Package 'mistat'

January 8, 2018

Type Package

Title Data Sets, Functions and Examples from the Book: `'Modern Industrial Statistics" by Kenett, Zacks and Amberti

Version 1.0-5

Date 2018-01-07
Author Daniele Amberti
Depends R (>=2.14)
Imports graphics, grDevices, methods, stats, utils
Suggests e1071, mvtnorm, AcceptanceSampling, boot, car, Dodge, tseries, qcc, DoE.base, FrF2, rsm, LearnBayes, ggplot2, grid, DiceEval, DiceKriging, DiceDesign, lhs, survival
Maintainer Daniele Amberti daniele.amberti@gmail.com
Description Provide all the data sets and statistical analysis applications used in "`Modern Industrial Statistics: with applications in R, MINITAB and JMP" by R.S. Kenett and S. Zacks with contributions by D. Amberti, John Wiley and Sons, 2013, which is a second revised and expanded revision of "'Modern Industrial Statistics: Design and Control of Quality and Reliability", R. Kenett and S. Zacks, Duxbury/Wadsworth Publishing, 1998.

License GPL (>= 2)
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-08 14:26:54 UTC

R topics documented:

mistat-package 3
ALMPIN 4
availDis 5
BLEMISHES 7
CAR 7
COAL 8
COMPURESP 9
CONTACTLEN 11
cusumArl 11
cusumPfaCed 13
CYCLT 14
DISS 15
DOJO1935 16
DOW1941 16
ELECFAIL 17
ELECINDX 17
ETCHRATE 18
ETCHRATETWO 18
FAILTIME 19
FILMSP 19
FLEXPROD 20
GASOL 21
GASTURBINE 22
HADPAS 23
HYBRID 24
INSERTION 24
IPL 25
JANDEFECT 26
KEYBOARDS 27
LATHYPPISTON 27
mahalanobisT2 29
MPG 30
OELECT 31
OELECT1 32
OTURB 32
OTURB1 33
OTURB2 33
PBX 34
pistonSimulation 35
PLACE 36
powerCircuitSimulation 38
PRED 41
randomizationTest 42
renewDis 43
RNORM10 44
shroArlPfaCed 45
simulationGroup 46
SOCELL 47
SOLDEF 48
STEELROD 49
STRESS 49
THICKDIFF 50
TSQ 51
VENDOR 51
mistat-package
WEIBUL 52
YARNSTRG 53
Index 54
mistat-package The Modern Industrial Statistics Package

Description

This R package is providing all the data sets and statistical analysis of Modern Industrial Statistics, with applications using R, MINITAB and JMP by R.S. Kenett and S. Zacks with contributions by D. Amberti, John Wiley and Sons, 2013. This second revised and expanded second edition.

Details

Package:	mistat
Type:	Package
Date:	$2012-08-22$
License:	GPL >=2

Author(s)

Daniele Amberti
Maintainer: Daniele Amberti amberti@inwind.it

See Also

Bootstrap Resampling, Quality Control Charts, Operating Characteristics of an Acceptance Sampling Plan, Quality Control Charts, Fractional Factorial 2-level designs.

Examples

```
data(OELECT)
data(OELECT1)
randomizationTest(list(a=OELECT, b=OELECT1),
            R=500, calc=mean,
            fun=function(x) x[1]-x[2],
            seed=123)
Ps <- pistonSimulation(
    m = rep(60, 100),
    s = rep(0.02, 100),
    v0 = rep(0.01, 100),
    k = rep(5000, 100),
```

```
    p0 = rep(110000, 100),
    t = c(rep(296,35), 296*1.1^(1:65)),
    t0 = rep(360, 100),
    each = 1,
    seed = 123,
    check = FALSE)
head(Ps)
cusumArl(mean= 0.0,
    N=100,
    limit=5000,
    seed=123)
powerCircuitSimulation(seed=123, each=3)
set.seed(123)
Ttf <- rgamma(50,
    shape=2,
    scale=100)
Ttr <- rgamma(50,
    shape=2,
    scale=1)
AvailEbd <- availDis(ttf=Ttf,
    ttr=Ttr,
    n=1000, seed=123)
RenewEbd <- renewDis(ttf=Ttf,
    ttr=Ttr,
    time=1000,
    n=1000)
```

ALMPIN Aluminium Pins (6 dimensions)

Description

Records of 6 dimension variables (a subset of 2 in ALMPIN2) measured in $m m$ on 70 alluminium pins used in airplanes, in order of production.

