$ elements and check whether \boldsymbol{A} is of full rank p.
2) Computes a $Q R$ decomposition of A, i.e., $A=Q R$ where Q satisfies $Q Q^{\prime}=I, Q^{\prime} Q=I$, $\operatorname{det}(\boldsymbol{Q})=(-1)^{p+1}$, and columns of \boldsymbol{Q} spans the linear space generated by the columns of \boldsymbol{A}.
3) For odd dim, return matrix \boldsymbol{Q}. For even dim, return corrected matrix \boldsymbol{Q} to satisfy the determinant condition.

Value

For $n=1$, a matrix is returned.
For $\mathrm{n}>1$, a list of matrices is returned.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Golub, G. H. and Van Loan, C. F. (1996, Sec. 5.1). Matrix Computations. Third Edition. Baltimore: The Johns Hopkins University Press.

Examples

```
P <- rRotationMatrix(n=1, dim=5)
print(P)
round(P %*% t(P), 10)
round(t(P) %*% P, 10)
det(P)
n <- 10
P <- rRotationMatrix(n=n, dim=5)
for (i in 1:3){
    cat(paste("*** i=", i, "\n", sep=""))
    print(P[[i]])
    print(round(P[[i]] %*% t(P[[i]]), 10))
    print(round(t(P[[i]]) %*% P[[i]], 10))
    print(det(P[[i]]))
}
```

rSamplePair Sample a pair (with replacement)

Description

For given K, the function samples with replacement from a uniform distribution on a set of pairs $(1,2),(1,3), \ldots,(1, K),(2,3), \ldots,(2, K), \ldots,(K-1, K)$.

Usage

rSamplePair(n, K)

Arguments

n
number of pairs to sample.
K
a numeric value which determines K (see above).

Value

A two-component numeric vector for $\mathrm{n}=2$ or a matrix with 2 columns with sampled pairs in rows for $\mathrm{n}>2$.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

Examples

```
rSamplePair(n=1, K=2)
rSamplePair(n=10, K=2)
rSamplePair(n=1, K=3)
rSamplePair(n=10, K=3)
rSamplePair(n=1, K=4)
rSamplePair(n=10, K=4)
```

```
SimData Simulated dataset
```


Description

A simulated dataset used as an example dataset in Komárek and Komárková (2013+).

Usage

data(SimData)

Format

a data frame with 1157 rows and the following variables
id identification number of a subject.
tday visit time in days.
tmonth visit time in months.
$\mathbf{y N}$ response variable generated according to a linear mixed model with normal errors. It intentionally contains 50 NA's.
$\mathbf{y P}$ response variable generated according to a Poisson generalized linear mixed model. It intentionally contains 50 NA's.
$\mathbf{y B}$ response variable generated according to a Bernoulli generalized linear mixed model. It intentionally contains 50 NA's.
$\mathbf{y B j i t}$ a jittered version of yB .

References

Komárek, A. and Komárková, L. (2013+). Capabilities of R package mixAK for clustering based on multivariate continuous and discrete longitudinal data. Submitted.

Examples

```
data(SimData)
summary(SimData)
```

SP2Rect Conversion of a symmetric matrix stored in a packed format (lower triangle only) into a matrix

Description

It creates a symmetric matrix from its lower triangle.

Usage

SP2Rect(LT, dim)

Arguments

LT a numeric vector with the lower triangle (stored columnwise) of the matrix we want to reconstruct.
dim number of rows and columns of a resulting matrix.

Value

A matrix.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

Examples

```
SP2Rect(3, dim=1)
SP2Rect(c(1, 0.5, 2), dim=2)
SP2Rect(c(1, 0.5, 0.25, 2, -0.5, 3), dim=3)
```

```
summaryDiff
```


Description

It calculates (posterior) summary statistics for a difference of two quantities supplied as (MCMC) samples Within mixAK package it is primarily used to calculate posterior summary for the difference of the deviances of two competing models.

Usage

summaryDiff(x,y, prob=c(0.025, 0.5, 0.975), cut=c $(-2 * \log (9), 0)$, na.rm=TRUE)

Arguments

x
y
prob a numeric vector of probabilities for quantiles to be calculated from the sample of differences.
cut numeric value(s) which specify the cutoff(s) we are interested in estimating $\mathrm{P}(x-y<$ cut $)$ from the sample. The default values are motivated by the arguments given in Section 4 of Aitkin, Liu and Chadwick (2009) and in Section 7.5 of Aitkin (2010).
na.rm logical indicating on how to handle NA's.

Value

A list with the components
summary a named vector with the (posterior) summary statistics based on the differences.
Pcut estimated (posterior) probabilities that the difference lies below the cut values.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Aitkin, M. (2010). Statistical Inference: An Integrated Bayesian/Likelihood Approach. Boca Raton: CRC Press.

Aitkin, M., Liu, C. C., and Chadwick, T. (2009). Bayesian model comparison and model averaging for small-area estimation. Annals of Applied Statistics, 3, 199-221.

Examples

```
set.seed(16336886)
x <- runif(100, 0, 100)
y <- runif(100, 0, 100)
sdiff <- summaryDiff(x, y)
```


Description

This is the dataset resulting from a longitudinal prospective dental study performed in Flanders (North of Belgium) in 1996 - 2001. The cohort of 4468 randomly sampled children who attended the first year of the basic school at the beginning of the study was annualy dental examined by one of 16 trained dentists. The original dataset consists thus of at most 6 dental observations for each child.
The dataset presented here contains mainly the information on the emergence and caries times summarized in the interval-censored observations. Some baseline covariates are also included here. This is a copy of tandmob2 data in the package bayesSurv.

