Package ‘misty’

June 8, 2020
Type Package

Title Miscellaneous Functions 'T. Yanagida'

Version 0.3.2

Date 2020-06-08

Author Takuya Yanagida [aut, cre]

Maintainer Takuya Yanagida <takuya.yanagida@univie.ac.at>

Description Miscellaneous functions for descriptive statistics (e.g., frequency table, cross tabula-
tion, multilevel descriptive statistics, coefficient alpha and omega, and various effect size mea-
sures), missing data (e.g., descriptive statistics for missing data, missing data pattern and auxil-
iary variable analysis), data management (e.g., grand-mean and group-mean centering, re-
code variables and reverse code items, scale and group scores, reading and writing SPSS and Ex-
cel files), and statistical analysis (e.g., confidence intervals, collinearity diagnostics, Lev-
ene's test, z-test, and sample size determination).

Depends R (>=3.3.3)

License MIT + file LICENSE

Imports haven, lavaan, Ime4, readxl
Suggests mnormt, nlme, plyr, R.rsp
VignetteBuilder R.rsp

Encoding UTF-8

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-08 14:20:02 UTC

R topics documented:

alpha.coef 3
ASTA & . vt e e e e e e e e e e e e e e e e e e e 5
COMEBT . . v v v v e 7
CLIMEAN v i vt i i e e e e e e e e e 9

R topics documented:

cimean.diff 12
cimedian L e e e 16
CLPIOD .« o v o o e i e e e e 19
ciprop.diff 21
cisd . .. e 25
CLVAT . . . o o e e e e e e e e e e e 28
cohens.d L 30
collindiag e e 34
cont.coef L. e e e 37
COLMALIIX + v v v v v e o e 38
CIAMETS.V © « o v v v v e e et e e e e e e e e e e e e e 40
Crosstab L e 42
descript e 44
df.duplicated 46
dfimerge L L e e 48
dfrbind . . . L 50
dfirename L e e e e e 52
dfisort . ..o e 53
dummy.C. e e e 54
CLASH - v e e e e e e e e e e e e e e e e e 56
freq e 57
GIOUP.SCOTES & v v v v v v e 59
kurtosis e 61
levenes.test L. e e e e e e e e e 62
MESUD . . o v e e e e e e e e e e e 63
multilevel.descript L 64
multilevelicc e e e 66
DAAS .« o v v e e e e e e e e e e e e e 68
na.auxiiary e e e e e 69
NA.COVETAZE . « « v v v v v e 71
na.descript e 72
naindicator L e 73
NAPAEITL L o e e e e e e e 75
NAPIOP + o v o o e e e e e e e e e e e e e e 76
omega.coef e 77
phi.coef L e e 79
POly.COT . . . e e 81
print.misty.object e 83
read.mplus e e e e 84
1ead.SAV e e e e e 85
read.XISX L e e e e e 86
TEC .« v v e e e e e e e e e e e e e e e e 88
TEVETSEAtEM e e e e 90
runmplus 92
rwglindell 93
SCOTES . v v v v e e it e e e e e e e e e e e 96
SIZE.COT . v v v vt e e e e e e e e e e e e e e e e 98

SIZEMMEAN v e e e e e e e e 99

alpha.coef 3
SIZEPIOP « + v v v e 101
SKEWNESS e e e e e e e 103
std.coef . . . L L e e e 104
] 0} 4 1 106
M .. . e 108
WIte.mMpPIUS e e e e e e e 109
WILE.SAV . . o v v ot o e e e e e e e e e e e e e e e e e e e 110
ZACSE . o o e e e e e e e e e e e e 113

Index 116

alpha.coef Coefficient Alpha and Item Statistics

Description

This function computes point estimate and confidence interval for the (ordinal) coefficient alpha
(aka Cronbach’s alpha) along with the corrected item-total correlation and coefficient alpha if item

deleted.

Usage

alpha.coef(x, exclude = NULL, std = FALSE, ordered = FALSE, na.omit = FALSE,

Arguments

X

exclude
std

ordered

na.omit

print

digits

conf.level

as.na

check

output

print = c("all”, "alpha", "item"), digits = 2, conf.level = 0.95,
as.na = NULL, check = TRUE, output = TRUE)

a matrix, data frame, variance-covariance or correlation matrix. Note that raw
data is needed to compute ordinal coefficient alpha, i.e., ordered = TRUE.

a character vector indicating items to be excluded from the analysis.
logical: if TRUE, the standardized coefficient alpha is computed.

logical: if TRUE, variables are treated as ordered (ordinal) variables to compute
ordinal coefficient alpha.

logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE, pairwise deletion is used.

a character vector indicating which results to show, i.e. "all"” (default), for all
results "alpha” for the coefficient alpha, and "item” for item statistics.

an integer value indicating the number of decimal places to be used for display-
ing coefficient alpha and item-total correlations.

a numeric value between 0 and 1 indicating the confidence level of the interval.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown.

4 alpha.coef

Details

Ordinal coefficient alpha was introduced by Zumbo, Gadermann and Zeisser (2007) which is ob-
tained by applying the formula for computing coefficient alpha to the polychoric correlation ma-
trix instead of the variance-covariance or product-moment correlation matrix. Note that Chalmers
(2018) highlighted that the ordinal coefficient alpha should be interpreted only as a hypothetical
estimate of an alternative reliability, whereby a test’s ordinal categorical response options have be
modified to include an infinite number of ordinal response options and concludes that coefficient
alpha should not be reported as a measure of a test’s reliability. However, Zumbo and Kroc (2019)
argued that Chalmers’ critique of ordinal coefficient alpha is unfounded and that ordinal coefficient
alpha may be the most appropriate quantifier of reliability when using Likert-type measurement to
study a latent continuous random variable. Confidence intervals are computed using the procedure
by Feldt, Woodruff and Salih (1987). When computing confidence intervals using pairwise deletion,
the average sample size from all pairwise samples is used. Note that there are at least 10 other pro-
cedures for computing the confidence interval (see Kelley and Pornprasertmanit, 2016), which are
implemented in the ci.reliability() function in the MBESSS package by Ken Kelley (2019).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Chalmers, R. P. (2018). On misconceptions and the limited usefulness of ordinal alpha. Educational
and Psychological Measurement, 78, 1056-1071. https://doi.org/10.1177/0013164417727036

Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,
297-334. https://doi.org/10.1007/BF02310555

Cronbach, L.J. (2004). My current thoughts on coefficient alpha and successor procedures. Educa-
tional and Psychological Measurement, 64, 391-418. https://doi.org/10.1177/0013164404266386

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement, 11 93-103. https://doi.org/10.1177/014662168701100107

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coeffi-
cients: Evaluation of methods, recommendations, and software for composite measures. Psycho-
logical Methods, 21, 69-92. https://doi.org/10.1037/a0040086.

Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-
project.org/package=MBESS

Zumbo, B. D., & Kroc, E. (2019). A measurement is a choice and Stevens’ scales of measurement
do not help make it: A response to Chalmers. Educational and Psychological Measurement, 79,
1184-1197. https://doi.org/10.1177/0013164419844305

Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients al-
pha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6, 21-29.
https://doi.org/10.22237/jmasm/1177992180

as.na 5

See Also

omega.coef, reverse.item, scores

Examples
dat <- data.frame(iteml = c(4, 2, 3, 4, 1, 2, 4, 2),
item2 = c(4, 3, 3, 3, 2, 2, 4, 1),
item3 = c(3, 2, 4, 2, 1, 3, 4, 1),
item4 = c(4, 1, 2, 3, 2, 3, 4, 2))

Compute unstandardized coefficient alpha and item statistics
alpha.coef(dat)

Compute standardized coefficient alpha and item statistics
alpha.coef(dat, std = TRUE)

Compute unstandardized coefficient alpha
alpha.coef(dat, print = "alpha")

Compute item statistics
alpha.coef(dat, print = "item")

Compute unstandardized coefficient alpha and item statistics while excluding item3
alpha.coef(dat, exclude = "item3")

Compute variance-covariance matrix

dat.cov <- cov(dat)

Compute unstandardized coefficient alpha based on the variance-covariance matrix
alpha.coef(dat.cov)

Compute correlation matrix

dat.cor <- cor(dat)

Compute standardized coefficient alpha based on the correlation matrix
alpha.coef(dat.cor)

Compute ordinal coefficient alpha
alpha.coef(dat, ordered = TRUE)

as.na Replace User-Specified Values With Missing Values

Description
This function replaces user-specified values in the argument as.na in a vector, factor, matrix, data
frame or list with NA.

Usage

as.na(x, as.na, check = TRUE)

Arguments

X
as.na

check

Value

a vector, factor, matrix, data frame, or list.
a vector indicating values or characters to replace with NA.

logical: if TRUE, argument specification is checked.

Returns x with values specified in na replaced with NA.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

as.na

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop.

Examples

Numeric vector

x.num <- c(1, 3, 2, 4, 5)

Replace 2 with NA
as.na(x.num, as.na = 2)

Replace 2, 3, and 4 with NA
as.na(x.num, as.na = c(2, 3, 4))

Character vector

x.chr <- c("a",

ubn nen ndn "e")
) ’)

Replace "b" with NA

as.na(x.chr, as.na = "b")

Replace "b", "c", and "d" with NA

as.na(x.chr, as.na = c("b", "c", "d"))

Factor

x.factor <- factor(c(”a”, "a”, "b", "b", "c", "c¢"))

Replace "b" with NA
as.na(x.factor, as.na = "b")

center 7

Replace "b"” and "c”" with NA
as.na(x.factor, as.na = c("b", "c"))

Matrix
x.mat <- matrix(1:20, ncol = 4)

Replace 8 with NA
as.na(x.mat, as.na = 8)

Replace 8, 14, and 20 with NA
as.na(x.mat, as.na = c(8, 14, 20))

Data frame
x.df <- data.frame(x1 = c(1, 2, 3),
x2 =¢c(2, 1, 3),
x3 = ¢c(3, 1, 2), stringsAsFactors = FALSE)

Replace 1 with NA
as.na(x.df, as.na = 1)

Replace 1 and 3 with NA
as.na(x.df, as.na = c(1, 3))

List
x.list <- list(x1 = c(1, 2, 3, 1, 2, 3),
x2 =c(2, 1, 3,2, 1),
x3 =c¢c(3, 1, 2, 3))
Replace 1 with NA
as.na(x.list, as.na = 1)
center Centering at the Grand Mean or Centering Within Cluster

Description

This function is used to center predictors at the grand mean (CGM, i.e., grand mean centering) or
within cluster (CWC, i.e., group-mean centering).

Usage

center(x, type = c("CGM", "CWC"), group = NULL, value = NULL, as.na = NULL,
check = TRUE)

8 center

Arguments
X a numeric vector.
type a character string indicating the type of centering, i.e., "CGM" for centering at the
grand mean (i.e., grand mean centering) or "CWC" for centering within cluster
(i.e., group-mean centering).
group a numeric vector, character vector or factor denoting the group membership of
each unit in x. Note, this argument is required for centering at the grand mean
(CGM) of a level-2 predictor or centering within cluster (CWC) of a level-1
predictor.
value a numeric value for centering on a specific user-defined value.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to group.
check logical: if TRUE, argument specification is checked.
Details

Predictors in a single-level regression can only be centered at the grand mean (CGM) by specifying
type = "CGM" (default) in conjunction with group = NULL (default).

Level-1 (L1) predictors in a multilevel regression can be centered at the grand mean (CGM) by spec-
ifying type = "CGM" (default) in conjunction with group = NULL (default) or within cluster (CWC)
by specifying type = "CWC" in conjunction with specifying a group membership variable using the
group argument.

Level-2 (L2) predictors in a multilevel regression can only be centered at the grand mean (CGM)
by specifying type = "CGM" (default) in conjunction with specifying a group membership variable
using the group argument.

Note that predictors can be centered on any meaningful value using the argument value.

Value

Returns a numeric vector with the same length as x containing centered values.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2013). Centering predictors and contextual effects. In M. A. Scott, J. S. Si-
monoff, & B. D. Marx (Eds.), The Sage handbook of multilevel modeling (pp. 89-109). Sage.
https://dx.doi.org/10.4135/9781446247600

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel
models: A new look at an old issue. Psychological Methods, 12, 121-138. https://doi.org/10.1037/1082-
989X.12.2.121

ci.mean 9

See Also

dummy.c, group.scores, rec, reverse.item, rwg.lindell, scores.
Examples

Predictors in a single-level regression
dat.sl <- data.frame(x = c(4, 2, 5, 6, 3, 4,
y=c(5 3,6, 3,4, 5

1’ 3’ 4)7
, 2, 6, 5), stringsAsFactors = FALSE)

Center predictor at the sample mean
center(dat.sl$x)

Center predictor at the value 3

center(dat.sl$x, value = 3)

Predictors in a multilevel regression
dat.ml <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
2, 2, 2, 3

group = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x.11 = c(4, 2, 5, 6, 3, 4,1, 3, 4),
x.12 = c(4, 4, 4, 1, 1, 1, 3, 3, 3),
y =c(5, 3,6, 3, 4,5, 2, 6, 5)

Center level-1 predictor at the grand mean (CGM)
center(dat.ml$x.11)

Center level-1 predictor within cluster (CWC)
center(dat.ml$x.11, type = "CWC", group = dat.ml$group)

Center level-2 predictor at the grand mean (CGM)
center(dat.ml$x.12, type = "CGM", group = dat.ml$group)

ci.mean Confidence Interval for the Arithmetic Mean

Description

This function computes a confidence interval for the arithmetic mean with known or unknown
population standard deviation or population variance for one or more variables, optionally by a
grouping and/or split variable.

Usage

ci.mean(x, sigma = NULL, sigma2 = NULL,
alternative = c(”"two.sided”, "less", "greater”), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

X

sigma

sigma2

alternative
conf.level
group

split
sort.var
na.omit
digits

as.na

check
output

Value

ci.mean

a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

a numeric vector indicating the population standard deviation when computing
confidence intervals for the arithmetic mean with known standard deviation Note
that either argument sigma or argument sigma2 is specified and it is only possi-
ble to specify one value for the argument sigma even though multiple variables
are specified in x.

a numeric vector indicating the population variance when computing confidence
intervals for the arithmetic mean with known variance. Note that either argument
sigma or argument sigma?2 is specified and it is only possible to specify one
value for the argument sigma2 even though multiple variables are specified in
X.

a character string specifying the alternative hypothesis, must be one of "two.sided”

(default), "greater” or "less”.
a numeric value between 0 and 1 indicating the confidence level of the interval.

a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

a numeric vector, character vector or factor as split variable. Note that a split
variable can ?nly be used when computing confidence intervals with unknown
population standard deviation and population variance.

logical: if TRUE, output table is sorted by variables when specifying group.

logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

an integer value indicating the number of decimal places to be used.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

ci.mean

See Also

ci.mean.diff, ci.median, ci.prop, ci.var, ci.sd, descript

Examples

dat <- data.frame(groupl = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 2, 2,2, 1,1, 1, 2, 2, 2),
x1 =c(3, 1, 4, 2,5, 3, 2, 4, NA, 4, 5, 3),
x2 = c(4, NA, 3, 6, 3,7,2,7,5,1, 3, 6),
x3 =c(7, 8, 5, 6, 4, NA, 8, NA, 6, 5, 8, 6))

Two-Sided 95% Confidence Interval for x1
ci.mean(dat$x1)

Two-Sided 95% Confidence Interval with known standard deviation for x1
ci.mean(dat$x1, sigma = 1.2)

Two-Sided 95% Confidence Interval with known variance for x1
ci.mean(dat$x1, sigma2 = 2.5)

One-Sided 95% Confidence Interval for x1
ci.mean(dat$x1, alternative = "less")

Two-Sided 99% Confidence Interval
ci.mean(dat$x1, conf.level = 0.99)

Two-Sided 95% Confidence Interval, print results with 3 digits
ci.mean(dat$x1, digits = 3)

Two-Sided 95% Confidence Interval for x1, convert value 4 to NA
ci.mean(dat$x1, as.na = 4)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
listwise deletion for missing data
ci.mean(dat[, c("x1", "x2", "x3")1, na.omit = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately
ci.mean(dat[, c("x1", "x2", "x3")]1, group = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, sort by variables
ci.mean(dat[, c("x1", "x2", "x3")]1, group = dat$groupl, sort.var = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
split analysis by groupl
ci.mean(datl, c("x1", "x2", "x3")], split = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, split analysis by group2
ci.mean(dat[, c("x1", "x2", "x3")]1, group = dat$groupl, split = dat$group2)

12

ci.mean.diff

ci.mean.diff

Confidence Interval for the Difference in Arithmetic Means

Description

This function computes a confidence interval for the difference in arithmetic means from inde-
pendent and paired samples with known or unknown population standard deviation or population
variance for one or more variables, optionally by a grouping and/or split variable.

Usage

ci.mean.diff(x, ...)

Default S3 method:
ci.mean.diff(x, y, sigma = NULL, sigma2 = NULL,

var.equal = FALSE, paired = FALSE,

alternative = c("two.sided”, "less"”, "greater”),
conf.level = 0.95, group = NULL, split = NULL,
sort.var = FALSE, digits = 2, as.na = NULL,
check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
ci.mean.diff(formula, data, sigma = NULL, sigma2 = NULL,

Arguments
X

y

sigma

sigma2

var.equal = FALSE,

alternative = c("two.sided”, "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL,
sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, check = TRUE, output = TRUE, ...)

a numeric vector of data values.
a numeric vector of data values.

a numeric vector indicating the population standard deviation(s) when comput-
ing confidence intervals for the difference in arithmetic means with known stan-
dard deviation(s). In case of independent samples, equal standard deviation is
assumed when specifying one value for the argument sigma; when specifying
two values for the argument sigma, unequal variance is assumed Note that ei-
ther argument sigma or argument sigma2 is specified and it is only possible to
specify one value (i.e., equal variance assumption) or two values (i.e., unequal
variance assumption) for the argument sigma even though multiple variables are
specified in x.

a numeric vector indicating the population variance(s) when computing confi-
dence intervals for the difference in arithmetic means with known variance(s).
In case of independent samples, equal variance is assumed when specifying one
value for the argument sigma2; when specifying two values for the argument

ci.mean.diff

var.equal

paired

alternative

conf.level

group

split

sort.var
digits

as.na

check
output
formula

data

na.omit

Value

13

sigma, unequal variance is assumed. Note that either argument sigma or argu-
ment sigma2 is specified and it is only possible to specify one value (i.e., equal
variance assumption) or two values (i.e., unequal variance assumption) for the
argument sigma even though multiple variables are specified in x.

logical: if TRUE, the population variance in the independent samples are assumed
to be equal.

logical: if TRUE, confidence interval for the difference of arithmetic means in
paired samples is computed.

a character string specifying the alternative hypothesis, must be one of "two.sided”

(default), "greater” or "less”.
a numeric value between 0 and 1 indicating the confidence level of the interval.

a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

a numeric vector, character vector or factor as split variable. Note that a split
variable can only be used when computing confidence intervals with unknown
population standard deviation and population variance.

logical: if TRUE, output table is sorted by variables when specifying group.

an integer value indicating the number of decimal places to be used.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

in case of a between-subject design (i.e., paired = FALSE), a formula of the form
y ~ group for one outcome variable or cbind(y1,y2,y3) ~ group for more than
one outcome variable where y is a numeric variable giving the data values and
group a numeric variable, character variable or factor with two values or factor
levels given the corresponding groups; in case of a within-subject design (i.e.,
paired = TRUE), a formula of the form post ~ pre where post and pre are nu-
meric variables. Note that analysis for more than one outcome variable is not
permitted in within-subject design.

a matrix or data frame containing the variables in the formula formula.

logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.
further arguments to be passed to or from methods.

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

14

References

ci.mean.diff

Fagerland, M. W., Lydersen S., & Laake, P. (2011). Recommended confidence intervals for two
independent binomial proportions. Statistical Methods in Medical Research, 24, 224-254.

Newcombe, R. G. (1998a). Interval estimation for the difference between independent proportions:
Comparison of eleven methods. Statistics in Medicine, 17, 873-890.

Newcombe, R. G. (1998b). Improved confidence intervals for the difference between binomial
proportions based on paired data. Statistics in Medicine, 17, 2635-2650.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.

John Wiley & Sons.