Usage

data(ALMPIN)

Format

A data frame with 70 observations on the following 6 variables.
diam1 pin diameter at specified location, a numeric vector
diam2 pin diameter at specified location, a numeric vector
diam3 pin diameter at specified location, a numeric vector
capDiam diameter of the cap on top of the pin, a numeric vector
lenNocp length of the pin without the cap, a numeric vector
lenWcp length of the pin with the cap, a numeric vector

Details

The aluminum pins are inserted with air-guns in pre-drilled holes in order to combine critical airplane parts such as wings, engine supports and doors.
The measurements were taken in a computerized numerically controlled (CNC) metal cutting operation. The six variables are Diameter 1, Diameter 2, Diameter 3, Cap Diameter, Lengthncp and Lengthwcp. All the measurements are in millimeters. The first three variables give the pin diameter at three specified locations. Cap Diameter is the diameter of the cap on top of the pin. The last two variables are the length of the pin, without and with the cap, respectively.

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(ALMPIN)
$\operatorname{cor}(A L M P I N)$
plot(ALMPIN)

```
availDis
```

Availability Distribution

Description

Provide the Empirical Bootstrap Distribution of the asymptotic availability index A_{∞}, based on observed samples of failure times and repair times.

Usage

availDis(ttf, ttr, n, seed $=N A$, printSummary $=$ TRUE)

Arguments

ttf	numeric vector of Time To Failure
ttr	numeric vector of Time To Repair
n	the number of bootstrap replicates
seed	a single value, interpreted as an integer. If specified make the simulation repli- cable.
printSummary	logical, if TRUE print the Mean Time To Failure, Mean Time To Repair and the asymptotic availability

Value

A numeric vector of lenght n with simulated availabilities

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

```
renewDis
```


Examples

```
set.seed(123)
Ttf <- rgamma(50,
                shape=2,
        scale=100)
Ttr <- rgamma(50,
        shape=2,
        scale=1)
AvailEbd <- availDis(ttf=Ttf,
        ttr=Ttr,
        n=1000)
```


Description

Blemishes found on each of 30 ceramic plates.

Usage

data(BLEMISHES)

Format

A data frame with 30 observations:
plateID a factor
count an integer vector

Details

Blemishes will affect the final product's (hybrid micro electronic components) electrical performance and its overall yield

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(BLEMISHES)
table(factor(BLEMISHES$count, levels=0:5))
```

CAR Car

Description

Records on 109 different car models, including number of cylinders, origin, turn diamater, horsepower, and number of miles per gallon in city driving.

Usage

data(CAR)

Format

A data frame with 109 observations on the following 5 variables.
cyl Number of cylinders, an integer vector
origin Car origin, $1=$ US; $2=$ Europe; $3=$ Asia, an integer vector
turn Turn diamater, a numeric vector
hp Horsepower, a numeric vector
mpg Miles per gallon in city driving, a numeric vector

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(CAR)
with(data=CAR, expr=table(cyl, origin))

COAL

Number of Coal Mine Disasters

Description

Data on the number of coal mine disasters (explosions) in England, per year, for the period 1850 to 1961.

Usage

data(COAL)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(COAL)
Bp <- barplot(COAL)
axis(side=1,
    labels=seq(
        from=1850,
        to=1960,
        by=10),
```

$a t=B p[r e p(c$ (TRUE,
rep(FALSE, 9)),
10)])
rm(Bp)

COMPURESP Computer Response Time Optimization

Description

The experiment described here was part of an extensive effort to optimize a UNIX operating system.

Usage

data(COMPURESP)

Format

A data frame with 18 observations on the following 10 variables.
F a factor with levels 12 , representing KMCs used
B a factor with levels 123 , representing File Distribution
C a factor with levels 12 3, representing Memory Size
D a factor with levels 12 , representing System Buffers
E a factor with levels 12 3, representing Sticky Bits
A a factor with levels 123 , representing Disk Drives
G a factor with levels 12 3, representing INODE Table Entries
H a factor with levels 123 , representing Other System Tables
Mean mean time taken for the system to complete commands execution
SN S/N ratio $\eta=-10 \log _{10}\left(\frac{1}{n} \sum_{i} y_{i}^{2}\right)$

Details

The experiment described here was part of an extensive effort to optimize a UNIX operating system running on a VAX 11-780 machine. The machine had 48 user terminal ports, two remote job entry links, four megabytes of memory, and five disk drives. The typical number of users logged on at a given time was between 20 to 30 .