For more detail on the design of the study see Vanobbergen et al. (2000).
This data set was used in the analyses presented in Komárek et al. (2005), in Lesaffre, Komárek, and Declerck (2005) and in Komárek and Lesaffre (2007).
IMPORTANT NOTICE: It is possible to use these data for your research work under the condition that each manuscript is first approved by
Prof. Emmanuel Lesaffre
Biostatistical Centre Katholieke Universiteit Leuven
Kapucijnenvoer 35
B-3000 Leuven
Belgium
emmanuel.lesaffre@med.kuleuven.be

Usage

data(Tandmob)

Format

a data frame with 4430 rows (38 sampled children did not come to any of the designed dental examinations) and the following variables

IDNR identification number of a child
GENDER character boy or girl
GENDERNum numeric, $0=$ boy, $1=$ girl
DOB character, date of birth in the format DDmmmYY
PROVINCE factor, code of the province with
$0=$ Antwerpen
$1=$ Vlaams Brabant
$2=$ Limburg
$3=$ Oost Vlaanderen
$4=$ West Vlaanderen
EDUC factor, code of the educational system with
$0=$ Free
$1=$ Community school
$2=$ Province/council school

STARTBR factor, code indicating the starting age of brushing the teeth (as reported by parents)
with
$\mathbf{1}=[0,1]$ years
$2=(1,2]$ years
$\mathbf{3}=(2,3]$ years
$4=(3,4]$ years
$5=(4,5]$ years
$6=$ later than at the age of 5
FLUOR binary covariate, $0=$ no, $1=$ yes. This is the covariate fluorosis used in the paper Komárek et al. (2005).
BAD.xx binary, indicator whether a deciduous tooth xx was removed becaues of orthodontical reasons or not.
xx takes values 53, 63, 73, 83 (deciduous lateral canines), 54, 64, 74, 84 (deciduous first molars), 55, 65, 75, 85 (deciduous second molars).
EBEG.xx lower limit of the emergence (in years of age) of the permanent tooth $x x$. NA if the emergence was left-censored.
xx takes values 11, 21, 31, 41 (permanent incisors), 12, 22, 32, 42 (permanent central canines), $13,23,33,43$ (permanent lateral canines), 14, 24, 34, 44 (permanent first premolars), 15, 25, 35, 45 (permanent second premolars), 16, 26, 36, 46 (permanent first molars), 17, 27, 37, 47 (permanent second molars).
EEND.xx upper limit of the emergence (in years of age) of the permanent tooth $x x$. NA if the emergence was right-censored.
xx takes values as for the variable EBEG. xx .
FBEG.xx lower limit for the caries time (in years of age, ' F ' stands for 'failure') of the permanent tooth $x x$. NA if the caries time was left-censored.
xx takes values as for the variable EBEG. xx .
FEND.xx upper limit for the caries time (in years of age, ' F ' stands for 'failure') of the permanent tooth $x x$. NA if the caries time was right-censored. xx takes values as for the variable EBEG. xx.
Unfortunately, for all teeth except $16,26,36$ and 46 almost all the caries times are rightcensored. For teeth $16,26,36,46$, the amount of right-censoring is only about 25%.
Txx.DMF indicator whether a deciduous tooth xx was decayed or missing due to caries or filled on at most the last examination before the first examination when the emergence of the permanent successor was recorded.
xx takes values 53, 63, 73, 83 (deciduous lateral incisors), 54, 64, 74, 84 (deciduous first molars), 55, 65, 75, 85 (deciduous second molars).
Txx.CAR indicator whether a~deciduous tooth xx was removed due to the orthodontical reasons or decayed on at most the last examination before the first examination when the emergence of the permanent successor was recorded.

Source

Biostatistical Centre, Katholieke Universiteit Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
URL: http://med.kuleuven.be/biostat/

Data collection was supported by Unilever, Belgium. The Signal Tandmobiel project comprises the following partners: D. Declerck (Dental School, Catholic University Leuven), L. Martens (Dental School, University Ghent), J. Vanobbergen (Oral Health Promotion and Prevention, Flemish Dental Association), P. Bottenberg (Dental School, University Brussels), E. Lesaffre (Biostatistical Centre, Catholic University Leuven), K. Hoppenbrouwers (Youth Health Department, Catholic University Leuven; Flemish Association for Youth Health Care).

References

Komárek, A., Lesaffre, E., Härkänen, T., Declerck, D., and Virtanen, J. I. (2005). A Bayesian analysis of multivariate doubly-interval-censored dental data. Biostatistics, 6, 145-155.

Komárek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as an error distribution. Statistica Sinica, 17, 549569.

Lesaffre, E., Komárek, A., and Declerck, D. (2005). An overview of methods for interval-censored data with an emphasis on applications in dentistry. Statistical Methods in Medical Research, 14, 539-552.

Vanobbergen, J., Martens, L., Lesaffre, E., and Declerck, D. (2000). The Signal-Tandmobiel project - a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. European Journal of Paediatric Dentistry, 2, 87-96.

Examples

data(Tandmob)
summary (Tandmob)

TandmobEmer
Signal Tandmobiel data - emergence times

Description

This is a part of the Tandmob data containing only emergence times and some baseline covariates. Here, all left-censored emergence times have been changed into interval-censored with the lower limit of the intervals equal to 5 years of age (clinically minimal time before which the permanent teeth hardly emerge). Also censoring indicators are added to be able to use the data directly with the NMixMCMC function.