See Also

ci.mean, ci.median, ci.prop, ci.var, ci.sd, descript

Examples

dat.bs <- data.frame(groupl

group2 =
group3 =
x1 = c(3,
3,
x2 = c(4,
3:
x3 = c(7,
2;

Between-Subject Design

c(1, 1,1, 1,1, 1,1, 2,2, 2,2, 2,2,
1, 1,1, 1,1,1,1,2,2,2, 2,2, 2,
c(1, 1, 1,1, 2,2,2,2,1,1,1, 2, 2,
1, 1,1,2,2,2,2,1,1,1,1, 2,2,
c(1, 2,1,2,1,2,1,2,1,2,1,2,1,
1, 2,1, 2,1,2,1,2,1,2,1, 2,1,
1, 4, 2,5, 3,2, 3,6, 4, 3, NA, 5, 3,
2,6, 3,1,4,3,5,6,7, 4, 3,6, 4,
NA, 3,6, 3,7, 2,7, 3,3, 3,1, 3,6,
5,2,6,8,3,4,5,2,1, 3,1, 2, NA)
8, 5,6 6,4,2,8,3,6,1,2,5,38,6,
5,3, 1,6, 4,5,5, 3,6, 3,2, 2, 4)

Two-Sided 95% Confidence Interval for yl1 by groupl
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ groupl, data = dat.bs)

Two-Sided 95% Confidence Interval for y1 by groupl
unknown population variances, equal variance assumption
ci.mean.diff(x1 ~ groupl, data = dat.bs, var.equal = TRUE)

Two-Sided 95% Confidence Interval with known standard deviations for x1 by groupl

known population standard deviations, equal standard deviation asssumption
ci.mean.diff(x1 ~ groupl, data = dat.bs, sigma =

1.2)

Two-Sided 95% Confidence Interval with known standard deviations for x1 by groupl
known population standard deviations, unequal standard deviation asssumption

ci.mean.diff(x1 ~ groupl, data

= dat.bs, sigma = c(1.5, 1.2))

Two-Sided 95% Confidence Interval with known variance for x1 by groupl
known population variances, equal variance asssumption

ci.mean.diff

ci.mean.diff(x1 ~ groupl, data = dat.bs,

sigma2 = 1.44)

Two-Sided 95% Confidence Interval with known variance for x1 by groupl
known population variances, unequal variance asssumption

ci.mean.diff(x1 ~ groupl, data = dat.bs,

One-Sided 95% Confidence Interval for
unknown population variances, unequal

ci.mean.diff(x1 ~ groupl, data = dat.bs,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal

ci.mean.diff(x1 ~ groupl, data = dat.bs,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal
print results with 3 digits

ci.mean.diff(x1 ~ groupl, data = dat.bs,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal
convert value 4 to NA

ci.mean.diff(x1 ~ groupl, data = dat.bs,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal

ci.mean.diff(cbind(x1, x2, x3) ~ groupl,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal
listwise deletion for missing data

ci.mean.diff(cbind(x1, x2, x3) ~ groupl,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal
analysis by group2 separately

ci.mean.diff(cbind(x1, x2, x3) ~ groupl,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal

sigma2 = c(2.25, 1.44))
y1 by groupl

variance assumption
alternative = "less")

y1 by groupl

variance assumption
conf.level = 0.99)

y1 by groupl
variance assumption

digits = 3)

y1 by groupl
variance assumption

as.na = 4)
y1, y2, and y3 by groupl
variance assumption

data = dat.bs)

y1, y2, and y3 by groupl
variance assumption,

data = dat.bs, na.omit = TRUE)

y1, y2, and y3 by groupl
variance assumption,

data = dat.bs, group = dat.bs$group2)

y1, y2, and y3 by groupl
variance assumption,

analysis by group2 separately, sort by variables

ci.mean.diff(cbind(x1, x2, x3) ~ groupl,

sort.var = TRUE)

Two-Sided 95% Confidence Interval for
unknown population variances, unequal
split analysis by group2

ci.mean.diff(cbind(x1, x2, x3) ~ groupl,

Two-Sided 95% Confidence Interval for
unknown population variances, unequal

data = dat.bs, group = dat.bs$group2,
y1, y2, and y3 by groupl

variance assumption,

data = dat.bs, split = dat.bs$group2)

y1, y2, and y3 by groupl
variance assumption,

analysis by group2 separately, split analysis by group3

ci.mean.diff(cbind(x1, x2, x3) ~ groupl,

data = dat.bs,

15

16

group = dat.bs$group2, split = dat.bs$group3)

groupl <- c(3, 1,

4! 2? 5? 37 67 7)
group2 <- c(5, 2, 4, 3

’ 1)

ci.median

Two-Sided 95% Confidence Interval for the mean difference between groupl amd group2

unknown population variances, unequal variance assumption
ci.mean.diff(groupl, group2)

Two-Sided 95% Confidence Interval for the mean difference between groupl amd group2

unknown population variances, equal variance assumption
ci.mean.diff(groupl, group2, var.equal = TRUE)

Within-Subject Design
dat.ws <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8))

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
unknown poulation variance of difference scores
ci.mean.diff(dat.ws$pre, dat.ws$post, paired = TRUE)

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
known population standard deviation of difference scores
ci.mean.diff(dat.ws$pre, dat.ws$post, sigma = 2, paired = TRUE)

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
known population variance of difference scores
ci.mean.diff(dat.ws$pre, dat.ws$post, sigma2 = 4, paired = TRUE)

One-Sided 95% Confidence Interval for the mean difference in x1 and x2
unknown population variances, unequal variance assumption
ci.mean.diff(dat.ws$pre, dat.ws$post, alternative = "less”, paired = TRUE)

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
unknown population variances, unequal variance assumption
ci.mean.diff(dat.ws$pre, dat.ws$post, conf.level = 0.99, paired = TRUE)

Two-Sided 95% Confidence Interval for for the mean difference in x1 and x2
unknown population variances, unequal variance assumption

print results with 3 digits

ci.mean.diff(dat.ws$pre, dat.ws$post, paired = TRUE, digits = 3)

Two-Sided 95% Confidence Interval for yl1 by groupl

unknown population variances, unequal variance assumption

convert value 1 to NA

ci.mean.diff(dat.ws$pre, dat.ws$post, as.na = 1, paired = TRUE)

ci.median Confidence Interval for the Median

ci.median 17

Description

This function computes a confidence interval for the median for one or more variables, optionally
by a grouping and/or split variable.

Usage
ci.median(x, alternative = c("two.sided”, "less"”, "greater"),
conf.level = 0.95, group = NULL, split = NULL,
sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, check = TRUE, output = TRUE)
Arguments
X a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.
conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
group a numeric vector, character vector or factor as grouping variable.
split a numeric vector, character vector or factor as split variable.
sort.var logical: if TRUE, output table is sorted by variables when specifying group.
na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.
digits an integer value indicating the number of decimal places to be used.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Details

The confidence interval for the median is computed by using the Binomial distribution to determine
which values in the sample are the lower and the upper confidence limits. Note that at least six valid
observations are needed to compute the confidence interval for the median.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

18

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011)
John Wiley & Sons.

See Also

ci.mean, ci.mean.diff, ci.prop, ci.prop.diff,

Examples

dat <- data.frame(groupl = c(1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,
group2 = c(1, 1, 1, 1, 2, 2,
1, 1,1, 2, 2, 2,

x1 =c@3, 1, 4, 2, 5, 3, 2,

3, 2,6, 3,1, 4, 3,
x2 = c(4, NA, 3, 6, 3, 7, 2,

3, 5, 2,6, 8, 3, 4,

x3 =c(7, 8, 5, 6, 4, 2, 8,

2, 5,3,1,6, 4,5

Two-Sided 95% Confidence Interval for x1
ci.median(dat$x1)

One-Sided 95% Confidence Interval for x1
ci.median(dat$x1, alternative = "less")

Two-Sided 99% Confidence Interval
ci.median(dat$x1, conf.level = 0.99)

ci.median

. Statistics in psychology - Using R and SPSS.

ci.var,ci.sd, descript

2),

Two-Sided 95% Confidence Interval, print results with 3 digits

ci.median(dat$x1, digits = 3)

Two-Sided 95% Confidence Interval for x1, convert value 4 to NA

ci.median(dat$x1, as.na = 4)

Two-Sided 95% Confidence Interval for x1, x2
listwise deletion for missing data
ci.median(dat[, c("x1", "x2", "x3")], na.omit

Two-Sided 95% Confidence Interval for x1, x2
analysis by groupl separately

, and x3,
TRUE)

, and x3,

ci.median(dat[, c("x1", "x2", "x3")], group = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2

, and x3,

analysis by groupl separately, sort by variables
ci.median(dat[, c("x1", "x2", "x3")], group = dat$groupl, sort.var = TRUE)

Two-Sided 95% Confidence Interval for x1, x2
split analysis by groupil
ci.median(dat[, c("x1", "x2", "x3")], split

, and x3,

dat$group1)

ci.prop

19

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, split analysis by group2
ci.median(dat[, c("x1", "x2", "x3")], group = dat$groupl, split = dat$group2)

ci.prop

Confidence Interval for Proportions

Description

This function computes a confidence interval for proportions for one or more variables, optionally
by a grouping and/or split variable.

Usage
ci.prop(x, method = c("wald”, "wilson"),
alternative = c(”"two.sided”, "less"”, "greater”),
conf.level = 0.95, group = NULL, split = NULL,
sort.var = FALSE, na.omit = FALSE, digits = 3,
as.na = NULL, check = TRUE, output = TRUE)
Arguments
X a numeric vector, matrix or data frame with numeric variables with 0 and 1 val-
ues, i.e., factors and character variables are excluded from x before conducting
the analysis.
method a character string specifying the method for computing the confidence interval,
must be one of "wald”, or "wilson" (default).
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.
conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
group a numeric vector, character vector or factor as grouping variable.
split a numeric vector, character vector or factor as split variable.
sort.var logical: if TRUE, output table is sorted by variables when specifying group.
na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.
digits an integer value indicating the number of decimal places to be used.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.

20 ci.prop

Details

The Wald confidence interval which is based on the normal approximation to the binomial distri-
bution are computed by specifying method = "wald”, while the Wilson (1927) confidence interval
(aka Wilson score interval) is requested by specifying method = "wilson”. By default, Wilson con-
fidence interval is computed which have been shown to be reliable in small samples of n = 40 or
less, and larger samples of n > 40 (Brown, Cai & DasGupta, 2001), while the Wald confidence
intervals is inadequate in small samples and when p is near 0 or 1 (Agresti & Coull, 1998).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Agresti, A. & Coull, B.A. (1998). Approximate is better than "exact" for interval estimation of
binomial proportions. American Statistician, 52, 119-126.

Brown, L. D., Cai, T. T., & DasGupta, A., (2001). Interval estimation for a binomial proportion.
Statistical Science, 16, 101-133.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22, 209-212.

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop.diff, ci.var, ci.sd, descript

Examples
dat <- data.frame(groupl = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 2, 2, 2,1, 1,1, 2, 2, 2),
x1 =c(0, 1, 0, @, 1, 1, @, 1, NA, o, 1, 0),
1,1, 1),

x2 = c(0, NA, 1, 0, 1, 1, 0, 0, 1
X3 =c(1, 1, 1, 0, 1, NA, 1

Two-Sided 95% Confidence Interval for x1
ci.prop(dat$x1)

Two-Sided 95% Confidence Interval for x1 using Wald method
ci.prop(dat$x1, method = "wald")

One-Sided 95% Confidence Interval for x1
ci.prop(dat$x1, alternative = "less")

ci.prop.diff 21

Two-Sided 99% Confidence Interval
ci.prop(dat$x1, conf.level = 0.99)

Two-Sided 95% Confidence Interval, print results with 4 digits
ci.prop(dat$x1, digits = 4)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
listwise deletion for missing data
ci.prop(datl[, c("x1", "x2", "x3")1, na.omit = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately
ci.prop(dat[, c("x1", "x2", "x3")1, group = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, sort by variables
ci.prop(datl[, c("x1", "x2", "x3")], group = dat$groupl, sort.var = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
split analysis by groupl
ci.prop(dat[, c("x1", "x2", "x3")]1, split = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, split analysis by group2
ci.prop(datl[, c("x1", "x2", "x3")],
group = dat$groupl, split = dat$group2)

ci.prop.diff Confidence Interval for the Difference in Proportions

Description

This function computes a confidence interval for the difference in proportions from independent
and paired samples for one or more variables, optionally by a grouping and/or split variable.

Usage
ci.prop.diff(x, ...)

Default S3 method:

Default S3 method:

ci.prop.diff(x, y, method = c("wald”, "newcombe"), paired = FALSE,
alternative = c("two.sided”, "less"”, "greater"),
conf.level = 0.95, group = NULL, split = NULL,
sort.var = FALSE, digits = 2, as.na = NULL,
check = TRUE, output = TRUE, ...)

22 ci.prop.diff

S3 method for class 'formula’

S3 method for class 'formula’

ci.prop.diff(formula, data, method = c(”"wald”, "newcombe"),
alternative = c("two.sided”, "less"”, "greater"),
conf.level = 0.95, group = NULL, split = NULL,
sort.var = FALSE, na.omit = FALSE, digits = 2,

as.na = NULL, check = TRUE, output = TRUE, ...)
Arguments

X a numeric vector with 0 and 1 values.
further arguments to be passed to or from methods.

y a numeric vector with 0 and 1 values.

method a character string specifying the method for computing the confidence interval,
must be one of "wald"”, or "newcombe” (default).

paired logical: if TRUE, confidence interval for the difference of proportions in paired
samples is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

split a numeric vector, character vector or factor as split variable. Note that a split
variable can only be used when computing confidence intervals with unknown
population standard deviation and population variance.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

formula a formula of the form y ~ group for one outcome variable or cbind(y1,y2,y3)
~ group for more than one outcome variable where y is a numeric variable with
0 and 1 values and group a numeric variable, character variable or factor with
two values of factor levels given the corresponding group.

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis

(i.e., listwise deletion) when specifying more than one outcome variable.

ci.prop.diff

Details

23

The Wald confidence interval which is based on the normal approximation to the binomial distri-
bution are computed by specifying method = "wald”, while the Newcombe Hybrid Score interval
(Newcombe, 1998a; Newcombe, 1998b) is requested by specifying method = "newcombe”. By de-
fault, Newcombe Hybrid Score interval is computed which have been shown to be reliable in small
samples (less than n = 30 in each sample) as well as moderate to larger samples(n > 30 in each
sample) and with proportions close to 0 or 1, while the Wald confidence intervals does not perform
well unless the sample size is large (Fagerland, Lydersen & Laake, 2011).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fagerland, M. W., Lydersen S., & Laake, P. (2011) Recommended confidence intervals for two

independent binomial proportions. Statistical Methods in Medical Research, 24, 224-254.

Newcombe, R. G. (1998a). Interval estimation for the difference between independent proportions:
Comparison of eleven methods. Statistics in Medicine, 17, 873-890.

Newcombe, R. G. (1998b). Improved confidence intervals for the difference between binomial
proportions based on paired data. Statistics in Medicine, 17, 2635-2650.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.

John Wiley & Sons.

See Also

ci.prop, ci.mean, ci.mean.diff, ci.median, ci.var, ci.sd, descript

Examples

dat.bs <- data.frame(groupl =

group?2

group3 =

x1

X2

x3

c(o,

[S . Y

—_ a4 a4

[I I G GGy 1

N NN 2 =

1,2,2,2, 2,2, 2, 2,
1,2,2,2,2,2,2, 2,
2,2,1,1,1, 2, 2, 2,
2,1, 1,1, 1, 2,2, 2,
1,2,1,2,1,2,1, 2,
1,2,1,2,1,2,1, 2),
@, 1, 1, 1, NA, 0, o,
0,0, 1,0, 1, 0, 0),
0, 1,1, 1,1, 0,1,

=

~.> -
.
..®‘
«®‘
.
N
Z

24

Between-Subject Design

Two-Sided 95% Confidence Interval for x1 by groupl
ci.prop.diff(x1 ~ groupl, data = dat.bs)

Two-Sided 95% Confidence Interval for x1 by groupl
Wald confidence interval
ci.prop.diff(x1 ~ groupl, data = dat.bs, method = "wald")

One-Sided 95% Confidence Interval for x1 by groupl
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ groupl, data = dat.bs, alternative = "less")

Two-Sided 95% Confidence Interval for x1 by groupl
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ groupl, data = dat.bs, conf.level = 0.99)

Two-Sided 95% Confidence Interval for y1 by groupl
Newcombes Hybrid Score interval, print results with 3 digits
ci.prop.diff(x1 ~ groupl, data = dat.bs, digits = 3)

Two-Sided 95% Confidence Interval for yl1 by groupl
Newcombes Hybrid Score interval, convert value @ to NA
ci.prop.diff(x1 ~ groupl, data = dat.bs, as.na = 0)

Two-Sided 95% Confidence Interval for y1, y2, and y3 by groupl
Newcombes Hybrid Score interval
ci.prop.diff(cbind(x1, x2, x3) ~ groupl, data = dat.bs)

Two-Sided 95% Confidence Interval for y1, y2, and y3 by groupl
Newcombes Hybrid Score interval, listwise deletion for missing data
ci.prop.diff(cbind(x1, x2, x3) ~ groupl, data = dat.bs, na.omit = TRUE)

Two-Sided 95% Confidence Interval for y1, y2, and y3 by groupl
Newcombes Hybrid Score interval, analysis by group2 separately

ci.prop.diff(cbind(x1, x2, x3) ~ groupl, data = dat.bs, group = dat.bs$group2)

Two-Sided 95% Confidence Interval for y1, y2, and y3 by groupl

ci.prop.diff

Newcombes Hybrid Score interval, analysis by group2 separately, sort by variables

ci.prop.diff(cbind(x1, x2, x3) ~ groupl, data = dat.bs, group = dat.bs$group2,

sort.var = TRUE)

Two-Sided 95% Confidence Interval for y1, y2, and y3 by groupl
split analysis by group2

ci.prop.diff(cbind(x1, x2, x3) ~ groupl, data = dat.bs, split = dat.bs$group2)

Two-Sided 95% Confidence Interval for y1, y2, and y3 by groupl

Newcombes Hybrid Score interval, analysis by group2 separately, split analysis by group3

ci.prop.diff(cbind(x1, x2, x3) ~ groupl, data = dat.bs,
group = dat.bs$group2, split = dat.bs$group3)

ci.sd 25

groupl <- c(@, 1, 1, @, @0, 1, 0, 1)
group2 <- c(1, 1, 1, 0, @)

Two-Sided 95% Confidence Interval for the mean difference between groupl amd group2
Newcombes Hybrid Score interval
ci.prop.diff(groupl, group2)

Within-Subject Design
dat.ws <- data.frame(pre = c(@, 1, 1, 0, 1),
post = ¢c(1, 1, @, 1, 1), stringsAsFactors = FALSE)

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat.ws$pre, dat.ws$post, paired = TRUE)

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
Wald confidence interval
ci.prop.diff(dat.ws$pre, dat.ws$post, method = "wald"”, paired = TRUE)

One-Sided 95% Confidence Interval for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat.ws$pre, dat.ws$post, alternative = "less”, paired = TRUE)

Two-Sided 95% Confidence Interval for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat.ws$pre, dat.ws$post, conf.level = 0.99, paired = TRUE)

Two-Sided 95% Confidence Interval for for the mean difference in x1 and x2
Newcombes Hybrid Score interval, print results with 3 digits
ci.prop.diff(dat.ws$pre, dat.ws$post, paired = TRUE, digits = 3)

ci.sd Confidence Interval for the Standard Deviation

Description

This function computes a confidence interval for the standard deviation for one or more variables,
optionally by a grouping and/or split variable.