1. Problem Definition. Users complained that the system performance was very poor, especially in the afternoon. The objective of the improvement effort was to both minimize response time and reduce variability in response.
2. Response variable. In order to get an objective measurement of the response time two specific representative commands called 'standard' and 'trivial' were used. The 'standard' command consisted of creating, editing and removing a file. The 'trivial' command was the UNIX system 'date' command. Response times were measured by submitting these commands every 10 minutes and clocking the time taken for the system to complete their execution.

Source

Pao, Phadke and Sherrerd (1985)

Examples

data(COMPURESP)
layout(matrix(1:4, 2, byrow=TRUE))
with(COMPURESP,
interaction.plot(
x.factor=F,
trace.factor=rep(0, length(F)),
response=SN,
legend=FALSE,
type="b",
pch=15:18,
ylim=c(-17, -10)))
with(COMPURESP,
interaction.plot(
x.factor=B,
trace.factor=rep(0, length(B)), response=SN,
legend=FALSE, type="b", pch=15:18, $y \lim =c(-17,-10)))$
with(COMPURESP,
interaction.plot(
x.factor=C, trace.factor=rep(0, length(C)), response=SN, legend=FALSE, type="b", pch=15:18, ylim=c(-17, -10)))
with(COMPURESP, interaction.plot(x.factor=D, trace.factor=rep(0, length(D)), response=SN, legend=FALSE, type="b", pch=15:18, $y \lim =c(-17,-10)))$
layout(1)

Description

length (in cm) of the electrical contacts of relays in samples of size five, taken hourly from a running process.

Usage

data(CONTACTLEN)

Format

A numeric matrix with five columns representing a sample and twenty rows representing hourly samples.

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(CONTACTLEN)
library(qcc)
qcc(CONTACTLEN, type="xbar")

Description

Computes the ARL function by simulation

Usage

cusumarl (..., randFunc $=$ rnorm, $N=100$, limit $=10000$, seed $=$ NA, $\mathrm{kp}=1, \mathrm{~km}=-1$, $\mathrm{hp}=3, \mathrm{hm}=-3$, side $=$ "both", printSummary = TRUE)

Arguments

	arguments such as mean, lambda or sd to be passed to the appropriate random genneration function
randFunc	a random generation function
N	the number of replicates
limit	safety parameter, stop rule for procedures with very long ARL
seed	a single value, interpreted as an integer. If specified make the simulation replicable.
kp	K^{+}parameter of the control scheme
km	K^{-}parameter of the control scheme
hp	h^{+}parameter of the control scheme
hm	h^{-}parameter of the control scheme
side	a character string specifying the side of the control scheme, must be one of "both" (default), "upper" or "lower"
printSumm	logical, if TRUE print a summary of the cusum ARL

Value

a list with elements:
rls a numeric vector representing the Run Length of the simulation
statistics a numeric vector with summary statistics
run a list of length N elements each of which has single numeric elements violationLower, violationUpper and rl

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

Examples

```
cusumArl(mean=1, seed=123, N=100, limit=1000)
cusumArl(size=100, prob=0.05, kp=5.95, km=3.92, hp=12.87, hm=-8.66,
    randFunc=rbinom, seed=123, N=100, limit=2000)
cusumArl(lambda=10, kp=12.33, km=8.41, hp=11.36, hm=-12.91,
    randFunc=rpois, seed=123, N=100, limit=2000)
```


cusumPfaCed

Description

Compute the Probability of False Alarm, PFA, and the Conditional Expected Delay, CED, for the Normal, Binomial and Poisson distributions

Usage

```
cusumPfaCedBinom(size0 = 0, prob0 = 1, size1 = 0, prob1 = 1,
    tau = 10, N = 100, limit = 10000, seed = NA,
    kp = 1, km = -1, hp = 3, hm = -3, side = "both",
    printSummary = TRUE)
cusumPfaCedNorm(mean0 = 0, sd0=1, mean1=0, sd1=1,
    tau=10, N=100, limit=10000, seed=NA,
    kp=1, km=-1, hp=3, hm=-3, side="both",
    printSummary = TRUE)
cusumPfaCedPois(lambda0 = 0, lambda1=1,
    tau=10, N=100, limit=10000, seed=NA,
    kp=1, km=-1, hp=3, hm=-3, side="both",
    printSummary = TRUE)
```