IMPORTANT NOTICE: It is possible to use these data for your research work under the condition that each manuscript is first approved by
Prof. Emmanuel Lesaffre
Biostatistical Centre Katholieke Universiteit Leuven
Kapucijnenvoer 35
B-3000 Leuven
Belgium
emmanuel.lesaffre@med.kuleuven.be

Usage

```
data(TandmobEmer)
```


Format

a data frame with 4430 rows and the following variables
IDNR identification number of a child
GENDER character boy or girl
GENDERNum numeric, $0=$ boy, $1=$ girl
DOB character, date of birth in the format DDmmmYY
PROVINCE factor, code of the province with

```
0= Antwerpen
\(1=\) Vlaams Brabant
\(\mathbf{2}=\) Limburg
3 = Oost Vlaanderen
\(4=\) West Vlaanderen
```

EDUC factor, code of the educational system with
$0=$ Free
$1=$ Community school
$\mathbf{2}=$ Province/council school
STARTBR factor, code indicating the starting age of brushing the teeth (as reported by parents) with
$\mathbf{1}=[0,1]$ years
$\mathbf{2}=(1,2]$ years
$\mathbf{3}=(2,3]$ years
$\mathbf{4}=(3,4]$ years
$5=(4,5]$ years
$\mathbf{6}=$ later than at the age of 5
EBEG.xx lower limit of the emergence (in years of age) of the permanent tooth $x x$. It is equal to 5 if the emergence was originally left-censored.
xx takes values $11,21,31,41$ (permanent incisors), 12, 22, 32, 42 (permanent central canines),
13, 23, 33, 43 (permanent lateral canines), 14, 24, 34, 44 (permanent first premolars), 15, 25, 35, 45 (permanent second premolars), 16, 26, 36, 46 (permanent first molars), 17, 27, 37, 47 (permanent second molars).
EEND.xx upper limit of the emergence (in years of age) of the permanent tooth x. NA if the emergence was right-censored.
xx takes values as for the variable EBEG. xx .
CENSOR.xx censoring indicator for the emergence. It is equal to 3 for interval-censored times and equal to 0 for right-censored times.
xx takes values as for the variable EBEG. xx .

Source

Biostatistical Centre, Katholieke Universiteit Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
URL: http://med.kuleuven.be/biostat/
Data collection was supported by Unilever, Belgium. The Signal Tandmobiel project comprises the following partners: D. Declerck (Dental School, Catholic University Leuven), L. Martens (Dental School, University Ghent), J. Vanobbergen (Oral Health Promotion and Prevention, Flemish Dental Association), P. Bottenberg (Dental School, University Brussels), E. Lesaffre (Biostatistical Centre, Catholic University Leuven), K. Hoppenbrouwers (Youth Health Department, Catholic University Leuven; Flemish Association for Youth Health Care).

References

Komárek, A. (2009). A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis, 53(12), 3932-3947.

Vanobbergen, J., Martens, L., Lesaffre, E., and Declerck, D. (2000). The Signal-Tandmobiel project - a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. European Journal of Paediatric Dentistry, 2, 87-96.

See Also

Tandmob

Examples

data(TandmobEmer)
summary (TandmobEmer)

TMVN
Truncated multivariate normal distribution

Description

Random generation for the truncated multivariate normal distribution. The mean and covariance matrix of the original multivariate normal distribution are mean and Sigma. Truncation limits are given by a, b, type of truncation is given by trunc.
This function uses a Gibbs algorithm to produce a Markov chain whose stationary distribution is the targeted truncated multivariate normal distribution, see Geweke (1991) for more details. Be aware that the sampled values are not i.i.d.!

Usage

rTMVN(n, mean=c(0, 0), Sigma=diag(2), a, b, trunc, xinit)

Arguments

mean
Sigma
a
b
trunc
xinit a numeric vector of the same length as mean with the initial value for the Gibbs sampler. If it is not supplied, the function determines itself the initial value.
$\mathrm{n} \quad$ number of observations to be sampled.

Value

A matrix with the sampled values (Markov chain) in rows.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Geweke, J. (1991). Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. Computer Sciences and Statistics, 23, 571-578.

See Also

rTNorm.

Examples

```
## Not run:
set.seed(1977)
exam2 <- function(n, mu, sigma, rho, a, b, trunc)
```

```
{
    Sigma <- matrix(c(sigma[1]^2, rho*sigma[1]*sigma[2], rho*sigma[1]*sigma[2], sigma[2]^2), nrow=2)
    x <- rTMVN(n, mean=mu, Sigma=Sigma, a=a, b=b, trunc=trunc)
    x1.gr <- seq(mu[1]-3.5*sigma[1], mu[1]+3.5*sigma[1], length=100)
    x2.gr <- seq(mu[2]-3.5*sigma[2], mu[2]+3.5*sigma[2], length=100)
    z <- cbind(rep(x1.gr, 100), rep(x2.gr, each=100))
    dens.z <- matrix(dMVN(z, mean=mu, Sigma=Sigma), ncol=100)
    MEAN <- round(apply(x, 2, mean), 3)
    SIGMA <- var(x)
    SD <- sqrt(diag(SIGMA))
    RHO <- round(SIGMA[1,2]/(SD[1]*SD[2]), 3)
    SD <- round(SD, 3)
    layout(matrix(c(0,1,1,0, 2,2,3,3), nrow=2, byrow=TRUE))
    contour(x1.gr, x2.gr, dens.z, col="darkblue", xlab="x[1]", ylab="x[2]")
    points(x[,1], x[,2], col="red")
    title(sub=paste("Sample mean = ", MEAN[1], ", ", MEAN[2], ", Sample SD = ", SD[1], ", ", SD[2],
                            ", Sample rho = ", RHO, sep=""))
    plot(1:n, x[,1], type="l", xlab="Iteration", ylab="x[1]", col="darkgreen")
    plot(1:n, x[,2], type="l", xlab="Iteration", ylab="x[2]", col="darkgreen")
    return(x)
}
x1 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0, a=c(-6, -9), b=c(4, 11), trunc=c(3, 3))
x2 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(-6, -9), b=c(4, 11), trunc=c(3, 3))
x3 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(-100, -100), b=c(100, 100),
    trunc=c(3, 3))
x4 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=-0.7, a=c(-6, -9), b=c(4, 11),
    trunc=c(3, 3))
x5 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=-0.9, a=c(-6, -9), b=c(4, 11),
    trunc=c(3, 3))
x6 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(0, 0), trunc=c(0, 2))
x7 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(-1, 1), trunc=c(0, 2))
x8 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(-1, 1), trunc=c(1, 2))
x9 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(-1.5, 0.5), b=c(-0.5, 1.5),
    trunc=c(3, 3))
x10 <- exam2(1000, mu=c(-1, 1), sigma=c(1, sqrt(2)), rho=0.7, a=c(-1.5, 0.5), b=c(-0.5, 1.5),
    trunc=c(4, 3))
## End(Not run)
```