Usage

ci.sd(x, method = c("chisq”, "bonett"),
alternative = c("two.sided”, "less", "greater"),
conf.level = .95, group = NULL, split = NULL,
sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, check = TRUE, output = TRUE)

26 ci.sd

Arguments

X a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

method a character string specifying the method for computing the confidence interval,
must be one of "chisq”, or "bonett"” (default).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The confidence interval based on the chi-square distribution is computed by specifying method =
"chisq"”, while the Bonett (2006) confidence interval is requested by specifying method = "bonett"”.
By default, the Bonett confidence interval interval is computed which performs well under moder-
ate departure from normality, while the confidence interval based on the chi-square distribution
is highly sensitive to minor violations of the normality assumption and its performance does not
improve with increasing sample size.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distri-
butions. Computational Statistics and Data Analysis, 50, 775-782. https://doi.org/10.1016/j.csda.2004.10.003

ci.sd

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, ci.var, descript

Examples

dat <- data.frame(groupl = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1,1, 1,1, 1,1, 2,2, 2, 2,2, 2, 2)),
group2 = c(1, 1, 1, 1, 2, 2, 2, 2,1, 1,1, 2, 2, 2,
1, 1,1, 2,2,2,2,1,1,1,1, 2, 2, 2),

x1 =c(3, 1, 4, 2, 5,3, 2,3, 6,4, 3, NA, 5, 3,

3, 2,6, 3,1, 4, 3,5,6, 7, 4, 3, 5, 4),

x2 = c(4, NA, 3, 6, 3,7, 2,7, 3,3,3,1, 3,6,

3,5,2,6,8, 3, 4,5, 2,1, 3,1, 2, NA),

x3=c(7,8,5,6,4,2,8,3,6,1, 2,5, 8, 6,
2,5 3,1,6, 4, 5,5, 3,6, 3, 2, 2, 4)

Two-Sided 95% Confidence Interval for x1
ci.sd(dat$x1)

Two-Sided 95% Confidence Interval for x1 using chi square distribution
ci.sd(dat$x1, method = "chisq")

One-Sided 95% Confidence Interval for x1
ci.sd(dat$x1, alternative = "less")

Two-Sided 99% Confidence Interval
ci.sd(dat$x1, conf.level = 0.99)

Two-Sided 95% Confidence Interval, print results with 3 digits
ci.sd(dat$x1, digits = 3)

Two-Sided 95% Confidence Interval for x1, convert value 4 to NA
ci.sd(dat$x1, as.na = 4)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
listwise deletion for missing data
ci.sd(dat[, c("x1", "x2", "x3")1, na.omit = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately
ci.sd(dat[, c("x1", "x2", "x3")]1, group = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, sort by variables
ci.sd(dat[, c("x1", "x2", "x3")], group = dat$groupl, sort.var = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
split analysis by groupil
ci.sd(dat[, c("x1", "x2", "x3")], split = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, split analysis by group2

27

ci.var

ci.sd(dat[, c("x1", "x2", "x3")1,
group = dat$groupl, split = dat$group2)

ci.var

Confidence Interval for the Variance

Description

This function computes a confidence interval for the variance for one or more variables, optionally
by a grouping and/or split variable.

Usage
ci.var(x, method = c("chisq”, "bonett"),
alternative = c("two.sided”, "less”, "greater"),
conf.level = @0.95, group = NULL, split = NULL,
sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, check = TRUE, output = TRUE)
Arguments
X a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.
method a character string specifying the method for computing the confidence interval,
must be one of "chisq”, or "bonett"” (default).
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.
conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
group a numeric vector, character vector or factor as grouping variable.
split a numeric vector, character vector or factor as split variable.
sort.var logical: if TRUE, output table is sorted by variables when specifying group.
na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.
digits an integer value indicating the number of decimal places to be used.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.

ci.var

Details

29

The confidence interval based on the chi-square distribution is computed by specifying method =
"chisq"”, while the Bonett (2006) confidence interval is requested by specifying method = "bonett"”.
By default, the Bonett confidence interval interval is computed which performs well under moder-
ate departure from normality, while the confidence interval based on the chi-square distribution is
highly sensitive to minor violations of the normality assumption and its performance does not im-
prove with increasing sample size. Note that at least four valid observations are needed to compute

the Bonett confidence interval.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.

John Wiley & Sons.

Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distri-

butions. Computational Statistics and Data Analysis, 50, 775-782. https://doi.org/10.1016/j.csda.2004.10.003

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, ci.sd, descript

Examples

dat <- data.frame(groupl = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1,1, 1,1, 1,1, 2,2, 2, 2,2, 2, 2)),
group2 = c(1, 1, 1,1, 2, 2,2,2,1,1,1, 2, 2, 2,
1, 1,1, 2,2,2,2,1,1,1,1, 2, 2, 2),

x1 =c¢c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA, 5, 3,

3, 2,6, 3,1, 4, 3,5,6, 7, 4, 3,5, 4),

x2 = c(4, NA, 3, 6, 3,7, 2,7, 3,3, 3,1, 3,6,

3,5,2,6, 8, 3,45, 2,1, 3,1, 2, NA),

x3 =c(7, 8, 5, 6, 4, 2, 8, 3, 6,1, 2,5, 8, 6,

2, 5,3,1,6, 4, 5,5, 3,6, 3, 2, 2, 4)

Two-Sided 95% Confidence Interval for
ci.var(dat$x1)

Two-Sided 95% Confidence Interval for
ci.var(dat$x1, method = "chisq")

One-Sided 95% Confidence Interval for

x1 using chi square distribution

x1

30

cohens.d

ci.var(dat$x1, alternative = "less")

Two-Sided 99% Confidence Interval
ci.var(dat$x1, conf.level = 0.99)

Two-Sided 95% Confidence Interval, print results with 3 digits
ci.var(dat$x1, digits = 3)

Two-Sided 95% Confidence Interval for x1, convert value 4 to NA
ci.var(dat$x1, as.na = 4)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
listwise deletion for missing data
ci.var(datl[, c("x1", "x2", "x3")]1, na.omit = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately
ci.var(dat[, c("x1", "x2", "x3")], group = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, sort by variables
ci.var(dat[, c("x1", "x2", "x3")], group = dat$groupl, sort.var = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
split analysis by group1l
ci.var(dat[, c("x1", "x2", "x3")1, split = dat$groupl)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by groupl separately, split analysis by group2
ci.var(dat[, c("x1", "x2", "x3")1,

group = dat$groupl, split = dat$group2)

cohens.d Cohen’s d for Between- and Within-Subject Design

Description

This function computes Cohen’s d for between- and within-subject designs with confidence inter-
vals. By default, the function computes the standardized mean difference divided by the weighted
pooled standard deviation without applying the correction factor for removing the small sample
bias.

Usage

cohens.d(formula, data, paired = FALSE, weighted = TRUE,
ref = NULL, correct = FALSE, digits = 2,
conf.level = 0.95, as.na = NULL, check = TRUE,
output = TRUE)

cohens.d

Arguments

formula

data
paired

weighted

ref

correct

digits

conf.level

as.na

check

output

Details

31

in case of a between-subject design (i.e., paired = FALSE), a formula of the form
y ~ group for one outcome variable or cbind(y1,y2,y3) ~ group for more than
one outcome variable where y is a numeric variable giving the data values and
group a numeric variable, character variable or factor with two values or factor
levels giving the corresponding group; in case of a within-subject design (i.e.,
paired = TRUE), a formula of the form post ~ pre where post and pre are nu-
meric variables. Note that analysis for more than one outcome variable is not
permitted in within-subject design.

a matrix or data frame containing the variables in the formula.
logical: if TRUE, Cohen’s d for within-subject design is computed.

logical: if TRUE (default), in case of a between-subject design the weighted
pooled standard deviation is used; in case of a within-subject design the cor-
relation between measures is controlled when computing the pooled standard
deviation.

a numeric value or character string indicating the reference group in a between-
subject design or a character string indicating the reference variable in a within-
subject design. The standard deviation of the reference group or reference vari-
able is used to standardized the mean difference. If the standard deviation of the
control group is used (e.g. group = "control”), the effect size is usually called
Glass’ delta.

logical: if TRUE, correction factor to remove positive bias in small samples is
used. Note that correction factor is only applied when weighted = TRUE and
ref = NULL.

an integer value indicating the number of decimal places to be used for display-
ing results.

a numeric value between 0 and 1 indicating the confidence level of the interval.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to y but not to group in a between-subject design, while as.na()
function is applied to pre and post in a within-subject design.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

Cohen (1988, p.67) proposed to compute the standardized mean difference by dividing the mean
difference by the unweighted pooled standard deviation (i.e., weighted = FALSE).

Glass et al. (1981, p. 29) suggested to use the standard deviation of the control group (e.g., ref =
"control”) to compute the standardized mean difference since the standard deviation of the control
group is unaffected by the treatment and will therefore more closely reflect the population standard

deviation.

Hedges (1981, p. 110) recommended to weight each group’s standard deviation by its sample size
resulting in a weighted and pooled standard deviation (i.e., weighted = TRUE). According to Hedges

32 cohens.d

and Olkin (1985, p. 81), the standardized mean difference based on the weighted and pooled stan-
dard deviation has a positive small sample bias, i.e., standardized mean difference is overestimates
in small samples (i.e., sample size less than 20 or less than 10 in each group). However, a correction
factor can be applied to remove the small sample bias (i.e., correct = TRUE). Note that a gamma
function is used for computing the correction factor when n < 200, while a approximation method
is used when n >= 200.

Note that the terminology is inconsistent because the standardized mean difference based on the
weighted and pooled standard deviation is usually called Cohen’s d, but sometimes called Hedges’
g. Oftentimes, Cohen’s d is called Hedges’ d as soon as the correction factor is applied. It is
recommended to avoid the term Hedges’ g (Cumming & Calin-Jageman, 2017, p. 171), but to report
which standard deviation was used to standardized the mean difference (e.g., unweighted/weighted
pooled standard deviation, or the standard deviation of the control group) and whether a small
sample correction factor was applied.

As for the terminology according to Lakens (2013), in between subject design (paired = FALSE)
Cohen’s d is computed when using weighted = TRUE and Hedges’s g, is computed when using
correct = TRUE in addition. In within-subject designs (paired = TRUE), Cohen’s d, m is computed
when using weighted = TRUE, while Cohen’s d,v is computed when using weighted = FALSE, and
corresponding Hedges’ g,m and Hedges’ g,v are computed when using correct = TRUE.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Academic Press.

Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics: Estimation, open
science, & beyond. Routledge.

Glass. G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Sage Publica-
tion.

Goulet-Pelletier, J.-C., & Cousineau, D. (2018) A review of effect sizes and their confidence in-
tervals, Part I: The Cohen’s d family. The Quantitative Methods for Psychology, 14, 242-265.
https://doi.org/10.20982/tqmp.14.4.p242

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators.
Journal of Educational Statistics, 6(3), 106-128.

Hedges, L. V. & Olkin, 1. (1985). Statistical methods for meta-analysis. Academic Press.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practi-
cal primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863

cohens.d

See Also

eta.sq, cont.coef, cramers.v,cor.matrix, na.auxiliary

Examples

Between-Subject Design
dat.bs <- data.frame(group = c("cont”, "cont”, "cont”, "treat"”, "treat"),

yl =c(1, 3, 2, 5, 7),
y2 = c(4, 3, 3, 6, 4),
y3 =c(7, 5, 7, 3, 2), stringsAsFactors = FALSE)

Standardized mean difference divided by the weighted pooled
standard deviation without small sample correction factor
cohens.d(yl ~ group, data = dat.bs)

Standardized mean difference divided by the unweighted pooled
standard deviation without small sample correction factor
cohens.d(yl ~ group, data = dat.bs, weighted = FALSE)

Standardized mean difference divided by the weighted pooled
standard deviation with small sample correction factor
cohens.d(yl ~ group, data = dat.bs, correct = TRUE)

Standardized mean difference divided by the standard deviation
of the control group without small sample correction factor
cohens.d(yl ~ group, data = dat.bs, ref = "cont")

Cohens's d for for more than one outcome variable
cohens.d(cbind(y1, y2, y3) ~ group, data = dat.bs)

Within-Subject Design
dat.ws <- data.frame(pre = c(1, 3, 2, 5, 7),
post = ¢c(2, 2, 1, 6, 8))

Standardized mean difference divided by the pooled

standard deviation while controlling for the correlation
without small sample correction factor

cohens.d(post ~ pre, data = dat.ws, paired = TRUE)

Standardized mean difference divided by the pooled

standard deviation whithout controlling for the correlation

without small sample correction factor

cohens.d(post ~ pre, data = dat.ws, paired = TRUE, weighted = FALSE)

Standardized mean difference divided by the pooled

standard deviation while controlling for the correlation

with small sample correction factor

cohens.d(post ~ pre, data = dat.ws, paired = TRUE, correct = TRUE)

Standardized mean difference divided by the standard deviation

34 collin.diag

of the pretest without small sample correction factor
cohens.d(post ~ pre, data = dat.ws, paired = TRUE, ref = "pre")

collin.diag Collinearity Diagnostics

Description

This function computes tolerance, standard error inflation factor, variance inflation factor, eigen-
values, condition index, and variance proportions for linear, generalized linear, and mixed-effects
models.

Usage

collin.diag(model, print = c("all”, "vif", "eigen"), digits = 3,
p.digits = 3, check = TRUE, output = TRUE)

Arguments
model a fitted model of class "1m", "glm”, "1merMod"”, "1merModLmerTest", "glmerMod",
"Ime", or "glmmTMB".
print a character vector indicating which results to show, i.e. "all”, for all results,
"vif" for tolerance, std. error inflation factor, and variance inflation factor, or
eigen for eigenvalue, condition index, and variance proportions.
digits an integer value indicating the number of decimal places to be used for display-
ing results.
p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Details

Collinearity diagnostics can be conducted for objects returned from the 1m() and glm() function,
but also from objects returned from the lmer() and glmer() function from the lme4 package,
1me () function from the nlme package, and the glmmTMB() function from the glmmTMB package.

The generalized variance inflation factor (Fox & Monette, 1992) is computed for terms with more
than 1 df resulting from factors with more than two levels. The generalized VIF (GVIF) is inter-
pretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the term
in comparison with what would be obtained for orthogonal data. GVIF is invariant to the coding of
the terms in the model. In order to adjust for the dimension of the confidence ellipsoid, GVIF7 is
computed. Note that the adjusted GVIF (aGVIF) is actually a generalized standard error inflation
factor (GSIF). Thus, the aGIF needs to be squared before applying a common cutoff threshold for
the VIF (e.g., VIF > 10). Note that the output of collin.diag() function reports either the vari-
ance inflation factor or the squared generalized variance inflation factor in the column VIF, while

collin.diag 35

the standard error inflation factor or the adjusted generalized variance inflation factor is reported in
the column SIF.

Note that the computation of the VIF and the GVIF is based on the vif() function in the car
package by John Fox, Sanford Weisberg and Brad Price (2020), and the computation of eigenvalues,
condition index, and variance proportions is based on the ols_eigen_cindex() function in the
olsrr package by Aravind Hebbali (2020).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, object specified in the model argument (model), specification of
function arguments (args), list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References
Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the Americaln
Statistical Association, 87, 178-183.

Fox, J., Weisberg, S., & Price, B. (2020). car: Companion to Applied Regression. R package
version 3.0-8. https://cran.r-project.org/web/packages/car/

Hebbali, A. (2020). olsrr: Tools for building OLS regression models. R package version 0.5.3.
https://cran.r-project.org/web/packages/olsrr/

Examples
dat <- data.frame(group = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4),
x1 =c¢(3, 2, 4,9, 5, 3, 6, 4, 5,6, 3, 5),
x2 =c(1, 4, 3,1, 2, 4, 3,5, 1,7, 8, 7)),
x3 =c¢(7, 3, 4, 2, 5, 6, 4, 2, 3, 5, 2, 8),
x4 = c("a", "b", "a", "c", "c", "c", "a", "b", "b", "c", "a", "c"),
vyl =c(2, 7, 4, 4, 7, 8, 4, 2, 5, 1, 3, 8),
y2 = c(o, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1),

stringsAsFactors = TRUE)

Linear model

Estimate linear model with continuous predictors
mod.1lml <- Im(yl ~ x1 + x2 + x3, data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.1m1)

Tolerance, std. error, and variance inflation factor
Eigenvalue, Condition index, and variance proportions
collin.diag(mod.1lm1, print = "all")

collin.diag

Estimate model with continuous and categorical predictors
mod.1lm2 <- Im(yl ~ x1 + x2 + x3 + x4, data = dat)

Tolerance, generalized std. error, and variance inflation factor
collin.diag(mod.1m2)
Generalized linear model

Estimate logistic regression model with continuous predictors
mod.glm <- glm(y2 ~ x1 + x2 + x3, data = dat, family = "binomial")

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glm)

Not run:
Linear mixed-effects model

Estimate linear mixed-effets model with continuous predictors using lme4 package
mod.1lmer <- 1lme4::lmer(yl ~ x1 + x2 + x3 + (1|group), data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.1lmer)

Estimate linear mixed-effets model with continuous predictors using nlme package
mod.1lme <- nlme::Ime(yl ~ x1 + x2 + x3, random = ~ 1 | group, data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.1lme)

Estimate linear mixed-effets model with continuous predictors using glmmTMB package
mod.glmmTMB1 <- glmmTMB::glmmTMB(y1l ~ x1 + x2 + x3 + (1]|group), data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glmmTMB1)
Generalized linear mixed-effects model

Estimate mixed-effects logistic regression model with continuous predictors using lme4 package
mod.glmer <- Ime4::glmer(y2 ~ x1 + x2 + x3 + (1|group), data = dat, family = "binomial"”)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glmer)

Estimate mixed-effects logistic regression model with continuous predictors using glmmTMB package
mod.glmmTMB2 <- glmmTMB: :glmmTMB(y2 ~ x1 + x2 + x3 + (1|group), data = dat, family = "binomial")

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glmmTMB2)

End(Not run)

cont.coef 37

cont.coef Pearson’s Contingency Coefficient

Description

This function computes the (adjusted) Pearson’s contingency coefficient between two or more than
two variables.

Usage

cont.coef(x, adjust = FALSE, tri = c("both”, "lower"”, "upper"),
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments
X a matrix or data frame with integer vectors, character vectors or factors..
adjust logical: if TRUE, the adjusted contingency coefficient (i.e., Sakoda’s adjusted
Pearson’s C) is computed.
tri a character string indicating which triangular of the matrix to show on the con-
sole, i.e., both for upper and lower triangular, lower (default) for the lower
triangular, and upper for the upper triangular.
digits an integer value indicating the number of decimal places digits to be used for
displaying contingency coefficients.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Details

The maximum contingency coefficient is determined by the distribution of the two variables, i.e., the
contingency coefficient cannot achieve the value of 1 in many cases. According to Sakoda (1977),
the contingency coefficient can be adjusted by relating the coefficient to the possible maximum,
C/Cpax.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

cohens.d, cor.matrix, cramers.v, phi.coef.

38

References

cor.matrix

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.

John Wiley & Sons.

Sakoda, J.M. (1977). Measures of association for multivariate contingency tables. Proceedings of

the Social Statistics Section of the American Statistical Association (Part III), 777-780.

Examples
dat <- data.frame(x = c(1, 1, 2, 1, 3, 3, 2, 2, 1, 2),
y=c(3, 2,3,1,2, 4,1, 2, 3,4,
Z = C(z? 27 27 17 27 27 17 27 1! 2))

Contingency coefficient between x and y
cont.coef(datl, c("x", "y")1)

Adjusted contingency coefficient between x and y
cont.coef(datl[, c("x", "y")], adjust = TRUE)

Contingency coefficient matrix between x, y, and z
cont.coef(dat)

Adjusted contingency coefficient matrix between x, y, and z
cont.coef(dat, adjust = TRUE)

cor.matrix Correlation Matrix with Statistical Significance Testing

Description

This function computes a correlation matrix and computes significance values (p-values) for testing

the hypothesis HO: p = 0 for all possible pairs of variables.

Usage
cor.matrix(x, method = c("pearson”, "spearman”, "kendall-b", "kendall-c"),
use = c("listwise”, "pairwise"”), group = NULL,
print = C(”all”, Hcor_"’ Hn”’ Hp”),
tri = c("both”, "lower”, "upper”),
p.adj = c("none”, "bonferroni”, "holm", "hochberg”, "hommel”,
IIBHII’ IIBYH’ Ilf‘dr.ll)’
digits = 2, p.digits = 3, as.na = NULL, check = TRUE, output = TRUE)
Arguments

X a matrix or data frame.

cor.matrix 39

method a character vector indicating which correlation coefficient is to be computed,
i.e. "pearson” for Pearson product-moment correlation coefficient (default),
"spearman” for Spearman’s rank-order correlation coefficient, kendall-b for
Kendall’s Tau-b correlation coefficient or kendall-c for Kendall-Stuart’s Tau-c
correlation coefficient.

use a character vector giving a method for computing a correlation matrix in the
presence of missing values, i.e., "1listwise"” for listwise deletion and "pairwise
for pairwise deletion

n

group a numeric vector, character vector of factor as grouping variable to show re-
sults for each group separately, i.e., upper triangular for one group and lower
triangular for another group. Note that the grouping variable is limited to two

groups.

print a character string or character vector indicating which additional results to show,
i.e. "all”, for all additional results: "n"” for the sample sizes, and "p" for p-
values.

tri a character string indicating which triangular of the matrix to show on the con-

sole, i.e., both for upper and lower triangular, lower (default) for the lower
triangular, and upper for the upper triangular.

p.adj a character string indicating an adjustment method for multiple testing based on
p.adjust, i.e., none (default), bonferroni, holm, hochberg, hommel, BH, BY,
or fdr.

digits an integer value indicating the number of decimal places to be used for display-

ing correlation coefficients.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

40 cramers.v

See Also
alpha.coef, cohens.d, cont.coef, cramers.v, multilevel.icc, phi.coef, na.auxiliary,
size.cor.