Arguments

size0	number of trials (zero or more)
prob0	probability of success on each trial
size1	number of trials (zero or more) after a process level change
prob1	probability of success on each trial after a process level change
mean0	distribution mean
sd0	distribution standard deviation
mean1	distribution mean after a process level change
sd1	distribution standard deviation after a process level change
lambda0	(non-negative) mean
lambda1	(non-negative) mean after a process level change
tau	time on which the process level change occurs
N	the number of replicates
limit	safety parameter, stop rule for procedures with very long ARL
seed	a single value, interpreted as an integer. If specified make the simulation repli- cable.
kp	K^{+}parameter of the control scheme

km	K^{-}parameter of the control scheme
hp	h^{+}parameter of the control scheme
hm	h^{-}parameter of the control scheme
side	a character string specifying the side of the control scheme, must be one of "both" (default), "upper" or "lower"
printSummary	logical, if TRUE print a summary of the cusum PFA and CED

Value

a list with elements:
rls a numeric vector representing the Run Length of the simulation
statistics a numeric vector with summary statistics
run a list of length N elements each of which has single numeric elements violationLower, violationUpper and rl

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

Examples

cusumPfaCedNorm(mean1=1.5,
tau=100,
$\mathrm{N}=100$,
limit=1000,
seed=123)

CYCLT
50 Cycle Times

Description

50 cycle times (in seconds) of a piston operating at fixed operating conditions set at the minimal levels of seven control factors.

Usage

data(CYCLT)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(CYCLT)
summary (CYCLT)
plot(CYCLT, type="b")

DISS
 Dissolution Data

Description

Dissolution data of a new product and a reference approved product.

Usage

data(DISS)

Format

A data frame with 12 observations on the following 4 variables.
batch a factor with levels REF TEST
tablet a factor with levels 123456
min15 a numeric vector
$\min 90$ a numeric vector

Source

Tsong et al., (1996).

Examples

```
data(DISS)
## maybe str(DISS) ; plot(DISS) ...
```

DOJ01935 Dow-Jones Financial Index 1935

Description

The Dow-Jones financial index for the 300 business days of 1935.

Usage

data(DOJO1935)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
    data(DOJO1935)
```

 plot(DOJO1935,
 type="b",
 ylab="Dow Jones")
 DOW1941 Dow-Jones Financial Index 1941

Description

The Dow-Jones daily index of 1941.

Usage

data(DOW1941)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(DOW1941)
plot(DOW1941,
    type="b",
    ylab="Dow Jones 1941")
```

```
ELECFAIL Failures of an Electronic Device
```


Description

50 failure times of an electronic device.

Usage

data(ELECFAIL)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(ELECFAIL)
hist(ELECFAIL)

ELECINDX Bernoulli Sample on OELECT Data

Description

Bernoulli sample in which, we give a circuit in OELECT the value 1 if its electric output is in the interval $(216,224)$ and the value 0 otherwise.

Usage

data(ELECINDX)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

See Also

OELECT

Examples

data(ELECINDX)
qbinom $(\mathrm{p}=0.5$, size=100, prob=mean(ELECINDX))

Description

Rate of removal of field oxide in a semiconductor plasma etching process.

Usage

data(ETCHRATE)

Source

Digital Equipment Corporation (1988).

Examples

data(ETCHRATE)
hist(ETCHRATE)

ETCHRATETWO Data on the Rate of Etching (two samples)

Description

Rate of removal of field oxide in two different semiconductor plasma etching processes, A and B.

Usage

data(ETCHRATETWO)

Format

A data frame with 12 observations on the following 2 variables.
A a numeric vector, rate of etching, sample A
B a numeric vector, rate of etching, sample B

Source

Digital Equipment Corporation (1988).

Examples

data(ETCHRATETWO)

```
boxplot(values ~ ind, data=stack(ETCHRATETWO))
```

| FAILTIME \quad Failure Times |
| :--- | :--- |

Description

Failure times of 20 electric generators (in $h r$).

Usage

data(FAILTIME)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
    data(FAILTIME)
    library(survival)
    SuRe <- survreg(
        Surv(time=FAILTIME) ~ 1 ,
        dist = "exponential")
    summary(SuRe)
```

 FILMSP Film Speed

Description

Data gathered from 217 rolls of film. The data consists of the film speed as measured in a special lab.

Usage

data(FILMSP)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(FILMSP)
hist(FILMSP)
```

FLEXPROD

Description

Flex Products is a subcontractor of General Motors, manufacturing mechanical speedometer cables. The basic cable design has not changed for fifteen years and General Motors had experienced many disappointing attempts at reducing the speedometer noise level.