TNorm Truncated normal distribution

Description

Random generation for the truncated normal distribution. The mean and standard deviation of the original normal distribution are mean and sd. Truncation limits are given by a, b, type of truncation is given by trunc.

Usage

rTNorm(n, mean=0, sd=1, a, b, trunc)

Arguments

mean
sd
a
b
trunc
n
mean (if common for all observations) or a vector of length n of means.
standard deviation (if common for all observations) or a vector of length n of standard deviations.
Note that mean and sd must have the same length, either 1 or n.
truncation limit 1 (if common for all observations) or a vector of length n of truncation limits 1.
truncation limit 2 (if common for all observations) or a vector of length n of truncation limits 2.

Value

A numeric vector with sampled values.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Geweke, J. (1991). Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. Computer Sciences and Statistics, 23, 571-578.

See Also

rnorm, rTMVN.

Examples

```
set.seed(1977)
### Not truncated normal distribution
x1 <- rTNorm(1000, mean=10, sd=3)
c(mean(x1), sd(x1), range(x1))
### Truncation from left only
x2 <- rTNorm(1000, mean=10, sd=3, a=7, trunc=0)
c(mean(x2), sd(x2), range(x2))
### Degenerated normal distribution
x6 <- rTNorm(1000, mean=10, sd=3, a=13, trunc=1)
c(mean(x6), sd(x6), range(x6))
### Truncation from right only
x3 <- rTNorm(1000, mean=10, sd=3, a=13, trunc=2)
c(mean(x3), sd(x3), range(x3))
### Truncation from both sides
x4 <- rTNorm(1000, mean=10, sd=3, a=7, b=13, trunc=3)
c(mean(x4), sd(x4), range(x4))
x5 <- rTNorm(1000, mean=10, sd=3, a=5.5, b=14.5, trunc=3)
c(mean (x5), sd(x5), range(x5))
oldPar <- par(mfrow=c(2, 3))
hist(x1, main="N(10, 3^2)")
hist(x2, main="TN(10, 3^2, 7, Infty)")
hist(x6, main="TN(10, 3^2, 13, 13)")
hist(x3, main="TN(10, 3^2, -Infty, 13)")
hist(x4, main="TN(10, 3^2, 7, 13)")
hist(x5, main="TN(10, 3^2, 5.5, 14.5)")
par(oldPar)
### Different truncation limits
n <- 1000
a <- rnorm(n, -2, 1)
b <- a + rgamma(n, 1, 1)
trunc <- rep(c(0, 1, 2, 3, 4), each=n/5)
x7 <- rTNorm(n, mean=1, sd=2, a=a, b=b, trunc=trunc)
cbind(trunc, a, x7)[1:10,]
sum(x7[1:(n/5)]> a[1:(n/5)]) ## must be equal to n/5
cbind(trunc, a, x7)[201:210,]
sum(x7[(n/5+1):(2*n/5)] == a[(n/5+1):(2*n/5)]) ## must be equal to n/5
cbind(trunc, x7, a)[401:410,]
sum(x7[(2*n/5+1):(3*n/5)]<a[(2*n/5+1):(3*n/5)]) ## must be equal to n/5
cbind(trunc, a, x7, b)[601:610,]
sum(x7[(3*n/5+1):(4*n/5)]> a[(3*n/5+1):(4*n/5)]) ## must be equal to n/5
```

```
    sum(x7[(3*n/5+1):(4*n/5)]<b[(3*n/5+1):(4*n/5)])
        ## must be equal to n/5
    cbind(trunc, x7)[801:810,]
    ### Different moments and truncation limits
    n <- 1000
    mu <- rnorm(n, 1, 0.2)
    sigma <- 0.5 + rgamma(n, 1, 1)
    a <- rnorm(n, -2, 1)
    b <- a + rgamma(n, 1, 1)
    trunc <- rep(c(0, 1, 2, 3, 4), each=n/5)
    x8 <- rTNorm(n, mean=1, sd=2, a=a, b=b, trunc=trunc)
    ### Truncation from left only
    ### (extreme cases when we truncate to the area
    ### where the original normal distribution has
    ### almost zero probability)
    x2b <- rTNorm(1000, mean=0, sd=1, a=7.9, trunc=0)
    c(mean(x2b), sd(x2b), range(x2b))
    x2c <- rTNorm(1000, mean=1, sd=2, a=16, trunc=0)
    c(mean(x2c), sd(x2c), range(x2c))
    ### Truncation from right only (extreme cases)
    x3b <- rTNorm(1000, mean=0, sd=1, a=-7.9, trunc=2)
    c(mean(x3b), sd(x3b), range(x3b))
    x3c <- rTNorm(1000, mean=1, sd=2, a=-13, trunc=2)
    c(mean(x3c), sd(x3c), range(x3c))
    ### Truncation from both sides (extreme cases)
    x4b <- rTNorm(1000, mean=0, sd=1, a=-9, b=-7.9, trunc=3)
    c(mean(x4b), sd(x4b), range(x4b))
    x4c <- rTNorm(1000, mean=0, sd=1, a=7.9, b=9, trunc=3)
    c(mean(x4c), sd(x4c), range(x4c))
```

 tracePlots Traceplots for selected parameters

Description

This function draws traceplots of selected parameters from the MCMC simulations ran using NMixMCMC or GLMM_MCMC functions.