Examples
dat <- data.frame(group = c("a", "a", "a", "a", "a",

T MRt Mt M mpry
x =c(5, NA, 6, 4, 6, 7, 9, 5, 8, 7),
c(3, 3, 5,6, 7, 4, 7, NA, NA, 8),
c(1, 3, 1, NA, 2, 4, 6, 5, 9, 6), stringsAsFactors = FALSE)

N <
1

Pearson product-moment correlation coefficient matrix using pairwise deletion

no,n

cor.matrix(datl[, c("x", "y", "z")1)

Spearman's rank-order correlation matrix using pairwise deletion
cor.matrix(datl[, c("x", "y", "z")]1, method = "spearman")
Kendall's Tau-b correlation matrix using pairwise deletion
cor.matrix(datl[, c("x", "y", "z")1, method = "kendall-b")

Kendall's Tau-c correlation matrix using pairwise deletion
cor.matrix(datl[, c("x", "y", "z")]1, method = "kendall-c")

Pearson product-moment correlation coefficient matrix using pairwise deletion,
print sample size and significance values
cor.matrix(dat[, c("x", "y", "z")1, print = "all")

Pearson product-moment correlation coefficient matrix using listwise deletion,
print sample size and significance values
cor.matrix(datl[, c("x", "y", "z")], use = "listwise”, print = "all")

Pearson product-moment correlation coefficient matrix using listwise deletion,
print sample size and significance values with Bonferroni correction
cor.matrix(datl[, c("x", "y", "z")]1, use = "listwise”, print = "all"”, p.adj = "bonferroni”)

Pearson product-moment correlation coefficient matrix using pairwise deletion,
results for group "a” and "b" separately

"o

cor.matrix(dat[, c("x", "y", "z")1, group = dat$group, print = "all")

cramers.v Cramer’s V

Description

This function computes the (bias-corrected) Cramer’s V between two or more than two variables.

Usage

cramers.v(x, correct = TRUE, tri = c("both”, "lower", "upper"),
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

cramers.v 41

Arguments
X a matrix or data frame with integer vectors, character vectors or factors.
correct logical: if TRUE (default), the bias-corrected Cramer’s V is computed.
tri a character string or character vector indicating which triangular of the matrix to
show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.
digits an integer value indicating the number of decimal places digits to be used for
displaying Cramer’s V.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Details

Cramer’s V can have large bias tending to overestimate the strength of association which depends
on the size of the table and the sample size. As proposed by Bergsma (2013) a bias correction can
be applied to obtain the bias-corrected Cramer’s V.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Bergsma, W. (2013). A bias correction for Cramer’s V and Tschuprow’s T. Journal of the Korean
Statistical Society, 42, 323-328. https://doi.org/10.1016/j.jkss.2012.10.002

See Also

cohens.d, cont.coef, cor.matrix, phi.coef.

Examples
dat <- data.frame(x = c(1, 1, 2, 1, 3, 3, 2, 2, 1, 2),
y=c¢,2,2,1,3,41,2,3,1),
z=c(,1,2,1,2,3,1,2,3,2)

Bias-corrected Cramer's V between x and y
cramers.v(dat[, c("x", "y")1)

42

crosstab

Cramer's V between x and y
cramers.v(dat[, c("x", "y")], correct = FALSE)

Bias-corrected Cramer's V matrix between x, y, and z
cramers.v(dat[, c("x", "y", "z")1D)

Cramer's V matrix between x, y, and z
cramers.v(dat[, c("x", "y", "z")], correct = FALSE)

crosstab Cross Tabulation

Description

This function creates a two-way and three-way cross tabulation with absolute frequencies and row-
wise, column-wise and total percentages.

Usage

crosstab(x, print = c("no”, "all”, "row”, "col"”, "total"), freq = TRUE, split = FALSE,
na.omit = TRUE, digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments
X a matrix or data frame with two or three columns.
print a character string or character vector indicating which percentage(s) to be printed
on the console, i.e., no percentages ("no") (default), all percentages ("all"),
row-wise percentages ("row"), column-wise percentages ("col"”), and total per-
centages ("total").
freq logical: if TRUE, absolute frequencies will be included in the cross tabulation.
split logical: if TRUE, output table is split in absolute frequencies and percentage(s).
na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).
digits an integer indicating the number of decimal places digits to be used for display-
ing percentages.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is printed on the console.
Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

crosstab 43

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

freq, descript, multilevel.descript, na.descript.

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Examples

dat <- data.frame(x1 = c(1, 2, 2, 1, 1, 2, 2, 1, 1, 2),
x2 =c(1, 2, 2,1, 2,1,1, 1,2, 1),
x3=c¢(-99, 2, 1, 1,1, 2,2, 2,2, 1)

Cross Tabulation for x1 and x2
crosstab(dat[, c("x1", "x2")1)

Cross Tabulation for x1 and x2
print all percentages
crosstab(dat[, c("x1", "x2")1, print = "all")

Cross Tabulation for x1 and x2
print row-wise percentages
crosstab(dat[, c("x1", "x2")1, print = "row")

Cross Tabulation for x1 and x2
print col-wise percentages
crosstab(dat[, c("x1", "x2")1, print

ucoln)

Cross Tabulation x1 and x2
print total percentages
crosstab(dat[, c("x1", "x2")1, print = "total")

Cross Tabulation for x1 and x2
print all percentages, split output table
crosstab(dat[, c("x1", "x2")]1, print = "all", split = TRUE)

Cross Tabulation for x1 and x3
do not apply listwise deletion, convert value -99 to NA
crosstab(dat[, c("x1", "x3")], na.omit = FALSE, as.na = -99)

Cross Tabulation for x1 and x3
print all percentages, do not apply listwise deletion, convert value -99 to NA
crosstab(dat[, c(”"x1", "x3")], print = "all”, na.omit = FALSE, as.na = -99)

Cross Tabulation for x1, x2, and x3
crosstab(dat[, c("x1", "x2", "x3")1)

Cross Tabulation for x1, x2, and x3
print all percentages

44

descript

crosstab(dat[, c("x1", "x2", "x3")], print = "all")

Cross Tabulation for x1, x2, and x3
print all percentages, split output table
crosstab(dat[, c("x1", "x2", "x3")]1, print = "all"”, split = TRUE)

descript

Descriptive Statistics

Description

This function computes summary statistics for one or more variables optionally by a grouping vari-

able.

Usage

descript(x,
print = C("all", Hnlly IlnNAII, leNAH’ Ilmll’ “Var“, Ilsdll7 ”min”’ Ilp25II,

Arguments

X

print

group
split
sort.var

na.omit
digits

as.na

check

output

n

”med”, np75n’ nmax , nrangeu, ”iqr“, ”skeW”, ”kurt"),

group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

a character vector indicating which statistical measures to be printed on the con-
sole, i.e. n (number of observations), nNA (number of missing values), pNA (per-
centage of missing values), m (arithmetic mean), var (variance), sd (standard de-
viation), med (median),min (minimum), p25 (25th percentile, first quartile), p75
(75th percentile, third quartile), max (maximum), range (range), iqr (interquar-
tile range), skew (skewness), and kurt (excess kurtosis). The default setting is
print = (Hnll s HnNAH , IleAll R Hmll R ”sdll s ”minll , Ilmaxll s ”Skew” R ”kurt”)'

a numeric vector, character vector or factor as grouping variable.

a numeric vector, character vector or factor as split variable.

logical: if TRUE, output table is sorted by variables when specifying group.

logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

an integer value indicating the number of decimal places to be used.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

descript 45

Value
Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

crosstab, freq, multilevel.descript, na.descript.

Examples
dat <- data.frame(groupl = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2),
x1 =c(3, 1, 4, 2, 5, 3, 2, 4, NA, 4, 5, 3),
x2 = c(4, NA, 3,6, 3,7,2,7,5,1, 3, 6),

x3 =c(7, 8,5, 6, 4, NA, 8, NA, 6, 5, 8, 6))

Descriptive statistics for x1
descript(dat$x1)

Descriptive statistics for x1, print results with 3 digits
descript(dat$x1, digits = 3)

Descriptive statistics for x1, convert value 4 to NA
descript(dat$x1, as.na = 4)

Descriptive statistics for x1, print all available statistical measures
descript(dat$x1, print = "all")

Descriptive statistics for x1, x2, and x3
descript(dat[, c("x1", "x2", "x3")1)

Descriptive statistics for x1, x2, and x3,
listwise deletion for missing data
descript(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Descriptive statistics for x1, x2, and x3,
analysis by groupl separately
descript(dat[, c("x1", "x2", "x3")]1, group = dat$groupl)

Descriptive statistics for x1, x2, and x3,
analysis by groupl separately, sort by variables

46

df.duplicated

descript(dat[, c("x1", "x2", "x3")], group = dat$groupl, sort.var = TRUE)

Descriptive statistics for x1, x2, and x3,
split analysis by group1l
descript(datl[, c("x1", "x2", "x3")], split = dat$groupl)

Descriptive statistics for x1, x2, and x3,
analysis by groupl separately, split analysis by group2
descript(dat[, c("x1", "x2", "x3")], group = dat$groupl, split = dat$group2)

df.duplicated

Extract Duplicated or Unique Rows

Description

This function extracts duplicated or unique rows from a matrix or data frame.

Usage

df.duplicated(x, ..., first = TRUE, keep.all = TRUE, from.last = FALSE,

df.unique(x,

keep.row.names = TRUE, check = TRUE)

., keep.all = TRUE, from.last = FALSE, keep.row.names = TRUE,

check = TRUE)

Arguments

X

first

keep.all

from.last

keep.row.names

check

Details

a matrix or data frame.

a variable or multiple variables which are specified without quotes ' ' or double
quotes "" used to determine duplicated or unique rows. By default, all variables
in x are used.

logical: if TRUE, the df.duplicated() function will return duplicated rows in-
cluding the first of identical rows.

logical: if TRUE, the function will return all variables in x after extracting dupli-
cated or unique rows based on the variables specified in the argument

logical: if TRUE, duplication will be considered from the reversed side, i.e., the
last of identical rows would correspond to duplicated = FALSE. Note that this
argument is only used when first = FALSE.

logical: if TRUE, the row names from x are kept, otherwise they are set to NULL.

logical: if TRUE, argument specification is checked.

Note that df.unique(x) is equivalent to unique(x). That is, the main difference between the
df.unique() and the unique() function is that the df.unique() function provides the ... argu-
ment to specify a variable or multiple variables which are used to determine unique rows.

df.duplicated

Value

Returns duplicated or unique rows of the matrix or data frame in x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

df.merge, df.rbind, df.rename, df.sort

Examples
dat <- data.frame(x1 = c(1, 1, 2, 1, 4),
x2 =c(1, 1, 2,1, 6),
x3 = c(2, 2, 3, 2, 6),
x4 =c(1, 1, 2, 2, 4),
x5 =c(1, 1, 4, 4, 3))

df.duplicated() function

Extract duplicated rows based on all variables
df.duplicated(dat)

Extract duplicated rows based on x4
df.duplicated(dat, x4)

Extract duplicated rows based on x2 and x3
df.duplicated(dat, x2, x3)

Extract duplicated rows based on all variables
exclude first of identical rows
df.duplicated(dat, first = FALSE)

Extract duplicated rows based on x2 and x3
do not return all variables
df.duplicated(dat, x2, x3, keep.all = FALSE)

Extract duplicated rows based on x4
consider duplication from the reversed side
df.duplicated(dat, x4, first = FALSE, from.last = TRUE)

Extract duplicated rows based on x2 and x3
set row names to NULL
df.duplicated(dat, x2, x3, keep.row.names = FALSE)

47

Wadsworth &

48 df.merge

df.unique() function

Extract unique rows based on all variables
unique(dat)

Extract unique rows based on x4
df.unique(dat, x4)

Extract unique rows based on x1, x2, and x3
df.unique(dat, x1, x2, x3)

Extract unique rows based on x2 and x3
do not return all variables
df.unique(dat, x2, x3, keep.all = FALSE)

Extract unique rows based on x4
consider duplication from the reversed side
df.unique(dat, x4, from.last = TRUE)

Extract unique rows based on x2 and x3
set row names to NULL
df.unique(dat, x2, x3, keep.row.names = FALSE)

df .merge Merge Multiple Data Frames

Description

This function merges data frames by a common column (i.e., matching variable).

Usage
df.merge(..., by, all = TRUE, check = TRUE, output = TRUE)
Arguments
a sequence of matrices or data frames and/or matrices to be merged to one.
by a character string indicating the column used for merging (i.e., matching vari-
able), see ’Details’.
all logical: if TRUE, then extra rows with NAs will be added to the output for each
row in a data frame that has no matching row in another data frame.
check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

df.merge 49

Details

There are following requirements for merging multiple data frames: First, each data frame has the
same matching variable specified in the by argument. Second, matching variable in the data frames
have all the same class. Third, there are no duplicated values in the matching variable in each data
frame. Fourth, there are no missing values in the matching variables. Last, there are no duplicated
variable names across the data frames except for the matching variable.

Note that it is possible to specify data frames matrices and/or in the argument However, the
function always returns a data frame.

Value

Returns a merged data frame.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also
df.duplicated, df.unique, df.rbind, df.rename, df.sort

Examples

adat <- data.frame(id = c(1, 2, 3),
x1 = c(7, 3, 8))

bdat <- data.frame(id = c(1, 2),
x2 = c(5, 1))

cdat <- data.frame(id = c(2, 3),
y3 = c(7, 9

ddat <- data.frame(id = 4,
y4 = 6)

Merge adat, bdat, cdat, and data by the variable id
df .merge(adat, bdat, cdat, ddat, by = "id")

Do not show output on the console
df.merge(adat, bdat, cdat, ddat, by = "id", output = FALSE)

Not run:
Error messages

adat <- data.frame(id = c(1, 2, 3),
x1 c(7, 3, 8))

bdat <- data.frame(code = c(1, 2, 3),
x2 = c(5, 1, 3))

50 df.rbind

cdat <- data.frame(id = factor(c(1, 2, 3)),
x3 = c(5, 1, 3))

ddat <- data.frame(id = c(1, 2, 2),
x2 = c(5, 1, 3))

edat <- data.frame(id = c(1, NA, 3),
x2 = c(5, 1, 3))

fdat <- data.frame(id = c(1, 2, 3),
x1 =¢c(5, 1, 3))

Error: Data frames do not have the same matching variable specified in 'by'.
df.merge(adat, bdat, by = "id")

Error: Matching variable in the data frames do not all have the same class.
df.merge(adat, cdat, by = "id")

Error: There are duplicated values in the matching variable specified in 'by'.
df.merge(adat, ddat, by = "id")

Error: There are missing values in the matching variable specified in 'by'.
df.merge(adat, edat, by = "id")

#' # Error: There are duplicated variable names across data frames.
df.merge(adat, fdat, by = "id")

End(Not run)

df.rbind Combine Data Frames by Rows, Filling in Missing Columns

Description

This function takes a sequence of data frames and combines them by rows, while filling in missing
columns with NAs.

Usage

df.rbind(...)

Arguments

a sequence of data frame to be row bind together. This argument can be a list of
data frames, in which case all other arguments are ignored. Any NULL inputs are
silently dropped. If all inputs are NULL, the output is also NULL.

df.rbind 51

Details

This is an enhancement to rbind that adds in columns that are not present in all inputs, accepts a
sequence of data frames, and operates substantially faster.

Column names and types in the output will appear in the order in which they were encountered.

Unordered factor columns will have their levels unified and character data bound with factors will
be converted to character. POSIXct data will be converted to be in the same time zone. Array and
matrix columns must have identical dimensions after the row count. Aside from these there are no
general checks that each column is of consistent data type.

Note that this function is a copy of the rbind.fill() function in the plyr package by Hadley
Wickham.

Value

Returns a single data frame

Author(s)
Hadley Wickham

References

Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical
Software, 40, 1-29. https://doi.org/10.18637/jss.v040.i01

Wickham, H. (2019). plyr: Tools for Splitting, Applying and Combining Data. R package version
1.8.5.

See Also

df.duplicated, df.unique, df .merge, df.rename, df.sort

Examples

adat <- data.frame(id = c(1, 2, 3),
a=c(7, 3, 8,
b =c(4, 2, 7))

bdat <- data.frame(id = c(4, 5, 6),
a =c(2, 4, 6),
c=c(4, 2, 7))

cdat <- data.frame(id = c(7, 8, 9),
a=c(, 4, 6),
d=c(9, 5 4)

df.rbind(adat, bdat, cdat)

52 df.rename

df.rename Rename Columns in a Matrix or Variables in a Data Frame

Description

This function renames columns in a matrix or variables in a data frame by specifying a character
string or character vector indicating the columns or variables to be renamed and a character string
or character vector indicating the corresponding replacement values.

Usage

df.rename(x, from, to, check = TRUE)

Arguments
X a matrix or data frame.
from a character string or character vector indicating the column(s) or variable(s) to
be renamed.
to a character string or character vector indicating the corresponding replacement
values for the column(s) or variable(s) specified in the argument name.
check logical: if TRUE, argument specification is checked.
Value

Returns a matrix or data frame with renamed columns or variables.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

df.duplicated, df.unique, df.merge, df.rbind, df.sort

Examples
dat <- data.frame(a = c(3, 1, 6),
b = C(4? 2? 5)!
c=c(7, 3, 1))

Rename variable b in the data frame 'dat' to 'y
df.rename(dat, from = "b", to = "y")

Rename variabley a, b, and ¢ in the data frame 'dat' to x, y, and z
df.rename(dat, from = c("a", "b", "c"), to = c("x", "y", "z"))

df.sort 53

df.sort Data Frame Sorting

Description

This function arranges a data frame in increasing or decreasing order according to one or more

variables.
Usage
df.sort(x, ..., decreasing = FALSE, check = TRUE)
Arguments
X a data frame.
a sorting variable or a sequence of sorting variables which are specified without
quotes ' ' or double quotes "".
decreasing logical: if TRUE, the sort is decreasing.
check logical: if TRUE, argument specification is checked.
Value
Returns data frame x sorted according to the variables specified in . . ., a matrix will be coerced to

a data frame.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching (2nd
ed.). Addison-Wesley.

See Also

df.duplicated, df.unique, df.merge, df.rbind, df.rename

54 dummy.c

Examples
dat <- data.frame(x = c(5, 2, 5, 5, 7
y =c(1, 6, 2, 3, 2, 3),
z=c(2, 1,6, 3,7

Sort data frame 'dat' by "x" in increasing order
df.sort(dat, x)

Sort data frame 'dat' by "x" in decreasing order
df.sort(dat, x, decreasing = TRUE)

Sort data frame 'dat' by "x" and "y" in increasing order
df.sort(dat, x, y)

Sort data frame 'dat' by "x" and "y" in decreasing order
df.sort(dat, x, y, decreasing = TRUE)

dummy. c Dummy Coding

Description

This function creates k — 1 dummy coded 0/1 variables for a vector with k distinct values.

Usage

dummy.c(x, ref = NULL, names = "d", as.na = NULL, check = TRUE)

Arguments
X a numeric vector with integer values, character vector or factor.
ref a numeric value or character string indicating the reference group. By default,
the last category is selected as reference group.
names a character string or character vector indicating the names of the dummy vari-
ables. By default, variables are named "d"” with the category compared to the
reference category (e.g., "d1"” and "d2"). Variable names can be specified using
a character string (e.g., names = "dummy_" leads to dummy_1 and dummy_2) or a
character vector matching the number of dummy coded variables (e.g. names =
c("x.3.1","x.3.2")) which is the number of unique categories minus one.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Value

Returns a matrix with k - 1 dummy coded 0/1 variables.

dummy.c

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

55

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Examples

dat <- data.frame(x

y
z

C(1} 1r 1r 2r 2r 2: 37 37 3)}
C("a”, nan, nau’ "b“, “b", "b”, ”C”, ”C”, IICII)’
faCtOr(C(“B", "B”, an, "A”, ”A“, nAuy "C”, ”C”, "C”)),

stringsAsFactors = FALSE)

Dummy coding of a numeric variable, reference

dummy . c(dat$x)

Dummy coding of a numeric variable, reference

1
w

1
—

dummy.c(dat$x, ref = 1)

Dummy coding of a numeric variable, reference

1
w

assign user-specified variable names

dummy.c(dat$x, names

= c("x.3_1", "x.3.2"))

Dummy coding of a numeric variable, reference = 3
assign user-specified variable names and attach to the data frame
dat <- data.frame(dat, dummy.c(dat$x, names = c("x.3_1", "x.3_.2")))

Dummy coding of a character variable, reference = "c

dummy.c(dat$y)

Dummy coding of a character variable, reference = "a

non

nan

dummy.c(dat$y, ref = "a")

Dummy coding of a numeric variable, reference = "c

n.n

assign user-specified variable names

dummy.c(dat$y, names

Dummy coding of a character variable, reference = "c

- C("y.C_a", "y.C_b”))

n_n

assign user-specified variable names and attach to the data frame
dat <- data.frame(dat, dummy.c(dat$y, names = c("y.c_a", "y.c_b")))

Dummy coding of a factor, reference = "C"

dummy . c(dat$z)

Dummy coding of a factor, reference = "A"
dummy.c(dat$z, ref = "A")

Dummy coding of a numeric variable, reference = "C”"
assign user-specified variable names

dummy.c(dat$z, names

= c("z.C_A", "z.C_B"))

56 eta.sq

Dummy coding of a factor, reference = "C"
assign user-specified variable names and attach to the data frame
dat <- data.frame(dat, dummy.c(dat$z, names = c("z.C_A", "z.C_B")))

eta.sq Eta Squared

Description

This function computes eta squared for one or more outcome variables in combination with one or
more grouping variables.