Usage

tracePlots(x, ...)
\#\# Default S3 method:

```
tracePlots(x, ...)
    ## S3 method for class 'NMixMCMC'
tracePlots(x, param=c("Emix", "SDmix", "Cormix", "K", "w", "mu", "sd", "gammaInv"),
        relabel=FALSE, order,
        auto.layout=TRUE, xlab="Iteration", ylab, col="slateblue", main="", ...)
    ## S3 method for class 'NMixMCMClist'
tracePlots(x, param=c("Emix", "SDmix", "Cormix", "K", "w", "mu", "sd", "gammaInv"),
            relabel=FALSE,
    auto.layout=TRUE, xlab="Iteration", ylab, col=c("blue3", "red3"), main="", ...)
    ## S3 method for class 'GLMM_MCMC'
tracePlots(x, param=c("Deviance", "Cond.Deviance",
        "alpha", "Eb", "SDb", "Corb", "sigma_eps",
        "w_b", "mu_b", "sd_b", "gammaInv_b", "gammaInv_eps"),
        relabel=FALSE, order,
        auto.layout=TRUE, xlab="Iteration", ylab, col="slateblue", main="", ...)
    ## S3 method for class 'GLMM_MCMClist'
tracePlots(x, param=c("Deviance", "Cond.Deviance",
            "alpha", "Eb", "SDb", "Corb", "sigma_eps",
            "w_b", "mu_b", "sd_b", "gammaInv_b", "gammaInv_eps"),
        relabel=FALSE,
    auto.layout=TRUE, xlab="Iteration", ylab, col=c("blue3", "red3"), main="", ...)
```


Arguments

x
param
an object of appropriate class.
a character string which specifies which sort of parameters is to be plotted.
Emix overall means (for each margin) of the normal mixture;
SDmix overall standard deviations (for each margin) of the normal mixture;
Cormix overall correlations (each pair) of the normal mixture;
K number of mixture components;
$\mathbf{w}, \mathbf{w} _\mathbf{b}$ weights of each of mixture components. If relabel is FALSE, weights are not re-labeled before plotting;
$\mathbf{m u}, \mathbf{m u} \mathbf{b}$ component means (each margin, each mixture component) of the normal mixture. The mixture means are shifted and scaled using $x \$ s c a l e \$ s h i f t$ and $\times \$$ scale\$scale before plotting. If relabel is FALSE, means are not re-labeled before plotting;
sd, sd_b component standard deviations (each margin, each mixture component) of the normal mixture. The mixture standard deviations are scaled using $x \$$ scale $\$$ scale before plotting. If relabel is FALSE, standard deviations are not re-labeled before plotting;
gammaInv, gammaInv_b, gammaInv_eps variance hyperparameters;
Deviance deviance (marginal, with random effects integrated out) of the GLMM;
Cond.Deviance conditional deviance (given random effects) of the GLMM;
alpha fixed effects of the fitted GLMM;
Eb overall means (for each margin) of the random effects of the fitted GLMM;
SDb overall standard deviations (for each margin) of the random effects of the fitted GLMM;
Corb overall correlations (each pair) of the distribution of the random effects of the fitted GLMM.
sigma_eps standard deviations of the error terms in the (mixed) models for continuous responses.
relabel logical value. It indicates whether the chains with param being w, mu, sd, w_b, mu_b, sd_b should be re-labeled before plotting. Re-labelling is given by argument order. If order is missing then $\times \$$ order or $\times \$$ order_b determines re-labelling.
order a matrix with K columns and M rows where M is the length of MCMC. Each row of order must be a permutation of $(1, \ldots, K)$.
auto.layout logical value. If TRUE, the plotting region is automatically divided to produce traceplots of all parameters. Note that layout must be set up automatically if there are more than 28 parameters to be plotted (often the case for correlations with param being Corb or for mixture means with param being mu_b).
xlab, ylab, col, main
arguments passed to plot function. They all can be of length one (the value is used on all plots) or of length equal to the number of parameters to be plotted.
... other arguments passed to plot function.

Value

invisible(x)

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

See Also

NMixMCMC, GLMM_MCMC, NMixRelabel, traceplot.
Wishart Wishart distribution

Description

Wishart distribution

$$
\text { Wishart }(\nu, \boldsymbol{S}),
$$

where ν are degrees of freedom of the Wishart distribution and S is its scale matrix. The same parametrization as in Gelman (2004) is assumed, that is, if $\boldsymbol{W} \sim \operatorname{Wishart}(\nu, \boldsymbol{S})$ then

$$
\mathrm{E}(\boldsymbol{W})=\nu \boldsymbol{S}
$$

Prior to version 3.4-1 of this package, functions dWISHART and rWISHART were called as dWishart and rWishart, respectively. The names were changed in order to avoid conflicts with rWishart from a standard package stats.

Usage

dWISHART(W, df, S, log=FALSE)
rWISHART(n, df, S)

Arguments

W
Either a matrix with the same number of rows and columns as S (1 point sampled from the Wishart distribution) or a matrix with ncol equal to ncol* (ncol +1)/2 and n rows (n points sampled from the Wishart distribution for which only lower triangles are given in rows of the matrix W).
$\mathrm{n} \quad$ number of observations to be sampled.
df degrees of freedom of the Wishart distribution.
S scale matrix of the Wishart distribution.
log logical; if TRUE, log-density is computed

Details

The density of the Wishart distribution is the following

$$
f(\boldsymbol{W})=\left(2^{\nu p / 2} \pi^{p(p-1) / 4} \prod_{i=1}^{p} \Gamma\left(\frac{\nu+1-i}{2}\right)\right)^{-1}|\boldsymbol{S}|^{-\nu / 2}|\boldsymbol{W}|^{(\nu-p-1) / 2} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}^{-1} \boldsymbol{W}\right)\right)
$$

where p is number of rows and columns of the matrix \boldsymbol{W}.
In the univariate case, $\operatorname{Wishart}(\nu, S)$ is the same as $\operatorname{Gamma}(\nu / 2,1 /(2 S))$.
Generation of random numbers is performed by the algorithm described in Ripley (1987, pp. 99).

Value

Some objects.

Value for dWISHART

A numeric vector with evaluated (log-)density.

Value for rWISHART

If n equals 1 then a sampled symmetric matrix W is returned.
If $\mathrm{n}>1$ then a matrix with sampled points (lower triangles of \boldsymbol{W}) in rows is returned.

Author(s)

Arnošt Komárek <arnost.komarek[AT]mff.cuni.cz>

References

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis, Second edition. Boca Raton: Chapman and Hall/CRC.

Ripley, B. D. (1987). Stochastic Simulation. New York: John Wiley and Sons.

See Also

rWishart.

Examples

```
set.seed(1977)
### The same as gamma(shape=df/2, rate=1/(2*S))
df <- 1
S <- 3
w <- rWISHART(n=1000, df=df, S=S)
mean(w) ## should be close to df*S
var(w) ## should be close to 2*df*S^2
dWISHART(w[1], df=df, S=S)
dWISHART(w[1], df=df, S=S, log=TRUE)
dens.w <- dWISHART(w, df=df, S=S)
dens.wG <- dgamma(w, shape=df/2, rate=1/(2*S))
rbind(dens.w[1:10], dens.wG[1:10])
ldens.w <- dWISHART(w, df=df, S=S, log=TRUE)
ldens.wG <- dgamma(w, shape=df/2, rate=1/(2*S), log=TRUE)
rbind(ldens.w[1:10], ldens.wG[1:10])
### Bivariate Wishart
df <- 2
S <- matrix(c(1,3,3,13), nrow=2)
print(w2a <- rWISHART(n=1, df=df, S=S))
dWISHART(w2a, df=df, S=S)
w2 <- rWISHART(n=1000, df=df, S=S)
print(w2[1:10,])
apply(w2, 2, mean) ## should be close to df*S
(df*S)[lower.tri(S, diag=TRUE)]
dens.w2 <- dWISHART(w2, df=df, S=S)
ldens.w2 <- dWISHART(w2, df=df, S=S, log=TRUE)
cbind(w2[1:10,], data.frame(Density=dens.w2[1:10], Log.Density=ldens.w2[1:10]))
### Trivariate Wishart
df <- 3.5
```

```
S <- matrix(c(1,2,3,2,20,26,3,26,70), nrow=3)
print(w3a <- rWISHART(n=1, df=df, S=S))
dWISHART(w3a, df=df, S=S)
w3 <- rWISHART(n=1000, df=df, S=S)
print(w3[1:10,])
apply(w3, 2, mean) ## should be close to df*S
(df*S)[lower.tri(S, diag=TRUE)]
dens.w3 <- dWISHART(w3, df=df, S=S)
ldens.w3 <- dWISHART(w3, df=df, S=S, log=TRUE)
cbind(w3[1:10,], data.frame(Density=dens.w3[1:10], Log.Density=ldens.w3[1:10]))
```


Description

This method transforms fitted distributionof $Y=\operatorname{trans}(T)$ into distribution of T. Default transformation is a logarithmic transformation where $\operatorname{trans}(t)=\log (t)$, itrans $(y)=\exp (y)$, dtrans $(t)=1 / t$.

Usage

```
Y2T(x, ...)
```

\#\# S3 method for class 'NMixPredDensMarg'
Y2T(x, itrans=exp, dtrans=function $(x)\{\operatorname{return}(1 / x)\}, \ldots)$
\#\# S3 method for class 'NMixPlugDensMarg'
Y2T(x, itrans=exp, dtrans=function(x)\{return(1 / x)\}, ...)
\#\# S3 method for class 'NMixPredCDFMarg'
Y2T(x, itrans=exp, ...)
\#\# S3 method for class 'NMixPredDensJoint2'
Y2T(x, itrans=exp, dtrans=function $(x)\{\operatorname{return}(1 / x)\}, \ldots)$
\#\# S3 method for class 'NMixPlugDensJoint2'
$\mathrm{Y} 2 \mathrm{~T}(x$, itrans=exp, dtrans=function $(x)\{\operatorname{return}(1 / \mathrm{x})\}, \ldots)$
\#\# S3 method for class 'NMixPredCondDensMarg'
Y2T(x, itrans=exp, dtrans=function(x)\{return(1 / x)\}, ...)
\#\# S3 method for class 'NMixPlugCondDensMarg'
Y2T(x, itrans=exp, dtrans=function(x)\{return(1 / x)\}, ...)
\#\# S3 method for class 'NMixPredCondCDFMarg'

```
Y2T(x, itrans=exp, dtrans=function(x)\{return(1/x)\},...)
\#\# S3 method for class 'NMixPredCondDensJoint2'
Y2T(x, itrans=exp, dtrans=function(x)\{return(1/x)\},...)
\#\# S3 method for class 'NMixPlugCondDensJoint2'
Y2T(x, itrans=exp, dtrans=function(x)\{return(1/x)\},...)
```