Usage

eta.sq(x, group, digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments
X a numeric vector, matrix or data frame with numeric vectors for the outcome
variables.
group a vector, matrix or data frame with integer vectors, character vectors or factors
for the grouping variables.
digits an integer value indicating the number of decimal places to be used for display-
ing eta squared.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to the argument x.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

freq 57

See Also

cohens.d, cont.coef, cor.matrix, cramers.v, phi.coef

Examples
dat <- data.frame(x1 = c(1, 1, 1, 1, 2, 2, 2, 2, 2),
x2=c(1, 1,1, 2,2, 2,3, 3, 3),
yl =c(3, 2, 4, 5,6, 4,7,5,7),
y2 =c(2, 4,1, 5, 3, 3, 4,6, 7))

Eta squared for y1 explained by x1
eta.sq(dat$yl, group = dat$x1)

Eta squared for y1 and y2 explained by x1 and x2
eta.sq(dat[, c("y1", "y2")1, group = dat[, c("x1", "x2")1)

freq Frequency Table

Description

This function computes a frequency table with absolute and percentage frequencies for one or more
than one variable.

Usage
freq(x, print = c("no", "all"”, "perc", "v.perc"), freq = TRUE, split = FALSE,
labels = TRUE, val.col = FALSE, exclude = 15, digits = 2, as.na = NULL,
check = TRUE, output = TRUE)
Arguments
X a vector, factor, matrix or data frame.
print a character string indicating which percentage(s) to be printed on the console,
i.e., no percentages ("no"), all percentages ("all"), percentage frequencies
("print"), and valid percentage frequencies ("v.perc"). Default setting when
specifying one variable in x is print = "all”, while default setting when spec-
ifying more than one variable in x is print = "no"” unless split = TRUE.
freq logical: if TRUE (default), absolute frequencies will be shown on the console.
split logical: if TRUE, output table is split by variables when specifying more than one
variable in x.
labels logical: if TRUE (default), labels for the factor levels will be used.
val.col logical: if TRUE, values are shown in the columns, variables in the rows.
exclude an integer value indicating the maximum number of unique values for variables

to be included in the analysis when specifying more than one variable in X, i.e.,
variables with the number of unique values exceeding exclude will be excluded
from the analysis.

58

digits

as.na

check

output

Details

freq

an integer value indicating the number of decimal places to be used for display-
ing percentages.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

By default, the function displays the absolute and percentage frequencies when specifying one
variable in the argument x, while the function displays only the absolute frequencies when more than
one variable is specified. The function displays valid percentage frequencies only in the presence
of missing values and excludes variables with all values missing from the analysis. Note that it is
possible to mix numeric variables, factors, and character variables in the data frame specified in the

argument X.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language. Wadsworth &

Brooks/Cole.

See Also

crosstab, descript, multilevel.descript, na.descript.

Examples

dat <- data.frame(x1 = c(3,

3,2,3,2,3,3,2, 1, -99),
x2=c(2,2,1,3,1,1, 3,3, 2, 2),
yl =c(1, 4, NA, 5, 2, 4, 3, 5, NA, 1),
y2 = c(2, 3, 4, 3, NA, 4, 2, 3, 4, 5),

z=c(1, 2, 3, 4,5, 6,7, 8,9, 10))

Frequency table for one variable

freq(dat$x1)

Frequency table for one variable,
values shown in columns
freq(dat$x1, val.col = TRUE)

group.scores 59

Frequency table for one variable,
convert value -99 into NA
freq(dat$x1, as.na = -99)

Frequency table for one variable
use 3 digit for displaying percentages
freq(dat$x1, digits = 3)

Frequency table for more than one variable
freq(dat[, C(”X’I“, IIX2II’ uy»ln, nyzn)])

Frequency table for more than one variable,
values shown in columns
freq(datl[, c("x1", "x2", "y1", "y2")], val.col = TRUE)

Frequency table for more than one variable,
with percentage frequencies
freq(datl[, c("x1", "x2", "y1", "y2")]1, print = "all")

Frequency table for more than one variable,
with percentage frequencies, values shown in columns
freq(datl[, c("x1", "x2", "y1", "y2")], print = "all"”, val.col = TRUE)

Frequency table for more than one variable,
split output table
freq(datl[, c("x1", "x2", "y1", "y2")]1, split = TRUE)

Frequency table for more than one variable,
exclude variables with more than 5 unique values
freq(dat, exclude = 5)

Frequency table for a factor
freq(faCtOr(C("a”, ”a”, an, ”C", Hbll)))

Frequency table for one variable,
do not use labels of the factor levels
freq(factor(c(”a", "a", "b", "c", "b")), labels = FALSE)

group.scores Group Scores

Description

This function computes group means by default.

Usage

n n n nosoon

group.scores(x, group, fun = c("mean”, "sum”", "median”, "var", "sd”, "min
expand = TRUE, as.na = NULL, check = TRUE)

n n
, "max"),

60

Arguments

X

group

fun

expand

as.na

check

Value

group.scores

a numeric vector.

a integer vector, character vector, or factor representing the grouping structure
(i.e., group variable).

character string indicating the function used to compute group scores, default:
"mean”.

logical: if TRUE, vector of group scores is expanded to match the input vector x.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to the argument x, but not to group.

logical: if TRUE, argument specification is checked.

Returns a numeric vector containing group scores with the same length as x if expand = TRUE or
with the length length(unique(group)) if expand = FALSE.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

@seealso scores, multilevel.descript, multilevel.icc

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

Examples

dat.ml <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
1, 1

group = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x =c(4, 2,5,6,3,4,1,3,4)

Compute group means and expand to match the input x
group.scores(dat.ml$x, group = dat.ml$group)

Compute standard deviation for each group and expand to match the input x
group.scores(dat.ml$x, group = dat.ml$group, fun = "sd")

Compute group means without expanding the vector
group.scores(dat.ml$x, group = dat.ml$group, expand = FALSE)

kurtosis 61

kurtosis Excess Kurtosis

Description

This function computes the excess kurtosis.

Usage

kurtosis(x, as.na = NULL, check = TRUE)

Arguments
X a numeric vector.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Details

The same method for estimating kurtosis is used in SAS and SPSS. Missing values (NA) are stripped
before the computation. Note that at least 4 observations are needed to compute excess kurtosis.
Value

Returns the estimated excess kurtosis of x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

skewness

Examples

Set seed of the random number generation
set.seed(123)

Generate random numbers according to N(@, 1)
X <= rnorm(100)

Compute excess kurtosis
kurtosis(x)

62 levenes.test

levenes. test Levene’s Test for Homogeneity of Variance

Description

This function computes Levene’s test for homogeneity of variance across two or more independent

groups.
Usage
levenes.test(formula, data, method = c(”"median”, "mean"), conf.level = 0.95,
digits = 2, p.digits = 3, as.na = NULL, check = TRUE, output = TRUE)
Arguments
formula a formula of the form y ~ group where y is a numeric variable giving the data
values and group a numeric variable, character variable or factor with two or
more than two values or factor levels giving the corresponding groups.
data a matrix or data frame containing the variables in the formula formula.
method a character string specifying the method to compute the center of each group, i.e.
method = "median” (default) to compute the Levene’s test basd on the median
(aka Brown-Forsythe test) or method = "mean” to compute the Levene’s test
based on the arithmetic mean.
conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
digits an integer value indicating the number of decimal places to be used for display-
ing results.
p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown.
Details

Levene’s test is equivalent to a one-way analysis of variance (ANOVA) with the absolute deviations
of observations from the mean of each group as dependent variable (center = "mean”). Brown
and Forsythe (1974) modified the Levene’s test by using the absolute deviations of observations
from the median (center = "median”). By default, the Levene’s test uses the absolute deviations
of observations from the median.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, formula (formula), data frame with the outcome and grouping
variable (data), specification of function arguments (args), and a list with descriptive statistics
including confidence intervals and an object of class "anova” (result).

mgsub 63

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69, 364-367.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

t.test, aov

Examples

dat <- data.frame(y = c(2, 3, 4, 5, 5, 7, 8, 4, 5, 2, 4, 3),
group = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))

Levene's test based on the median with 95% confidence interval
levenes.test(y ~ group, data = dat)

Levene's test based on the arithmetic mean with 95% confidence interval
levenes.test(y ~ group, data = dat, method = "mean")

Levene's test based on the median with 99% confidence interval
levenes.test(y ~ group, data = dat, conf.level = 0.99)

mgsub Multiple Pattern Matching And Replacements

Description

This function is a multiple global string replacement wrapper that allows access to multiple methods
of specifying matches and replacements.

Usage
mgsub(pattern, replacement, x, recycle = FALSE, ...)
Arguments
pattern a character vector with character strings to be matched.
replacement a character vector equal in length to pattern or of length one which are a re-
placement for matched patterns.
X a character vector where matches and replacements are sought.
recycle logical: if TRUE, replacement is recycled if lengths differ.

additional arguments to pass to the regexpr or sub function.

64 multilevel.descript

Details
Note that the function was adapted from the mgsub() function in the mgsub package by Mark
Ewing (2019).

Value
Return a character vector of the same length and with the same attributes as x (after possible coer-
cion to character).

Author(s)
Mark Ewing

References
Mark Ewing (2019). mgsub: Safe, Multiple, Simultaneous String Substitution. R package version
1.7.1. https://CRAN.R-project.org/package=mgsub

See Also

stromit, trim

Examples

string <- c("hey ho, let's go!")
mgsub(c("hey”, "ho"), c("ho”, "hey"), string)

string <- "they don't understand the value of what they seek.”
mgsub(c("the”, "they"), c("a", "we"), string)

string <- c("hey ho, let's go!")
mgsub(c("hey”, "ho"), "yo", string, recycle = TRUE)

string <- "Dopazamine is not the same as dopachloride or dopastriamine, yet is still fake.”
mgsub(c("[Dd]opa([* J*?mine)"”,"fake"), c("Meta\\1","real”), string)

multilevel.descript Multilevel Descriptive Statistics

Description
This function computes descriptive statistics for multilevel data, e.g. average group size, intraclass
correlation coefficient, design effect and effective sample size.

Usage

multilevel.descript(x, group, method = c("aov”, "lme4", "nlme"), REML = TRUE,
digits = 2, icc.digits = 3, as.na = NULL, check = TRUE,
output = TRUE)

multilevel.descript 65

Arguments

X a vector, matrix or data frame.

group a vector representing the grouping structure (i.e., group variable).

method a character string indicating the method used to estimate intraclass correlation
coefficients, i.e., "aov” (default) ICC estimated using the aov function, "1me4"
ICC estimated using the 1mer function in the Ime4 package, "nlme"” ICC esti-
mated using the 1me function in the nlme package.

REML logical: if TRUE, restricted maximum likelihood is used to estimate the null
model when using the 1mer () function in the Ime4 package or the 1me() func-
tion in the nlme package.

digits an integer value indicating the number of decimal places to be used.

icc.digits an integer indicating the number of decimal places to be used for displaying
intraclass correlation coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to group.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

Note that this function is restricted to two-level models.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

multilevel.icc

66

Examples

dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7,
group = c(1, 1, 1, 1, 2, 2,
x1 =c(2, 3, 2, 2, 1, 2, 3,
x2 =c¢(3, 2, 2,1, 2,1, 3,
x3 =c¢(2, 1, 2, 2, 3, 3, 5,

Multilevel descriptive statistics for x1

multilevel.descript(dat$x1, group = dat$group)

Multilevel descriptive statistics
multilevel.descript(dat$x1, group =

Multilevel descriptive statistics
multilevel.descript(dat$x1, group =

Multilevel descriptive statistics

for x1,

N N D W o

multilevel.icc

9,
3, 3),
2),
5),
)

for x1, print ICC with 5 digits
dat$group, icc.digits = 5)

for x1, convert value 1 to NA
dat$group, as.na = 1)

use lmer() function in the 1lme4 package to estimate ICC
multilevel.descript(dat$x1, group = dat$group, method = "1lme4")

Multilevel descriptive statistics for x1, x2, and x3
multilevel.descript(dat[, c("x1", "x2", "x3")], group = dat$group)

multilevel.icc

Intraclass Correlation Coefficient, ICC(1) and ICC(2)

Description

This function computes the intraclass correlation coefficient ICC(1), i.e., proportion of the total
variance explained by the grouping structure, and ICC(2), i.e., reliability of aggregated variables.

Usage

multilevel.icc(x, group, type =1, method = c("aov"”, "1lme4”, "nlme"), REML = TRUE,

as.na = NULL, check = TRUE)
Arguments
X a vector, matrix or data frame.
group a vector representing the grouping structure (i.e., group variable).
type numeric value indicating the type of intraclass correlation coefficient, i.e., type
=1 for ICC(1) and type = 2 for ICC(2).
method a character string indicating the method used to estimate intraclass correlation

coefficients, i.e., method = "aov"” (default) ICC estimated using the aov func-
tion, method = "1me4" ICC estimated using the 1mer function in the Ime4 pack-
age, method = "nlme"” ICC estimated using the 1me function in the nlme pack-

age.

multilevel.icc 67

REML logical: if TRUE, restricted maximum likelihood is used to estimate the null
model when using the 1mer function in the Ime4 package or the 1me function in
the nlme package.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Details

Note that this function is restricted to two-level models.

Value

Returns a numeric vector with intraclass correlation coefficient(s).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

multilevel.descript

Examples
dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
group = c(1, 1, 1, 1, 2, 2, 3, 3, 3),
x1 =c¢c(2, 3, 2, 2,1, 2, 3, 4, 2),
x2 =c¢(3, 2, 2,1, 2,1, 3, 2, 5),
x3 =c(2, 1, 2, 2, 3, 3, 5, 2, 4)

ICC(1) for x1
multilevel.icc(dat$x1, group = dat$group)

ICC(1) for x1, convert value 1 to NA
multilevel.icc(dat$x1, group = dat$group, as.na = 1)

ICC(2) for x1
multilevel.icc(dat$x1, group = dat$group, type = 2)

ICC(1) for x1,
use lmer() function in the 1lme4 package to estimate ICC
multilevel.icc(dat$x1, group = dat$group, method = "1lmed")

68

na.as

ICC(1) for x1, x2, and x3
multilevel.icc(dat[, c("x1", "x2", "x3")], group = dat$group)

na.as

Replace Missing Values With User-Specified Values

Description

This function replaces NA in a vector, factor, matrix or data frame with user-specified values in the

argument value.

Usage

na.as(x, value, as.na = NULL, check = TRUE)

Arguments

X
value

as.na

check

Value

a vector, factor, matrix or data frame.
a numeric value or character string with which NA is replaced.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

logical: if TRUE, argument specification is checked.

Returns x with NA replaced with the numeric value or character string specified in value.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

as.na, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

Numeric vector

x.num <- c(1, 3, NA, 4, 5)

Replace NA with 2
na.as(x.num, value = 2)

na.auxiliary 69

Character vector
x.chr <= c(”a”, NA, "c”, "d", "e")

Replace NA with "b"

na.as(x.chr, value = "b")

Factor

x.factor <- factor(c(”a", "a", NA, NA, "c", "c"))
Replace NA with "b"

na.as(x.factor, value = "b")

Matrix

x.mat <- matrix(c(1, NA, 3, 4, 5, 6), ncol = 2)

Replace NA with 2
na.as(x.mat, value = 2)

Data frame

x.df1 <- data.frame(x1 = c(NA, 2, 3),
x2 = c(2, NA, 3),
x3 = c(3, NA, 2))

Replace NA with -99
na.as(x.df1, value = -99)

Recode value in data frame

x.df2 <- data.frame(x1 = c(1, 2, 30),
x2 = c(2, 1, 30),
X3 c(30, 1, 2))

Replace 30 with NA and then replace NA with 3
na.as(x.df2, value = 3, as.na = 30)

na.auxiliary Auxiliary variables

Description

This function computes (1) Pearson product-moment correlation matrix to identify variables related
to the incomplete variable and (2) Cohen’s d comparing cases with and without missing values to
identify variables related to the probability of missigness.

Usage

na.auxiliary(x, tri = c("both”, "lower", "upper"), weighted = TRUE, correct = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

70

Arguments

X

tri

weighted

correct

digits

as.na

check

output

Details

na.auxiliary

a matrix or data frame with numeric vectors.

a character string indicating which triangular of the correlation matrix to show
on the console, i.e., both for upper and lower triangular, lower (default) for the
lower triangular, and upper for the upper triangular.

logical: if TRUE (default), the weighted pooled standard deviation is used.

logical: if TRUE, correction factor for Cohen’s d to remove positive bias in small
samples is used.

integer value indicating the number of decimal places digits to be used for dis-
playing correlation coefficients and Cohen’s d estimates.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

Note that non-numeric variables (i.e., factors, character vectors, and logical vectors) are excluded
from to the analysis.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.coverage, na.descript, na.indicator, na.pattern, na.prop.

na.coverage 71

Examples

dat <- data.frame(x1 = c(1, NA, 2, 5, 3, NA, 5, 2),
x2 = c(4, 2, 5,1, 5, 3, 4, 5),
x3 = c(NA, 3, 2, 4, 5, 6, NA, 2),
x4 = c(5, 6, 3, NA, NA, 4, 6, NA))

Auxiliary variables
na.auxiliary(dat)

na.coverage Variance-Covariance Coverage

Description

This function computes the proportion of cases that contributes for the calculation of each variance
and covariance.

Usage
na.coverage(x, tri = c("both”, "lower"”, "upper”), digits = 2, as.na = NULL,
check = TRUE, output = TRUE)
Arguments
X a matrix or data frame.
tri a character string or character vector indicating which triangular of the matrix to
show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.
digits an integer value indicating the number of decimal places to be used for display-
ing proportions.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

72

References

na.descript

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.descript, na.indicator, na.pattern, na.prop.

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),

y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

Create missing data indicator matrix R

na.coverage(dat)

na.descript

Descriptive Statistics for Missing Data

Description

This function computes descriptive statistics for missing data, e.g. number (of missing values, and
summary statistics for the number (

Usage

na.descript(x, table = FALSE, digits =2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

X

table

digits

as.na

check

output

a matrix or data frame.

logical: if TRUE, a frequency table with number of observed values ("nObs"),
percent of observed values ("pObs”), number of missing values ("nNA"), and
percent of missing values ("pNA") is printed for each variable on the console.

an integer value indicating the number of decimal places to be used for display-
ing percentages.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

na.indicator 73

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.indicator, na.pattern, na.prop.

Examples

dat <- data.frame(x1 = c(1, NA, 2, 5, 3, NA, 5, 2),
x2 =c(4, 2,5, 1,5, 3, 4, 5),
x3 = c(NA, 3, 2, 4, 5, 6, NA, 2),
x4 = c(5, 6, 3, NA, NA, 4, 6, NA))

Descriptive statistics for missing data
na.descript(dat)

Descriptive statistics for missing data, print results with 3 digits
na.descript(dat, digits = 3)

Descriptive statistics for missing data, convert value 2 to NA
na.descript(dat, as.na = 2)

Descriptive statistics for missing data with frequency table
na.descript(dat, table = TRUE)

na.indicator Missing Data Indicator Matrix

Description

This function creates a missing data indicator matrix R that denotes whether values are observed or
missing, i.e., r = 1 if a value is observed, and r = 0 if a value is missing.

74 na.indicator

Usage

na.indicator(x, as.na = NULL, check = TRUE)

Arguments
X a matrix or data frame.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Value

Returns a matrix or data frame with » = 1 if a value is observed, and r = 0 if a value is missing.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.pattern, na.prop.