Arguments

x
itrans
dtrans
an object of appropriate class.
either an object of class function or a list of objects of class function giving inverse transformations for each margin. If itrans is a single function then it is assumed that all margins were transformed in the same way.
either an object of class function or a list of objects of class function giving derivatives of transformations for each margin. If dtrans is a single function then it is assumed that all margins were transformed in the same way.
... optional additional arguments.

Value

An object of the same class as argument x .

Author(s)

Arnošt Komárek <arnost. komarek[AT]mff.cuni.cz>

See Also

NMixPredDensMarg, NMixPlugDensMarg, NMixPredCDFMarg, NMixPredDensJoint2, NMixPlugDensJoint2, NMixPredCondDensMarg, NMixPlugCondDensMarg, NMixPredCondCDFMarg, NMixPredCondDensJoint2, NMixPlugCondDensJoint2.

Index

*Topic algebra
MatMPpinv, 27
MatSqrt, 28
*Topic arith
generatePermutations, 14
*Topic array
MatMPpinv, 27
MatSqrt, 28
rRotationMatrix, 97
SP2Rect, 100
*Topic cluster
GLMM_longitDA, 15
GLMM_longitDA2, 17
NMixCluster, 40
NMixPlugDA, 58
NMixPredDA, 68
NMixRelabel, 74
$*$ Topic datasets
Acidity, 3
Enzyme, 10
Faithful, 11
Galaxy, 13
PBC910, 79
PBCseq, 80
SimData, 99
Tandmob, 101
TandmobEmer, 104
$*$ Topic distribution
MVN, 30
MVNmixture, 32
MVT, 36
rRotationMatrix, 97
rSamplePair, 98
TMVN, 106
TNorm, 108
Wishart, 113
*Topic dplot
autolayout, 4
BsBasis, 6
cbplot, 7
getProfiles, 14
NMixPlugCondDensJoint2, 54
NMixPlugCondDensMarg, 56
NMixPlugDensJoint2, 58
NMixPlugDensMarg, 60
NMixPredCDFMarg, 61
NMixPredCondCDFMarg, 63
NMixPredCondDensJoint2, 65
NMixPredCondDensMarg, 66
NMixPredDensJoint2, 69
NMixPredDensMarg, 71
plot.NMixPlugCondDensJoint2, 82
plot.NMixPlugCondDensMarg, 84
plot.NMixPlugDensJoint2, 85
plot.NMixPlugDensMarg, 86
plot.NMixPredCDFMarg, 87
plot.NMixPredCondCDFMarg, 88
plot.NMixPredCondDensJoint2, 89
plot.NMixPredCondDensMarg, 90
plot.NMixPredDensJoint2, 92
plot.NMixPredDensMarg, 93
plotProfiles, 95
tracePlots, 111
$*$ Topic htest
summaryDiff, 100
*Topic models
GLMM_longitDA, 15
GLMM_longitDA2, 17
GLMM_MCMC, 18
*Topic multivariate
BLA, 4
GLMM_longitDA, 15
GLMM_longitDA2, 17
GLMM_MCMC, 18
MVN, 30
MVNmixture, 32
MVT, 36
NMixChainComp, 38

NMixChainsDerived, 39
NMixCluster, 40
NMixEM, 41
NMixMCMC, 43
NMixPlugCondDensJoint2, 54
NMixPlugCondDensMarg, 56
NMixPlugDA, 58
NMixPlugDensJoint2, 58
NMixPlugDensMarg, 60
NMixPredCDFMarg, 61
NMixPredCondCDFMarg, 63
NMixPredCondDensJoint2, 65
NMixPredCondDensMarg, 66
NMixPredDA, 68
NMixPredDensJoint2, 69
NMixPredDensMarg, 71
NMixPseudoGOF, 73
NMixRelabel, 74
NMixSummComp, 78
rRotationMatrix, 97
TMVN, 106
Wishart, 113
*Topic smooth
BsBasis, 6
fitted.GLMM_MCMC, 12
NMixChainComp, 38
NMixChainsDerived, 39
NMixPlugCondDensJoint2, 54
NMixPlugCondDensMarg, 56
NMixPlugDA, 58
NMixPlugDensJoint2, 58
NMixPlugDensMarg, 60
NMixPredCDFMarg, 61
NMixPredCondCDFMarg, 63
NMixPredCondDensJoint2, 65
NMixPredCondDensMarg, 66
NMixPredDA, 68
NMixPredDensJoint2, 69
NMixPredDensMarg, 71
NMixSummComp, 78
Y2T, 116
*Topic Survival
NMixMCMC, 43
*Topic univar
summaryDiff, 100
*Topic utilities
generatePermutations, 14
Acidity, 3
autolayout, 4
BLA, 4
bs, 7
BsBasis, 6