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = ¢c(2, NA, 3, NA, 5))

Create missing data indicator matrix \egn{R}
na.indicator(dat)

na.pattern 75

na.pattern Missing Data Pattern

Description

This function computes a summary of missing data patterns, i.e., number (

Usage

na.pattern(x, order = FALSE, digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments
X a matrix or data frame with incomplete data, where missing values are coded as
NA.
order logical: if TRUE, variables are ordered from left to right in increasing order of
missing values.
digits an integer value indicating the number of decimal places to be used for display-
ing percentages.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown.
Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), list with results (result), and a vector with the number of missing data
pattern for each case (pattern),

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.prop.

76 na.prop

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y C(7? NA’ 8’ 9’ NA)Y
z = c(2, NA, 3, NA, 5))

Compute a summary of missing data patterns
dat.pattern <- na.pattern(dat)

Vector of missing data pattern for each case
dat.pattern$pattern

Data frame without cases with missing data pattern 2 and 5
dat[!dat.pattern$pattern %in% c(2, 5), 1

na.prop Proportion of Missing Data for Each Case

Description

This function computes the proportion of missing data for each case in a matrix or data frame.

Usage

na.prop(x, digits = 2, as.na = NULL, check = TRUE)

Arguments
X a matrix or data frame.
digits an integer value indicating the number of decimal places to be used for display-
ing proportions.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Value

Returns a numeric vector with the same length as the number of rows in x containing the proportion
of missing data.
Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

omega.coef 77

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern.

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

Compute proportion of missing data (\code{NA}) for each case in the data frame
na.prop(dat)

omega.coef Coefficient Omega, Hierarchical Omega, and Categorical Omega

Description

This function computes point estimate and confidence interval for the coefficient omega (McDonald,
1978), hierarchical omega (Kelley & Pornprasertmanit, 2016), and categorical omega (Green &
Yang, 2009) along with standardized factor loadings and omega if item deleted.

Usage
omega.coef(x, resid.cov = NULL, type = c("omega”, "hierarch”, "categ"),
exclude = NULL, std = FALSE, na.omit = FALSE,
print = c("all”, "omega", "item"), digits = 2,
conf.level = 0.95, as.na = NULL, check = TRUE, output = TRUE
)
Arguments
X a matrix or data frame. Note that at least three items are needed for computing
omega.
resid.cov a character vector or a list of character vectors for specifying residual covari-
ances when computing coefficient omega, e.g. resid.cov=c("x1","x2")
for specifying a residual covariance between items x1 and x2 or resid.cov =
list(c("x1","x2"),c("x3","x4")) for specifying residual covariances be-
tween items between items x1 and x2, and items x3 and x4.
type a character string indicating the type of omega to be computed, i.e., omega (de-
fault) for coefficient omega, hierarch for hierarchical omega, and categ for
categorical omega.
exclude a character vector indicating items to be excluded from the analysis.
std logical: if TRUE, the standardized coefficient omega is computed.
na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis

(i.e., listwise deletion); if FALSE, full information maximum likelihood (FIML)
is used for computing coefficient omega or hierarchical omega, while pairwise
deletion is used for computing categorical omega.

78 omega.coef

print a character vector indicating which results to show, i.e. "all"” (default), for all
results "omega"” for omega, and "item” for item statistics.

digits an integer value indicating the number of decimal places to be used for display-
ing omega and standardized factor loadings.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Details

Omega is computed by estimating a confirmatory factor analysis model using the cfa() function
in the lavaan package by Yves Rosseel (2019). Maximum likelihood ("ML") estimator is used
for computing coefficient omega and hierarchical omega, while diagonally weighted least squares
estimator ("DWLS") is used for computing categorical omega.

Note that the computation of the hierarchical and categorical omega is based onthe ci.reliability()
function in the MBESS package by Ken Kelley (2019).

Approximate confidence intervals are computed using the procedure by Feldt, Woodruff and Salih
(1987). Note that there are at least 10 other procedures for computing the confidence interval (see
Kelley and Pornprasertmanit, 2016), which are implemented in the ci.reliability() function in
the MBESSS package by Ken Kelley (2019).

Value

Returns an object of class mistsy.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of function
arguments (args), fitted lavaan object (mod. fit), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement, 11 93-103.

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation model-
ing: An alternative to coefficient alpha. Psychometrika, 74, 155-167. https://doi.org/10.1007/s11336-
008-9099-3

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coeffi-
cients: Evaluation of methods, recommendations, and software for composite measures. Psycho-
logical Methods, 21, 69-92. http://dx.doi.org/10.1037/a0040086

Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-
project.org/package=MBESS

McDonald, R. P. (1978). Generalizability in factorable domains: "Domain validity and generaliz-
ability" Educational and Psychological Measurement, 38, 75-79.

phi.coef 79

See Also

omega.coef, reverse.item, scores

Examples
dat <- data.frame(iteml = c(5, 2, 3, 4, 1, 2, 4, 2),
item2 = c(5, 3, 3, 5, 2, 2, 5, 1),
item3 = c(4, 2, 4, 5, 1, 3, 5, 1),
item4 = c(5, 1, 2, 5, 2, 3, 4, 2))

Compute unstandardized coefficient omega and item statistics
omega.coef (dat)

Compute unstandardized coefficient omega with a residual covariance
and item statistics
omega.coef(dat, resid.cov = c("item1”, "item2"))

Compute unstandardized coefficient omega with residual covariances
and item statistics
omega.coef(dat, resid.cov = list(c("item1"”, "item2"), c("item3", "item4")))

Compute unstandardized hierarchical omega and item statistics
omega.coef(dat, type = "hierarch")

Compute categorical omega and item statistics
omega.coef(dat, type = "categ")

Compute standardized coefficient omega and item statistics
omega.coef(dat, std = TRUE)

Compute unstandardized coefficient omega
omega.coef(dat, print = "omega”)

Compute item statistics
omega.coef(dat, print = "item")

Compute unstandardized coefficient omega and item statistics while excluding item3
omega.coef(dat, exclude = "item3")

Summary of the CFA model used to compute coefficient omega
lavaan: : summary(omega.coef (dat, output = FALSE)$mod.fit,
fit.measures = TRUE, standardized = TRUE)

phi.coef Phi Coefficient

Description

This function computes the (adjusted) Phi coefficient between two or more than two dichotomous
variables.

80

Usage

phi.coef

phi.coef(x, adjust = FALSE, tri = c("both”, "lower”, "upper"), digits = 2,

Arguments

X

adjust

tri

digits

as.na

check

output

Details

= NULL, check = TRUE, output = TRUE)

a matrix or data frame.

logical: if TRUE, phi coefficient is adjusted by relating the coefficient to the
possible maximum.

a character string or character vector indicating which triangular of the matrix to
show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.

an integer value indicating the number of decimal places digits to be used for
displaying phi coefficients.

a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

The maximum Phi coefficient is determined by the distribution of the two variables, i.e., the Phi
coefficient cannot achieve the value of 1 in many cases. According to Cureton (1959), the’ phi
coefficient can be adjusted by relating the coefficient to the possible maximum, ¢/¢,ax.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Cureton, E. E. (1959). Note on Phi/Phi max. Psychometrika, 24, 89-91.

Davenport, E. C., & El-Sanhurry, N. A. (1991). Phi/Phimax: Review and synthesis. Educational
and Psychological Measurement, 51, 821-828. https://doi.org/10.1177/001316449105100403

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

poly.cor 81

Examples
dat <- data.frame(x1 = c(o, 1, 0, 1, 0, 1, @0, 1, 1, @),
x2 =c(0, 1, 0,0, 1,1, 1,1, 1, 1),
x3 =c(0, 1, 0, 1, 1, 1, 1, 1, @, 0))

Phi coefficient between x1 and x2
phi.coef(datl, c("x1", "x2")1)

Adjusted phi coefficient between x1 and x2
phi.coef(datl, c("x1", "x2")], adjust = TRUE)

Phi coefficient matrix between x1, x2, and x3
phi.coef(dat)

Adjusted phi coefficient matrix between x1, x2, and x3
phi.coef(dat, adjust = TRUE)

poly.cor Polychoric Correlation Matrix

Description

This function computes a polychoric correlation matrix, which is the estimated Pearson product-
moment correlation matrix between underlying normally distributed latent variables which generate
the ordinal scores.

Usage

poly.cor(x, smooth = TRUE, global = TRUE, weight = NULL, correct = @, progress = TRUE,
na.rm = TRUE, delete = TRUE, tri = c("both”, "lower"”, "upper"),
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

X a matrix or data frame of discrete values.

smooth logical: if TRUE and if the polychoric matrix is not positive definite, a simple
smoothing algorithm using cor . smooth() function is applied.

global logical: if TRUE, the global values of the tau parameter is used instead of the
local values.

weight a vector of length of the number of observations that specifies the weights to
apply to each case. The NULL case is equivalent of weights of 1 for all cases.

correct a numeric value indicating the correction value to use to correct for continuity
in the case of zero entry. Note that unlike in the polychoric() function in the
psych package the default value is 0.

progress logical: if TRUE, the progress bar is shown.

na.rm logical: if TRUE, missing data are deleted.

82 poly.cor

delete logical: if TRUE, cases with no variance are deleted with a warning before pro-
ceeding.
tri a character string indicating which triangular of the matrix to show on the con-

sole, i.e., both for upper and lower triangular, lower (default) for the lower
triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places to be used for display-
ing correlation coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
Details

Note that this function is based on the polychoric() function in the psych by William Revelle.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

William Revelle

References

Revelle, W. (2018) psych: Procedures for personality and psychological research. Northwestern
University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12.

Examples
dat <- data.frame(x1 = c(1, 1, 3, 2, 1, 2, 3, 2, 3, 1),
x2 =c(1, 2, 1,1, 2,2,2,1, 3, 1),
x3=c(1, 3,2,3,3,1,3,2,1, 2)

Polychoric correlation matrix
poly.cor(dat)

print.misty.object 83

print.misty.object Print misty.object object

Description

This function prints the misty.object object

Usage

S3 method for class 'misty.object'

print(x, print = x$args$print, tri = x$args$tri,
freq = x$args$freq, split = x$args$split, table = x$args$table,
digits = x$args$digits, p.digits = x$args$p.digits,
icc.digits = x$args$icc.digits, sort.var = x$args$sort.var,

order = x$args$order, check = TRUE, ...)
Arguments
X misty.object object.
print a character string or character vector indicating which results to to be printed on

the console.

tri a character string or character vector indicating which triangular of the matrix
to show on the console, i.e., both for upper and lower triangular, lower for the
lower triangular, and upper for the upper triangular.

freq logical: if TRUE, absolute frequencies will be included in the cross tabulation
(freq() function).

split logical: if TRUE, cross table is split in absolute frequencies and percentage(s)
(crosstab() function).

table logical: if TRUE, a frequency table with number of observed values ("nObs"),
percent of observed values ("pObs”), number of missing values ("nNA"), and
percent of missing values ("pNA") is printed for each variable on the console
(na.descript() function).

digits an integer value indicating the number of decimal places digits to be used for
displaying results.

p.digits an integer indicating the number of decimal places to be used for displaying
p-values.

icc.digits an integer indicating the number of decimal places to be used for displaying
intraclass correlation coefficients (multilevel.descript() function).

sort.var logical: if TRUE, output is sorted by variables.

order logical: if TRUE, variables are ordered from left to right in increasing order of

missing values (na.descript() function).
check logical: if TRUE, argument specification is checked.

further arguments passed to or from other methods.

84 read.mplus

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

alpha.coef, ci.mean.diff, ci.mean, ci.median, ci.prop.diff,ci.prop,ci.sd,ci.var, cohens.d,
collin.diag, cont.coef, cor.matrix, cramers.v, crosstab, descript, eta.sq, freq, levenes. test,
multilevel.descript, na.auxiliary, na.coverage, na.descript, na.pattern, omega. coef,
phi.coef, poly.cor, size.cor, size.mean, size.prop, z. test,

read.mplus Read Mplus Data File and Variable Names

Description

This function reads a Mplus data file and/or Mplus input/output file to return a data frame with
variable names extracted from the Mplus input/output file.

Usage
read.mplus(file, sep = "", input = NULL, print = FALSE, return.var = FALSE,
fileEncoding = "UTF-8-BOM", check = TRUE)
Arguments
file a character string indicating the name of the Mplus data file with or without the
file extension .dat, e.g., "Mplus_Data.dat"” or "Mplus_Data"”. Note that it is
not necessary to specify this argument when return.var = TRUE.
sep a character string indicating the field separator (i.e., delimiter) used in the data
file specified in file. By default, the separator is *white space’, i.e., one or more
spaces, tabs, newlines or carriage returns.
input a character string indicating the Mplus input (.inp) or output file (.out) in
which the variable names are specified in the VARIABLE: section. Note that if
input = NULL, this function is equivalent to read. table(file).
print logical: if TRUE, variable names are printed on the console.
return.var logical: if TRUE, the function returns the variable names extracted from the

Mplus input or output file only.

fileEncoding character string declaring the encoding used on file so the character data can
be re-encoded. See df.sort.

check logical: if TRUE, argument specification is checked.

Value

A data frame containing a representation of the data in the file.

read.sav 85

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

run.mplus, write.mplus

Examples

Not run:
Read Mplus data file and variable names extracted from the Mplus input file
dat <- read.mplus(”"Mplus_Data.dat”, input = "Mplus_Input.inp”)

Read Mplus data file and variable names extracted from the Mplus input file,
print variable names on the console

dat <- read.mplus(”Mplus_Data.dat”, input = "Mplus_Input.inp”, print = TRUE)

Read variable names extracted from the Mplus input file
varnames <- read.mplus(input = "Mplus_Input.inp”, return.var = TRUE)

End(Not run)

read.sav Read SPSS File

Description

This function calls the read_spss function in the haven package by Hadley Wickham and Evan
Miller (2019) to read an SPSS file.

Usage

read.sav(file, use.value.labels = FALSE, use.missings = TRUE, as.data.frame = TRUE,
check = TRUE)

Arguments

file a character string indicating the name of the SPSS data file with or without file
extension ’.sav’, e.g., "My_SPSS_Data.sav" or "My_SPSS_Data".
use.value.labels
logical: if TRUE, variables with value labels are converted into factors.
use.missings logical: if TRUE (default), user-defined missing values are converted into NAs.
as.data.frame logical: if TRUE (default), function returns a data frame (default); if FALSE func-
tion returns a tibble.

check logical: if TRUE, argument specification is checked.

86 read.xIsx

Value

Returns a data frame or tibble.

Author(s)
Hadley Wickham and Evan Miller

References
Hadley Wickham and Evan Miller (2019). haven: Import and Export *SPSS’, 'Stata’ and 'SAS’
Files. R package version 2.1.1.https://CRAN.R-project.org/package=haven

See Also

write.sav

Examples

Not run:

Read SPSS data
read.sav("SPSS_Data.sav")
read.sav("SPSS_Data")

Read SPSS data, convert variables with value labels into factors
read.sav("SPSS_Data.sav", use.value.labels = TRUE)

Read SPSS data, user-defined missing values are not converted into NAs
read.sav("SPSS_Data.sav", use.missing = FALSE)

Read SPSS data as tibble
read.sav("SPSS_Data.sav", as.data.frame = FALSE)

End(Not run)

read.x1lsx Read Excel File

Description

This function calls the read_x1sx() function in the readxl package by Hadley Wickham and Jen-
nifer Bryan (2019) to read an Excel file (.xIsx).

Usage

read.xlsx(file, sheet = NULL, header = TRUE, range = NULL,
coltypes = c("skip”, "guess”, "logical”, "numeric"”, "date”, "text"”, "list"),
na = "", trim = TRUE, skip = @, nmax = Inf, guessmax = min(1000, nmax),
progress = readxl::readxl_progress(), name.repair = "unique”,
as.data.frame = TRUE, check = TRUE)

https://CRAN.R-project.org/package=haven

read.xIsx

Arguments

file

sheet

header

range

coltypes

na

trim

skip

nmax

guessmax

progress

name.repair

as.data.frame

check

Value

87

a character string indicating the name of the Excel data file with or without file
extension ’.xlsx’, e.g., "My_Excel_Data.x1sx" or "My_Excel_Data".

a character string indicating the name of a sheet or a numeric value indicating
the position of the sheet to read. By default the first sheet will be read.

logical: if TRUE (default), the first row is used as column names, if FALSE default
names are used. A character vector giving a name for each column can also
be used. If coltypes as a vector is provided, colnames can have one entry
per column, i.e. have the same length as coltypes, or one entry per unskipped
column.

a character string indicating the cell range to read from, e.g. typical Excel ranges
like "B3:D87", possibly including the sheet name like "Data!B2:G14". Inter-
preted strictly, even if the range forces the inclusion of leading or trailing empty
rows or columns. Takes precedence over skip, nmax and sheet.

a character vector containing one entry per column from these options "skip”,
"guess”, "logical”, "numeric”, "date”, "text"” or "list". If exactly one
coltype is specified, it will be recycled. By default (i.e., coltypes = NULL)
coltypes will be guessed. The content of a cell in a skipped column is never
read and that column will not appear in the data frame output. A list cell loads
a column as a list of length 1 vectors, which are typed using the type guessing
logic from coltypes = NULL, but on a cell-by-cell basis.

a character vector indicating strings to interpret as missing values. By default,
blank cells will be treated as missing data.

logical: if TRUE (default), leading and trailing whitespace will be trimmed

a numeric value indicating the minimum number of rows to skip before reading
anything, be it column names or data. Leading empty rows are automatically
skipped, so this is a lower bound. Ignored if the argument range is specified.

a numeric value indicating the maximum number of data rows to read. Trailing
empty rows are automatically skipped, so this is an upper bound on the number
of rows in the returned data frame. Ignored if the argument range is specified.

a numeric value indicating the maximum number of data rows to use for guess-
ing column types.

display a progress spinner? By default, the spinner appears only in an interactive
session, outside the context of knitting a document, and when the call is likely
to run for several seconds or more.

a character string indicating the handling of column names. By default, the
function ensures column names are not empty and are unique.

logical: if TRUE (default), function returns a regular data frame (default); if
FALSE function returns a tibble.

logical: if TRUE, argument specification is checked.

Returns a data frame or tibble.

88

Author(s)

Hadley Wickham and Jennifer Bryan

See Also

read.sav, read.mplus

Examples

Not run:
Read Excel file (.xlsx)
read.xlsx("data.x1lsx")

Read Excel file (.xlsx), use default names as column names
read.xlsx("data.x1lsx", header = FALSE)

Read Excel file (.xlsx), interpret -99 as missing values
read.xlsx("data.x1lsx”, na = "-99")

Read Excel file (.xlsx), use x1, x2, and x3 as column names
read.xlsx("data.x1lsx", header = c("x1", "x2", "x3"))

Read Excel file (.xlsx), read cells A1:B5
read.x1lsx("data.x1lsx", range = "A1:B5")

Read Excel file (.xlsx), skip 2 rows before reading data
read.xlsx("data.x1lsx", skip = 2)

Read Excel file (.xlsx), returns a tibble
read.xlsx("data.x1lsx", as.data.frame = FALSE)

End(Not run)

rec

rec Recode Variable

Description

This function recodes a numeric vector, character vector, or factor according to recode specifica-

tions.

Usage

rec(x, spec, as.factor = FALSE, levels = NULL, as.na =
check = TRUE)

NULL, table

FALSE,

rec 89

Arguments
X a numeric vector, character vector or factor.
spec a character string of recode specifications (see ’Details’).
as.factor logical: if TRUE, character vector will be coerced to a factor.
levels a character vector for specifying the levels in the returned factor.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
table logical: if TRUE, a cross table variable x recoded variable is printed on the con-
sole.
check logical: if TRUE, argument specification is checked.
Details

Recode specifications appear in a character string, separated by semicolons (see the examples be-
low), of the form input = output. If an input value satisfies more than one specification, then the
first (from left to right) applies. If no specification is satisfied, then the input value is carried over
to the result. NA is allowed in input and output. Several recode specifications are supported:

- single value For example, 0 = NA
- vector of values For example, c(7, 8, 9) = "high’

- range of values For example, 7:9 = ’C’. The special values lo (lowest value) and hi (highest value)
may appear in a range. For example, 1o:10 = 1. Note that : is not the R sequence operator. In
addition you may not use : with the collect operator, e.g., c(1,3,5:7) will cause an error.

- else For example, else = NA. Everything that does not fit a previous specification. Note that else
matches all otherwise unspecified values on input, including NA.

Note that the function was adapted from the recode () function in the car package by John Fox and
Sanford Weisberg (2019).

Value

Returns a numeric vector with the same length as x containing the recoded variable.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References
Fox, J., & Weisberg S. (2019). An R Companion to Applied Regression (3rd ed.). Thousand Oaks
CA: Sage. URL.: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

See Also

reverse.item

90 reverse.item

Examples

Numeric vector
x.num <- c(1, 2, 4, 5, 6, 8, 12, 15, 19, 20)

Recode 5 = 50 and 19 = 190
rec(x.num, "5 = 50; 19 = 190")

200 and else = 300

Recode 1, 2, and 5 = 100 and 4, 6, and 7 =
= 200; else = 300")

rec(x.num, "c(1, 2, 5) = 100; c(4, 6, 7)

Recode lowest value to 10 = 100 and 11 to highest value = 200
rec(x.num, "lo:10 = 100; 11:hi = 200")

Recode 5 = 50 and 19 = 190 and check recoding
rec(x.num, "5 = 50; 19 = 190", table = TRUE)

Character vector
X.chr <- C("a”, ncn, ufn’ njn, nku)

Recode a to x
rec(x.chr, "'a' = 'X'")

Recode a and f to x, c and j to y, and else to z
rec(x.chr, "c('a', 'f') = 'x'; c('c', 'j') ="'"y'; else = 'z'")

Recode a to x and coerce to a factor
rec(x.chr, "'a' = 'X'", as.factor = TRUE)

[

Factor
X.faCtor <- factor(c(”a”, ”b", uau’ "C”, ”d”, ”d”, ”b", "b", "a”))

Recode a to x, factor levels ordered alphabetically
rec(x.factor, "'a' = 'x'")

Recode a to x, user-defined factor levels
rec(x.factor, "'a' = 'x'", levels = c("x", "b", "c", "d"))

reverse.item Reverse Code Scale Item

Description

This function reverse codes an inverted item, i.e., item that is negatively worded.

Usage

reverse.item(x, min = NULL, max = NULL, keep = NULL, as.na = NULL, table = FALSE,
check = TRUE)

reverse.item

91

Arguments
X a numeric vector with integer values.
min an integer indicating the minimum of the item (i.e., lowest possible scale value).
max an integer indicating the maximum of the item (i.e., highest possible scale value).
keep a numeric vector indicating values not to be reverse coded.
as.na a numeric vector indicating user-defined missing values, i.e. these values are

converted to NA before conducting the analysis.

table logical: if TRUE, a cross table item X reverse coded item is printed on the console.
check logical: if TRUE, argument specification is checked.

Details

If arguments min and/or max are not specified, empirical minimum and/or maximum is computed
from the vector. Note, however, that reverse coding might fail if the lowest or highest possible scale
value is not represented in the vector. That is, it is always preferable to specify the arguments min

and max.

Value

Returns a numeric vector with the same length as x containing the reverse coded scale item.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

alpha.coef, rec, scores

Examples

dat <- data.frame(iteml = c(5, 2, 3, 4, 1, 2, 4, 2),
item2 = c(1, 5, 3, 1, 4, 4, 1, 5),
item3 = c(4, 2, 4, 5, 1, 3, 5, -99))

Reverse code item2

reverse.item(dat$item2, min = 1, max = 5)

Reverse code item3 while keeping the value -99

reverse.item(dat$item3, min = 1, max = 5, keep = -99)

Reverse code item3 while keeping the value -99 and check recoding
dat$item3r <- reverse.item(dat$item3, min = 1, max = 5, keep = -99, table = TRUE)

92 run.mplus

run.mplus Run Mplus Models

Description

This function runs a group of Mplus models (. inp files) located within a single directory or nested
within subdirectories.

Usage

run.mplus(target = getwd(), recursive = FALSE, filefilter = NULL, showOutput = FALSE,
replaceOutfile = c("always"”, "never"”, "modifiedDate”), logFile = NULL,
Mplus = "Mplus”, killOnFail = TRUE, local_tmpdir = FALSE)

Arguments

target a character string indicating the directory containing Mplus input files (. inp)
to run or the single .inp file to be run. May be a full path, relative path, or a
filename within the working directory.

recursive logical: if TRUE, run all models nested in subdirectories within directory. Not
relevant if target is a single file.

filefilter a Perl regular expression (PCRE-compatible) specifying particular input files to
be run within directory. See regex or http://www.pcre.org/pcre.txt for details
about regular expression syntax. Not relevant if target is a single file.

showOutput logical: if TRUE, estimation output (TECH8) is show on the R console. Note that

if run within Rgui, output will display within R, but if run via Rterm, a separate
window will appear during estimation.

replaceOutfile a character string for specifying three settings: "always” (default), which runs
all models, regardless of whether an output file for the model exists, "never”,
which does not run any model that has an existing output file, and "modifiedDate”,
which only runs a model if the modified date for the input file is more recent than
the output file modified date.

logFile a character string specifying a file that records the settings passed into the func-
tion and the models run (or skipped) during the run.

Mplus a character string for specifying the name or path of the Mplus executable to
be used for running models. This covers situations where Mplus is not in the
system’s path, or where one wants to test different versions of the Mplus pro-
gram.Note that there is no need to specify this argument for most users since it
has intelligent defaults.

killOnFail logical: if TRUE, all processes named mplus.exe when mplus.run() does not
terminate normally are killed. Windows only.

local_tmpdir logical: if TRUE, the TMPDIR environment variable is set to the location of
the .inp file prior to execution. This is useful in Monte Carlo studies where
many instances of Mplus may run in parallel and we wish to avoid collisions in
temporary files among processes. Linux/Mac only.

rwg.lindell 93

Details
Note that this function is a copy of the runModels() function in the MplusAutomation package
by Michael Hallquist.

Value

None.

Author(s)

Michael Hallquist

References

Hallquist, M. N. & Wiley, J. F. (2018). MplusAutomation: An R package for facilitating large-scale
latent variable analyses in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 25,
621-638. https://doi.org/10.1080/10705511.2017.1402334.

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

Examples

Not run:
Run Mplus models located within a single directory
run.mplus(Mplus = "C:/Program Files/Mplus/Mplus.exe")

Run Mplus models located nested within subdirectories
run.mplus(recursive = TRUE,

Mplus = "C:/Program Files/Mplus/Mplus.exe")

End(Not run)

rwg.lindell Lindell, Brandt and Whitney (1999) r*wg(j) Within-Group Agreement
Index for Multi-Item Scales

Description
This function computes r*wg(j) within-group agreement index for multi-item scales as described in
Lindell, Brandt and Whitney (1999).

Usage

rwg.lindell(x, group, A = NULL, ranvar = NULL, z = TRUE, expand = TRUE, na.omit = FALSE,
as.na = NULL, check = TRUE)

94 rwg.lindell

Arguments

X a matrix or data frame with numeric vectors.

group a vector representing the grouping structure (i.e., group variable).

A a numeric value indicating the number of discrete response options of the items
from which the random variance is computed based on (A2 — 1)/12. Note that
either the argument j or the argumentranvar is specified.

ranvar a numeric value indicating the random variance to which the mean of the item
variance is divided. Note that either the argument j or the argumentranvar is
specified.

z logical: if TRUE, Fisher z-transformation based on the formula z = 0.5xlog((1+
r)/(1 —r)) is applied to the vector of r*wg(j) estimates.

expand logical: if TRUE, vector of r*wg(j) estimates is expanded to match the input
vector X.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group.

check logical: if TRUE, argument specification is checked.

Details

The r*wg(j) index is calculated by dividing the mean of the item variance by the expected random
variance (i.e., null distribution). The default null distribution in most research is the rectangular
or uniform distribution calculated with o2u = (A% — 1)/12, where A is the number of discrete
response options of the items. However, what constitutes a reasonable standard for random variance
is highly debated. Note that the r*wg(j) allows that the mean of the item variances to be larger than
the expected random variances, i.e., r*wg(j) values can be negative.

Note that the rwg. j.1lindell () function in the multilevel package uses listwise deletion by default,
while the rwg.1indell () function uses all available information to compute the r*wg(j) agreement
index by default. In order to obtain equivalent results in the presence of missing values, listwise
deletion (na.omit = TRUE) needs to be applied.

Examples for the application of r*wg(j) within-group agreement index for multi-item scales can be
found in Bardach, Yanagida, Schober and Lueftenegger (2018), Bardach, Lueftenegger, Yanagida,
Schober and Spiel (2018), and Bardach, Lueftenegger, Yanagida, Spiel and Schober (2019).

Value

Returns a numeric vector containing r*wg(j) agreement index for multi-item scales with the same
length as group if expand = TRUE or a data frame with following entries if expand = FALSE:

group group identifier
n group size x
rwg.lindell r*wg(j) estimate for each group

z.rwg.lindell Fisher z-transformed r*wg(j) estimate for each group

rwg.lindell 95

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Bardach, L., Lueftenegger, M., Yanagida, T., & Schober, B. (2019). Achievement or agreement -
Which comes first? Clarifying the temporal ordering of achievement and within-class consensus on
classroom goal structures. Learning and Instruction, 61, 72-83. https://doi.org/10.1016/j.learninstruc.2019.01.003

Bardach, L., Lueftenegger, M., Yanagida, T., Schober, B. & Spiel, C. (2019). The role of within-
class consensus on mastery goal structures in predicting socio-emotional outcomes. British Journal
of Educational Psychology, 89, 239-258. https://doi.org/10.1111/bjep.12237

Bardach, L., Yanagida, T., Schober, B. & Lueftenegger, M. (2018). Within-class consensus on class-
room goal structures: Relations to achievement and achievement goals in mathematics and language
classes. Learning and Individual Differences, 67, 78-90. https://doi.org/10.1016/j.1indif.2018.07.002

Lindell, M. K., Brandt, C. J., & Whitney, D. J. (1999). A revised index of interrater agree-
ment for multi-item ratings of a single target. Applied Psychological Measurement, 23, 127-135.
https://doi.org/10.1177/01466219922031257

O’Neill, T. A. (2017). An overview of interrater agreement on Likert scales for researchers and
practitioners. Frontiers in Psychology, 8, Article 777. https://doi.org/10.3389/fpsyg.2017.00777

See Also

group.scores

Examples
dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
group = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x1 =c¢(2, 3, 2,1, 1, 2, 4, 3, 5),
x2 =¢(3, 2, 2,1, 2,1, 3, 2,5),
x3 =c¢(3, 1,1, 2, 3, 3 5,5, 4)

Compute Fisher z-transformed r*wg(j) for a multi-item scale with A = 5 response options
rwg.lindell(dat[, c("x1", "x2", "x3")]1, group = dat$group, A = 5)

Compute Fisher z-transformed rxwg(j) for a multi-item scale with a random variance of 2
rwg.lindell(dat[, c("x1", "x2", "x3")], group = dat$group, ranvar = 2)

Compute r*wg(j) for a multi-item scale with A = 5 response options
rwg.lindell(dat[, c("x1", "x2", "x3")], group = dat$group, A = 5, z = FALSE)

Compute Fisher z-transformed r*wg(j) for a multi-item scale with A = 5 response options,
do not expand the vector
rwg.lindell(dat[, c("x1", "x2", "x3")], group = dat$group, A = 5, expand = FALSE)

96

scores

scores

Compute Scale Scores

Description

This function computes (prorated) scale scores by averaging the (available) items that measure a
single construct by default.

Usage
scores(x, fun = c("mean”, "sum”, "median”, "var”, "sd"”, "min", "max"),
prorated = TRUE, p.avail = NULL, n.avail = NULL, as.na = NULL,
check = TRUE)
Arguments
X a matrix or data frame with numeric vectors.
fun a character string indicating the function used to compute scale scores, default:
"mean”.
prorated logical: if TRUE (default), prorated scale scores are computed (see ’Details’); if
FALSE, scale scores of only complete cases are computed.
p.avail a numeric value indicating the minimum proportion of available item responses
needed for computing a prorated scale score for each case, e.g. p.avail = 0.8
indicates that scale scores are only computed for cases with at least 80% of item
responses available. By default prorated scale scores are computed for all cases
with at least one item response. Note that either argument p.avail or n.avail
is used to specify the proration criterion.
n.avail an integer indicating the minimum number of available item responses needed
for computing a prorated scale score for each case, e.g. n.avail = 2 indicates
that scale scores are only computed for cases with item responses on at least 2
items. By default prorated scale scores are computed for all cases with at least
one item response. Note that either argument p.avail or n.avail is used to
specify the proration criterion.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Details

Prorated mean scale scores are computed by averaging the available items, e.g., if a participant
answers 4 out of § items, the prorated scale score is the average of the 4 responses. Averaging the
available items is equivalent to substituting the mean of a participant’s own observed items for each
of the participant’s missing items, i.e., person mean imputation (Mazza, Enders & Ruehlman, 2015)
or ipsative mean imputation (Schafer & Graham, 2002).

scores 97

Proration may be reasonable when (1) a relatively high proportion of the items (e.g., 0.8) and never
fewer than half are used to form the scale score, (2) means of the items comprising a scale are similar
and (3) the item-total correlations are similar (Enders, 2010; Graham, 2009; Graham, 2012). Results
of simulation studies indicate that proration is prone to substantial bias when either the item means
or the inter-item correlation vary (Lee, Bartholow, McCarthy, Pederson & Sher, 2014; Mazza et al.,
2015).

Value

Returns a numeric vector with the same length as nrow(x) containing (prorated) scale scores.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

Graham, J. W. (2012). Missing data: Analysis and design. New York, NY: Springer

Lee, M. R., Bartholow, B. D., McCarhy, D. M., Pederson, S. L., & Sher, K. J. (2014). Two alter-
native approaches to conventional person-mean imputation scoring of the self-rating of the effects of
alcohol scale (SRE). Psychology of Addictive Behaviors, 29, 231-236. https://doi.org/10.1037/adb0000015

Mazza, G. L., Enders, C. G., & Ruehlman, L. S. (2015). Addressing item-level missing data: A
comparison of proration and full information maximum likelihood estimation. Multivariate Behav-
ioral Research, 50, 504-519. https://doi.org/10.1080/00273171.2015.1068157

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological
Methods, 7, 147-177. https://doi.org/10.1037/1082-989X.7.2.147

See Also

group.scores, alpha.coef

Examples
dat <- data.frame(iteml = c(3, 2, 4, 1, 5, 1, 3, NA),
item2 = c(2, 2, NA, 2, 4, 2, NA, 1),
item3 = c(1, 1, 2, 2, 4, 3, NA, NA),
itemd = c(4, 2, 4, 4, NA, 2, NA, NA),
item5 = c(3, NA, NA, 2, 4, 3, NA, 3))

Prorated mean scale scores
scores(dat)

Prorated standard deviation scale scores
scores(dat, fun = "sd")

Sum scale scores without proration

98 size.cor

scores(dat, fun = "sum”, prorated = FALSE)

Prorated mean scale scores,
minimum proportion of available item responses = 0.8
scores(dat, p.avail = 0.8)

Prorated mean scale scores,
minimum number of available item responses = 3
scores(dat, n.avail = 3)

size.cor Sample Size Determination for Testing Pearson’s Correlation Coelffi-
cient

Description

This function performs sample size computation for testing Pearson’s product-moment correlation
coefficient based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage
size.cor(rho, delta, alternative = c("two.sided”, "less"”, "greater"),
alpha = 0.05, beta = 0.1, check = TRUE, output = TRUE)
Arguments
rho a number indicating the correlation coefficient under the null hypothesis, p.0.
delta a numeric value indicating the minimum difference to be detected, 9.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less".
alpha type-I-risk, a.
beta type-1l-risk, 3.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown.
Value

Returns an object of class misty.object with following entries:

call function call

type type of the test (i.e., correlation coefficient)
spec specification of function arguments

res list with the result, i.e., optimal sample size

size.mean 99

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.

See Also

size.mean, size.prop

Examples

HO: rho = 0.3, H1: rho != 0.3
alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alpha = 0.05, beta = 0.2)

HO: rho <= 0.3, H1: rho > 0.3
alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alternative = "greater"”, alpha = 0.05, beta = 0.2)

size.mean Sample Size Determination for Testing Arithmetic Means

Description

This function performs sample size computation for the one-sample and two-sample t-test based on
precision requirements (i.e., type-I-risk, type-Il-risk and an effect size).

Usage

size.mean(delta, sample = c("two.sample”, "one.sample"),
alternative = c("two.sided”, "less"”, "greater”), alpha = 0.05,
beta = 0.1, check = TRUE, output = TRUE)

100 size.mean

Arguments
delta a numeric value indicating the relative minimum difference to be detected, §.
sample a character string specifying one- or two-sample t-test, must be one of "two. sample”
(default) or "one.sample”.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.
alpha type-I-risk, a.
beta type-1II-risk, /.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown.
Value

Returns an object of class misty.object with following entries:

call function call

type type of the test (i.e., arithmetic mean)

spec specification of function arguments

res list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.

See Also

size.prop, size.cor
Examples

Two-sided one-sample test
HO: mu = mu.@, H1: mu != mu.o
alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample”,
alternative = "two.sided”, alpha = 0.05, beta = 0.2)

size.prop 101

One-sided one-sample test
HO: mu <= mu.@, H1: mu > mu.@
alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample”,
alternative = "greater”, alpha = 0.05, beta = 0.2)

Two-sided two-sample test
HO: mu.l = mu.2, H1: mu.1 != mu.2
alpha = 0.01, beta = 0.1, delta =1

size.mean(delta = 1, sample = "two.sample”,

alternative = "two.sided"”, alpha = .01, beta = 0.1)

One-sided two-sample test
HO: mu.1l <= mu.2, H1: mu.1 > mu.2
alpha = 0.01, beta = 0.1, delta =1

size.mean(delta = 1, sample = "two.sample”,
alternative = "greater"”, alpha = 0.01, beta = 0.1)

size.prop Sample Size Determination for Testing Proportions

Description

This function performs sample size computation for the one-sample and two-sample test for pro-
portions based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage
size.prop(pi = 0.5, delta, sample = c("two.sample”, "one.sample”),
alternative = c("two.sided”, "less"”, "greater"), alpha = 0.05,
beta = 0.1, correct = FALSE, check = TRUE, output = TRUE)
Arguments
pi a number indicating the true value of the probability under the null hypothesis
(one-sample test), 7.0 or a number indicating the true value of the probability in
group 1 (two-sample test), 7.1.
delta minimum difference to be detected, §.
sample a character string specifying one- or two-sample proportion test, must be one of
"two.sample" (default) or "one.sample".
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”

(default), "less” or "greater”.

alpha type-I-risk, a.

102 size.prop

beta type-II-risk, 5.
correct a logical indicating whether continuity correction should be applied.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown.
Value

Returns an object of class misty.object with following entries:

call function call

type type of the test (i.e., proportion)

spec specification of function arguments

res list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd
ed.). New York: John Wiley & Sons.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.
See Also

size.mean, size.cor

Examples

Two-sided one-sample test
HO: pi = 0.5, H1: pi != 0.5
alpha = 0.05, beta = 0.2, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample”,
alternative = "two.sided”, alpha = 0.05, beta = 0.2)

One-sided one-sample test
HO: pi <= 0.5, H1: pi > 0.5
alpha = 0.05, beta = 0.2, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample”,
alternative = "less”, alpha = 0.05, beta = 0.2)

skewness 103

Two-sided two-sample test
HO: pi.1 = pi.2 = 0.5, H1: pi.1 != pi.2
alpha = 0.01, beta = 0.1, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "two.sample”,
alternative = "two.sided"”, alpha = .01, beta = 0.1)

One-sided two-sample test
HO: pi.1 <= pi.1 = 0.5, H1: pi.1 > pi.2
alpha = 0.01, beta = 0.1, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "two.sample”,
alternative = "greater"”, alpha = 0.01, beta = 0.1)

skewness Skewness

Description

This function computes the skewness.

Usage

skewness(x, as.na = NULL, check = TRUE)

Arguments
X a numeric vector.
as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
Details

The same method for estimating skewness is used in SAS and SPSS. Missing values (NA) are
stripped before the computation. Note that at least 3 observations are needed to compute skew-
ness.

Value

Returns the estimated skewness of x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

104

References

std.coef

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

kurtosis

Examples

Set seed of the random number generation
set.seed(123)
Generate random numbers according to N(@, 1)
X <= rnorm(100)

Compute skewness
skewness(x)

std.coef

Standardized Coefficients

Description

This function computes standardized coefficients for linear models estimated by using the 1m()

function.