C_BLA (BLA), 4
C_deriv_ldMVT_x (MVT), 36
C_dmixMVN_R (MVNmixture), 32
C_dmixNorm_R (MVNmixture), 32
C_dMVN1_R (MVN), 30
C_dMVT1_R (MVT), 36
C_generatePermutations
(generatePermutations), 14
C_GLMM_longitDA (GLMM_longitDA), 15
C_GLMM_longitDA2 (GLMM_longitDA2), 17
C_GLMM_MCMC (GLMM_MCMC), 18
C_GLMM_NMixRelabel (NMixRelabel), 74
C_GLMM_PED (GLMM_MCMC), 18
C_ldWishart_R (Wishart), 113
C_MPpinvSP (MatMPpinv), 27
C_NMix_ChainsDerived
(NMixChainsDerived), 39
C_NMix_MCMC (NMixMCMC), 43
C_NMix_NMixRelabel (NMixRelabel), 74
C_NMix_PED (NMixMCMC), 43
C_NMix_PredCDFMarg (NMixPredCDFMarg), 61
C_NMix_PredCondDensCDFMarg
(NMixPredCondDensMarg), 66
C_NMix_PredCondDensJoint2
(NMixPredCondDensJoint2), 65
C_NMix_PredDA (NMixPredDA), 68
C_NMix_PredDensJoint2
(NMixPredDensJoint2), 69
C_NMix_PredDensMarg (NMixPredDensMarg), 71
C_rDirichlet_R(Dirichlet), 9
C_rmixMVN_R (MVNmixture), 32
C_rmixNorm_R (MVNmixture), 32
C_rMVN1_R (MVN), 30
C_rMVN2_R (MVN), 30
C_rMVT1_R (MVT), 36
C_RotationMatrix_R (rRotationMatrix), 97
C_rTMVN1_R (TMVN), 106
C_rTNorm1_R (TNorm), 108
C_rWishart_R (Wishart), 113
C_SamplePair_R(rSamplePair), 98
C_sqrtGE (MatSqrt), 28
cbplot, 7
contour, 59, 70, 82, 85, 89, 92
Dirichlet, 9
dMVN (MVN), 30
dMVNmixture (MVNmixture), 32
dMVNmixture2 (MVNmixture), 32
dMVT (MVT), 36
dnorm, 31, 34
dt, 37
dWISHART (Wishart), 113
Enzyme, 10
Faithful, 11
fitted.GLMM_MCMC, 12
galaxies, 13
Galaxy, 13
generatePermutations, 14
getProfiles, 14, 95, 96
geyser, 11
GLMM_longitDA, 15, 18
GLMM_longitDA2, 17, 17, 18
GLMM_MCMC, $12,13,15-18,18,38,39,41,56$, $57,60,61,63,64,66,68,71,73,75$, 77-79, 111, 113
image, 59, 70, 82, 89, 92
layout, 4
lines, 96
lmer, 20
makeCluster, 22, 48
MatMPpinv, 27
MatSqrt, 28
MVN, 30, 34
MVNmixture, 32
Mvnorm, 31, 34
MVT, 36
Mvt, 37
NMixChainComp, 38
NMixChainsDerived, 39
NMixCluster, 40
NMixEM, 41
NMixMCMC, 20, 27, 38-41, 43, 54, 56-58, 60-66, 68-76, 78, 79, 83, 85-90, 92-94, 104, 111, 113
NMixPlugCondDensJoint2, 54, 82, 83, 117

NMixPlugCondDensMarg, 56, 84, 85, 117
NMixPlugDA, 58, 69
NMixPlugDensJoint2, 58, 85, 86, 117
NMixPlugDensMarg, 60, 86, 87, 117
NMixPredCDFMarg, 61, 87, 88, 117
NMixPredCondCDFMarg, 63, 88, 89, 117
NMixPredCondDensJoint2, 56, 65, 89, 90, 117
NMixPredCondDensMarg, 57, 66, 90-92, 117
NMixPredDA, 58, 68
NMixPredDensJoint2, 52, 60, 69, 73, 78, 92, 93, 117
NMixPredDensMarg, 52, 61, 71, 71, 78, 93, 94, 117
NMixPseudoGOF, 73
NMixRelabel, 38, 74, 113
NMixSummComp, 78
par, 4
pbc, 80,82
PBC910, 79, 80
PBCseq, 79, 80
pbcseq, 80,82
plot. default, 8
plot.NMixPlugCondDensJoint2, 56, 82
plot.NMixPlugCondDensMarg, 57, 84
plot.NMixPlugDensJoint2, 60, 85
plot. NMixPlugDensMarg, 61, 86
plot.NMixPredCDFMarg, 63, 87
plot.NMixPredCondCDFMarg, 64, 88
plot. NMixPredCondDensJoint2, 66, 89
plot.NMixPredCondDensMarg, 68, 90
plot. NMixPredDensJoint2, 71, 92
plot. NMixPredDensMarg, 73, 93
plotProfiles, 15, 95
points, 95, 96
print.GLMM_MCMC (GLMM_MCMC), 18
print.GLMM_MCMClist (GLMM_MCMC), 18
print. NMixEM (NMixEM), 41
print. NMixMCMC (NMixMCMC), 43
print. NMixMCMClist (NMixMCMC), 43
rbeta, 9
rcMVN (MVN), 30
rDirichlet (Dirichlet), 9
rMVN (MVN), 30
rMVNmixture (MVNmixture), 32
rMVNmixture2 (MVNmixture), 32
rMVT (MVT), 36

```
rnorm,109
rRotationMatrix,97
rSamplePair,98
rTMVN, 109
rTMVN (TMVN), 106
rTNorm,107
rTNorm (TNorm), 108
rWISHART (Wishart), 113
rWishart, 114, 115
SimData, }9
SP2Rect,100
summaryDiff,100
Tandmob, 101, 104, 106
TandmobEmer, 104
TMVN,106
TNorm,108
traceplot,113
tracePlots,111
Wishart,113
Y2T, 116
```