Usage

std.coef(model, print = c("all”, "stdx"”, "stdy", "stdyx"),

Arguments

model
print

digits
p.digits

check
output

digits

= 3, p.digits = 3, check = TRUE, output = TRUE)

a fitted model of class "1m".

a character vector indicating which results to show, i.e. "all", for all results,
"stdx" for standardizing only the predictor, "stdy"” for for standardizing only
the criterion, and "stdyx" for for standardizing both the predictor and the crite-
rion. Note that the default setting is depending on the level of measurement
of the predictors, i.e., if all predictors are continuous, the default setting is
print = "stdyx"; if all predictors are binary, the default setting is print =
"stdy"; if predictors are continuous and binary, the default setting is print
=c("stdy"”, "stdyx").

an integer value indicating the number of decimal places to be used for display-
ing results.

an integer value indicating the number of decimal places to be used for display-
ing the p-value.

logical: if TRUE, argument specification is checked.

logical: if TRUE, output is shown on the console.

std.coef 105

Details

The slope /3 can be standardized with respect to only z, only ¥, or both y and x:

StdX (Br) = p15D(x)

StdX (B1) standardizes with respect to x only and is interpreted as the change in y when x changes
one standard deviation referred to as SD(z).

A

StdY (1) standardizes with respect to y only and is interpreted as the change in y standard devia-
tion units, referred to as SD(y), when x changes one unit.

st (- 1 52

StdY X (81) standardizes with respect to both y and x and is interpreted as the change in y standard
deviation units when x changes one standard deviation.

Note that the StdY X (31) and the StdY (/3) standardizations are not suitable for the slope of a
binary predictor because a one standard deviation change in a binary variable is generally not of
interest (Muthen, Muthen, & Asparouhov, 2016).

The standardization of the slope 33 in a regression model with an interaction term uses the product
of standard deviations SD(x1)SD(x2) rather than the standard deviation of the product SD(z1x2)
for the interaction variable x x5 (see Wen, Marsh & Hau, 2010). Likewise, the standardization of
the slope (3 in a polynomial regression model with a quadratic term uses the product of standard
deviations SD(x)S D(z) rather than the standard deviation of the product S D(zx) for the quadratic

term 2.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, model specified in the model argument (model), specification of
function arguments (args), list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, B. O., Muthen, L. K., & Asparouhov, T. (2016). Regression and mediation analysis using
Mplus. Muthen & Muthen.

Wen, Z., Marsh, H. W., & Hau, K.-T. (2010). Structural equation models of latent interactions: An
appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A
Multidisciplinary Journal, 17, 1-22. https://doi.org/10.1080/10705510903438872

106 stromit

Examples

dat <- data.frame(x1 = c(3, 2, 4, 9, 5, 3, 6, 4, 5, 6, 3
x2 =c(1, 4, 3,1, 2, 4, 3, 5,1, 7,8, 7)),
x3 =c(0, 9, 1,0, 1,1, 1,1, 0, 0, 1

Regression model with continuous predictors
mod.1lml <- Im(y ~ x1 + x2, data = dat)
std.coef(mod.1m1)

Print all standardized coefficients
std.coef(mod.1m1, print = "all")

Regression model with dichotomous predictor
mod.1m2 <- 1m(y ~ x3, data = dat)
std.coef (mod.1m2)

Regression model with continuous and dichotomous predictors
mod.1m3 <- Im(y ~ x1 + x2 + x3, data = dat)
std. coef (mod.1m3)

Regression model with continuous predictors and an interaction term
mod.1lm4 <- Im(y ~ x1xx2, data = dat)

Regression model with a quadratic term
mod.1m5 <- 1Im(y ~ x1 + I(x1*2), data = dat)
std. coef (mod.1m5)

stromit Omit Strings

Description

This function omits user-specified values or strings from a numeric vector, character vector or factor.

Usage

stromit(x, omit = "", na.omit = FALSE, check = TRUE)

stromit 107

Arguments
X a numeric vector, character vector or factor.
omit a numeric vector or character vector indicating values or strings to be omitted
from the vector x, the default setting is the empty strings "".
na.omit logical: if TRUE, missing values (NA) are also omitted from the vector.
check logical: if TRUE, argument specification is checked.
Value

Returns a numeric vector, character vector or factor with values or strings specified in omit omitted
from the vector specified in x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also
mgsub, trim
Examples

Charater vector
X.Chr <_ C("a”, Illl’ "C”, NA’ IVIIy Ildll, Ilell, NA)

nn

Omit character string
stromit(x.chr)

nn

Omit character string and missing values (NA)
stromit(x.chr, na.omit = TRUE)

Omit character string "c" and "e"

stromit(x.chr, omit = c("c", "e"))

Omit character string "c", "e", and missing values (NA)
stromit(x.chr, omit = c("c"”, "e"), na.omit = TRUE)

Numeric vector
x.num <- c(1, 2, NA, 3, 4, 5, NA)

Omit values 2 and 4
stromit(x.num, omit = c(2, 4))

Omit values 2, 4, and missing values (NA)
stromit(x.num, omit = c(2, 4), na.omit = TRUE)

Factor

108 trim

x.factor <- factor(letters[1:10])

Omit factor levels "a", "c", "e", and "g"
stromit(x.factor, omit = c("a", "c", "e", "g"))
trim Trim Whitespace from String
Description

This function removes whitespace from start and/or end of a string.

Usage

trim(x, side = c("both”, "left"”, "right"), check = TRUE)

Arguments
X a character vector.
side a character string indicating the side on which to remove whitespace, i.e., "both”
(default), "1eft"” or "right".
check logical: if TRUE, argument specification is checked.
Details

Note that this function is based on the str_trim() function in the stringr package by Hadley
Wickham.

Value

Returns a character vector with whitespaces removed from the vector specified in x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Wickham, H. (2019). stringr: Simple, consistent wrappers for common string operations. R pack-
age version 1.4.0. https://CRAN.R-project.org/package=stringr

See Also

mgsub, stromit

https://CRAN.R-project.org/package=stringr

write.mplus 109

Examples

n

x <= " string

Remove whitespace at both sides
trim(x)

Remove whitespace at the left side
trim(x, side = "left")

Remove whitespace at the right side
trim(x, side = "right")

write.mplus Write Mplus Data File

Description

This function writes a matrix or data frame to a tab-delimited file without variable names and a text
file with variable names. Only numeric values are allowed, missing data will be coded as a single
numeric value.

Usage

write.mplus(x, file = "Mplus_Data.dat”, var = TRUE, print = FALSE, na = -99,
check = TRUE)

Arguments
X a matrix or data frame to be written to a tab-delimited file.
file a character string naming a file with or without the file extension ’.dat’, e.g.,
"Mplus_Data.dat"” or "Mplus_Data".
var logical: if TRUE, variable names are written in a text file named according to the
argumentfile with the extension _VARNAMES. txt.
print logical: if TRUE, variable names are printed on the console.
na a numeric value or character string representing missing values (NA) in the data
set.
check logical: if TRUE, argument specification is checked.
Value
None.
Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

110 write.sav

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, run.mplus

Examples

Not run:

dat <- data.frame(id = 1:5,
x = c(NA, 2, 1, 5, 6),
y = c(5, 3, 6, 8, 2),
z=c(2, 1, 1, NA, 4))

Write Mplus Data File and a text file with variable names
write.mplus(dat)

Write Mplus Data File "Data.dat” and a text file with variable name,
print variable names on the console, missing values coded with -999

write.mplus(dat, file = "Data.dat”, print = TRUE, na = -999)

End(Not run)

write.sav Write SPSS File

Description

This function writes a data frame or matrix into a SPSS file by either using the write_sav() func-
tion in the haven package by Hadley Wickham and Evan Miller (2019) or the free software PSPP
(see: https://www.gnu.org/software/pspp/pspp.html).

Usage

write.sav(x, file = "SPSS_Data.sav"”, var.attr = NULL, pspp.path = NULL, digits = 2,
write.csv = FALSE, sep = c(";", ","), na ="", write.sps = FALSE,
check = TRUE)

Arguments
X a matrix or data frame to be written in SPSS, vectors are coerced to a data frame.
file a character string naming a file with or without file extension *.sav’, e.g., "My_SPSS_Data.sav"
or "My_SPSS_Data".
var.attr a matrix or data frame with variable attributes used in the SPSS file, only ’vari-

able labels’ (column name label), ’value labels’ column name values, and
"user-missing values’ column name missing are supported (see *Details’).

https://www.gnu.org/software/pspp/pspp.html

write.sav 111

pspp.path a character string indicating the path where the PSPP folder is located on the
computer, e.g.C: /Program Files/PSPP/.

digits an integer value indicating the number of decimal places shown in the SPSS file
for non-integer variables.

write.csv logical: if TRUE, CSV file is written along with the SPSS file.

sep a character string for specifying the CSV file, either ";" for the separator and
"." for the decimal point (default, i.e. equivalent to write.csv2) or "." for the
decimal point and ", " for the separator (i.e. equivalent to write.csv), must be
one of both " ;" (default) or ", ".

na a character string for specifying missing values in the CSV file.

write.sps logical: if TRUE, SPSS syntax is written along with the SPSS file when using
PSPP.

check logical: if TRUE, variable attributes specified in the argument var. attr is checked.

Details

If arguments pspp.path is not specified (i.e., pspp.path = NULL), write_sav() function in the
haven is used. Otherwise the object x is written as CSV file, which is subsequently imported into
SPSS using the free software PSPP by executing a SPSS syntax written in R. Note that PSPP needs
to be installed on your computer when using the pspp.path argument.

A SPSS file with ’variable labels’, ’value labels’, and "user-missing values’ is written by specifying
the var.attr argument. Note that the number of rows in the matrix or data frame specified in
var.attr needs to match with the number of columns in the data frame or matrix specified in x,
i.e., each row in var.attr represents the variable attributes of the corresponding variable in x. In
addition, column names of the matrix or data frame specified in var.attr needs to be labeled as
label for ’variable labels, values for ’value labels’, and missing for user-missing values’.

Labels for the values are defined in the column values of the matrix or data frame in var.attr
using the equal-sign (e.g., @ = female) and are separated by a semicolon (e.g., @ = female; 1=
male).

User-missing values are defined in the column missing of the matrix or data frame in var.attr,
either specifying one user-missing value (e.g., -99) or more than one but up to three user-missing
values separated by a semicolon (e.g., -77; -99.

Note that the part of the function using PSPP was adapted from the write.pspp() function in the
miceadds package by Alexander Robitzsch, Simon Grund and Thorsten Henke (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References
GNU Project (2018). GNU PSPP for GNU/Linux (Version 1.2.0). Boston, MA: Free Software
Foundation. urlhttps://www.gnu.org/software/pspp/

Wickham H., & Miller, E. (2019). haven: Import and Export ’SPSS’, ’Stata’ and 'SAS’ Files. R
package version 2.2.0. https://CRAN.R-project.org/package=haven

https://CRAN.R-project.org/package=haven

112 write.sav

Robitzsch, A., Grund, S., & Henke, T. (2019). miceadds: Some additional multiple imputation func-
tions, especially for mice. R package version 3.4-17. https://CRAN.R-project.org/package=
miceadds

See Also

read.sav

Examples

Not run:
dat <- data.frame(id = 1:5,
gender = c(NA, 0, 1, 1, 0),
age = c(16, 19, 17, NA, 16),
status = c(1, 2, 3, 1, 4),
score = c(511, 506, 497, 502, 491))

Write SPSS file using the haven package
write.sav(dat, file = "Dataframe_haven.sav")

Write SPSS file using PSPP,

write CSV file and SPSS syntax along with the SPSS file

write.sav(dat, file = "Dataframe_PSPP.sav", pspp.path = "C:/Program Files/PSPP",
write.csv = TRUE, write.sps = TRUE)

Specify variable attributes

Note that it is recommended to manually specify the variables attritbues in a CSV or
Excel file which is subsequently read into R

attr <- data.frame(# Variable names

var = c("id", "gender"”, "age", "status", "score"),

Variable labels

label = c("Identification number”, "Gender"”, "Age in years",
"Migration background”, "Achievement test score"),

Value labels

values = c("", "@ = female; 1 = male”, "",
"1 = Austria; 2 = former Yugoslavia; 3 = Turkey; 4 = other”,

",
User-missing values
missing = c("", "-99", "-99", "-99", "-99"))

Write SPSS file with variable attributes using the haven package
write.sav(dat, file = "Dataframe_haven_Attr.sav"”, var.attr = attr)

Write SPSS with variable attributes using PSPP
write.sav(dat, file = "Dataframe_PSPP_Attr.sav", var.attr = attr,

pspp.path = "C:/Program Files/PSPP")

End(Not run)

https://CRAN.R-project.org/package=miceadds
https://CRAN.R-project.org/package=miceadds

z.test

113

z.test

z-Test

Description

This function computes one sample, two sample, and paired sample z-test.

Usage

z.test(x,

Default S3 method:

z.test(x, y = NULL, sigma = NULL, sigma2 = NULL, mu = @, paired = FALSE,
alternative = c("two.sided”, "less", "greater"), conf.level = 0.95,
digits = 2, p.digits = 3, as.na = NULL, check = TRUE,

output

TRUE, ...)

S3 method for class 'formula’

z.test(formula, data, as.na = NULL, check = TRUE, output = TRUE, ...)
Arguments

X a numeric vector of data values.

y a numeric vector of data values.

sigma a numeric vector indicating the population standard deviation(s). In case of two
sample z-test, equal standard deviations are assumed when specifying one value
for the argument sigma; when specifying two values for the argument sigma,
unequal standard deviations are assumed. Note that either argument sigma or
argument sigmaz2 is specified.

sigma2 a numeric vector indicating the population variance(s). In case of two sample
z-test, equal variances are assumed when specifying one value for the argument
sigma2; when specifying two values for the argument sigma, unequal variance
are assumed. Note that either argument sigma or argument sigma2 is specified.

mu a numeric value indicating the population mean under the null hypothesis. Note
that the argument mu is only used when computing a one sample z-test.

paired logical: if TRUE, paired sample z-test is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-

ing the p-value.

114 z.test

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

formula in case of two sample z-test (i.e., paired = FALSE), a formula of the form y ~

group where group is a numeric variable, character variable or factor with two
values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

further arguments to be passed to or from methods.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x (data), specification of function
arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

t.test, ci.mean.diff, ci.mean

Examples

dat.bs <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1 , 3, 6, 4, 3, NA))

:b'
“N"
o s
W
.-

Between-Subject Design

Two-sided one sample z-test with 95% confidence interval
population mean = 3, population standard deviation = 1.2
z.test(dat.bs$x, sigma = 1.2, mu = 3)

Two-sided one sample z-test with 95% confidence interval
population mean = 3, population variance = 1.44
z.test(dat.bs$x, sigma2 = 1.44, mu = 3)

One-sided one sample z-test with 95% confidence interval
population mean = 3, population standard deviation = 1.2

z.test(dat.bs$x, sigma = 1.2, mu = 3, alternative = "greater")

Two-sided one sample z-test with 95% confidence interval

z.test 115

population mean = 3, population standard deviation = 1.2
convert value 3 to NA
z.test(dat.bs$x, sigma = 1.2, mu = 3, as.na = 3)

Two-sided one sample z-test with 99% confidence interval
population mean = 3, population standard deviation = 1.2
.test(dat.bs$x, sigma = 1.2, mu = 3, conf.level = 0.99)

N

Two-sided one sample z-test with 95% confidence interval

population mean = 3, population standard deviation = 1.2

print descriptive statistics with 3 digits and p-value with 5 digits
.test(dat.bs$x, sigma = 1.2, mu = 3, digits = 3, p.digits = 5)

INJEE TN

Two-sided two sample z-test with 95% confidence interval
population standard deviation (SD) = 1.2, equal SD assumption
z.test(x ~ group, sigma = 1.2, data = dat.bs)

*

Two-sided two sample z-test with 95% confidence interval
population standard deviation = 1.2 and 1.5
z.test(x ~ group, sigma = c(1.2, 1.5), data = dat.bs)

Two-sided two sample z-test with 95% confidence interval
population variance = 1.44 and 2.25
z.test(x ~ group, sigma = c(1.44, 2.25), data = dat.bs)

One-sided two sample z-test with 95% confidence interval
population standard deviation (SD) = 1.2, equal SD assumption
z.test(x ~ group, sigma = 1.2, data = dat.bs, alternative = "less")

groupl <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Two-sided two sample z-test with 95% confidence interval
population standard deviation (SD) = 1.2, equal SD assumption
z.test(groupl, group2, sigma = 1.2, data = dat.bs)

Within-Subject Design
dat.ws <- data.frame(pre = c(1, 3, 2, 5, 7),
post = ¢c(2, 2, 1, 6, 8), stringsAsFactors = FALSE)

Two-sided paired sample z-test with 95% confidence interval
population standard deviation of difference score = 1.2
z.test(dat.ws$pre, dat.ws$post, sigma = 1.2, paired = TRUE)

Two-sided paired sample z-test with 95% confidence interval
population variance of difference score = 1.44
z.test(dat.ws$pre, dat.ws$post, sigma2 = 1.44, paired = TRUE)

One-sided paired sample z-test with 95% confidence interval
population standard deviation of difference score = 1.2

Index

alpha.coef, 3, 40, 84, 91, 97
aov, 63
as.na, 5, 68, 70, 72-75, 77

center, 7
ci.mean, 9, 14, 18, 20, 23, 27,29, 84, 114
ci.mean.diff, 11,12, 18, 20, 23, 27, 29, 84,
114
ci.median, 11, 14, 16, 20, 23, 27, 29, 84
ci.prop, 11,14,18,19,23,27,29, 84
ci.prop.diff, I8, 20, 21, 27, 29, 84
ci.sd, 11,14, 18, 20, 23,25, 29, 84
ci.var, 11,14, 18, 20, 23, 27,28, 84
cohens.d, 30, 37,40, 41, 57, 84
collin.diag, 34, 84
cont.coef, 33,37, 40, 41, 57, 84
cor.matrix, 33,37,38,41, 57,84
cramers.v, 33, 37,40, 40, 57, 84
crosstab, 42, 45, 58, 84

descript, 11, 14, 18, 20, 23, 27, 29, 43, 44,
58, 84

df.duplicated, 46, 49, 51-53

df .merge, 47,48, 51-53

df.rbind, 47, 49, 50, 52, 53

df.rename, 47,49, 51, 52, 53

df.sort, 47,49, 51, 52,53, 84

df.unique, 49, 51-53

df.unique (df.duplicated), 46

dummy.c, 9, 54

eta.sq, 33, 56, 84
freq, 43,45, 57, 84
group.scores, 9, 59, 95, 97
kurtosis, 61, 104

levenes.test, 62, 84

116

mgsub, 63, 107, 108

multilevel.descript, 43, 45, 58, 60, 64, 67,

84
multilevel.icc, 40, 60, 65, 66

na.as, 6, 68, 70, 72-75, 77

na.auxiliary, 6, 33, 40, 68, 69, 72-75, 77, 84

na.coverage, 6, 68, 70,71, 73-75, 77, 84

na.descript, 6, 43,45, 58, 68, 70, 72,72, 74,

75,77, 84
na.indicator, 6, 68, 70, 72, 73,73, 75, 77
na.pattern, 6, 68, 70, 72-74,75, 77, 84
na.prop, 6, 68, 70, 72-75, 76

omega.coef, 5, 77,79, 84

p.adjust, 39
phi.coef, 37,40, 41, 57,79, 84
poly.cor, 81, 84
print.misty.object, 83

rbind, 57
read.mplus, 84, 88, 110
read.sav, 85,88, 112

read. x1lsx, 86

rec, 9, 88, 91
reverse.item, 5, 9, 79, 89, 90
run.mplus, 85, 92, 110
rwg.lindell, 9, 93

scores, 5,9, 60, 79, 91, 96
size.cor, 40, 84, 98, 100, 102
size.mean, 84, 99, 99, 102
size.prop, 84, 99, 100, 101
skewness, 61, 103

std. coef, 104
stromit, 64, 106, 108

t.test, 63,114
trim, 64, 107, 108

INDEX 117

write.mplus, 85, 109
write.sav, 86, 110

z.test, 84,113

	alpha.coef
	as.na
	center
	ci.mean
	ci.mean.diff
	ci.median
	ci.prop
	ci.prop.diff
	ci.sd
	ci.var
	cohens.d
	collin.diag
	cont.coef
	cor.matrix
	cramers.v
	crosstab
	descript
	df.duplicated
	df.merge
	df.rbind
	df.rename
	df.sort
	dummy.c
	eta.sq
	freq
	group.scores
	kurtosis
	levenes.test
	mgsub
	multilevel.descript
	multilevel.icc
	na.as
	na.auxiliary
	na.coverage
	na.descript
	na.indicator
	na.pattern
	na.prop
	omega.coef
	phi.coef
	poly.cor
	print.misty.object
	read.mplus
	read.sav
	read.xlsx
	rec
	reverse.item
	run.mplus
	rwg.lindell
	scores
	size.cor
	size.mean
	size.prop
	skewness
	std.coef
	stromit
	trim
	write.mplus
	write.sav
	z.test
	Index