Usage
 data(FLEXPROD)

Format

A data frame with 16 observations on the following 16 variables.
A Liner O.D., a factor with levels 12
B Liner Die, a factor with levels 12
C Liner Material, a factor with levels 12
D Liner Line Speed, a factor with levels 12
E Wire Braid Type, a factor with levels 12
F Braiding Tension, a factor with levels 12
G Wire Diameter, a factor with levels 12
H Liner Tension, a factor with levels 12
I Liner Temperature, a factor with levels 12
J Coating Material, a factor with levels 12
K Coating Dye Type, a factor with levels 12
L Melt Temperature, a factor with levels 12
M Screen Pack, a factor with levels 12
N Cooling Method, a factor with levels 12
0 Line Speed, a factor with levels 12
SN Signal to noise ratio, a numeric vector

Details

Problem Definition: the product under investigation is an extruded thermoplastic speedometer casing used to cover the mechanical speedometer cable on automobiles. Excessive shrinkage of the casing is causing noise in the mechanical speedometer cable assembly.

Response variable: the performance characteristic in this problem is the post extrusion shrinkage of the casing. The percent shrinkage is obtained by measuring approximately 600 mm of casing that has been properly conditioned (A), placing that casing in a two hour heat soak in an air circulating oven, reconditioning the sample and measuring the length (B). Shrinkage is computed as: Shrinkage $=$ $100 *(A-B) / A$.

Factor Levels: Existing (1) - Changed (2)
Number of Replications: four random samples of 600 mm from the 3000 feet manufactured at each experimental run.
Data Analysis: signal to noise ratios $(S N)$ are computed for each experimental run and analyzed using main effect plots and an ANOVA. Savings are derived from Loss function computations.

The signal to noise formula used by Quinlan is:

$$
\eta=-10 \log _{10}\left(\frac{1}{n} \sum y^{2}\right)
$$

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
    data(FLEXPROD)
```

 \(\operatorname{aov}(S N \sim\). , data=FLEXPROD)

Description

32 measurements of distillation properties of crude oils.

Usage

data(GASOL)

Format

A data frame with 32 observations on the following 5 variables.
x 1 crude oil gravity $(A P I)$, a numeric vector
$\times 2$ crude oil vapour pressure ($p s i$), a numeric vector
astm crude oil ASTM 10% point (Fahrenheit), a numeric vector
endPt gasoline ASTM endpoint (Fahrenheit), a numeric vector
yield yield of gasoline (in percentage of crude oil), a numeric vector

Source

Daniel and Wood (1971) pp. 165

Examples

```
data(GASOL)
LmYield <- lm(yield ~ 1 + astm + endPt,
    data=GASOL)
    summary(LmYield)
```

GASTURBINE Gas Turbine Cycle Times

Description

125 gas turbine cycle times divided in 25 samples of 5 observations.

Usage

data(GASTURBINE)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(GASTURBINE)
plot(rowMeans(GASTURBINE), type="b")
HADPAS Resistance Values of Hybrids

Description

Several resistance measurements (Ω) of five types of resistances (Res 3, Res 18 , Res 14 , Res 7 and Res 20), which are located in six hybrid micro circuits simultaneously manufactured on ceramic substrates. There are altogether 192 records for 32 ceramic plates.

Usage

data(HADPAS)

Format

A data frame with 192 observations on the following 7 variables.
diska ceramic plate, a numeric vector
hyb hybrid micro circuit, a numeric vector
res3 a numeric vector
res18 a numeric vector
res14 a numeric vector
res7 a numeric vector
res20 a numeric vector

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(HADPAS)
boxplot (HADPAS\$res3 ~ HADPAS\$hyb)

HYBRID Resistance Values of Res 3

Description

A subset of data in HADPAS, only variable res3 is recorded. HYBRID contains values for hybrids 1 to 3, HYBRID1 contains hybrid 1 data and HYBRID2 contains values of hybrids 1 and 2.

Usage

data(HYBRID)

Format

A data frame (a vector for HYBRID1) with 32 observations on the following variables.
hyb1 resistance measurements (Ω) of Res 3 , a numeric vector
hyb2 resistance measurements (Ω) of Res 3 , a numeric vector
hyb3 resistance measurements (Ω) of Res 3 , a numeric vector

Source

See HADPAS

Examples

data(HYBRID)
lapply(HYBRID, var)

INSERTION
Components Insertions into a Board

Description

Data represents a large number of insertions with $k=9$ different components. The result of each trial (insertion) is either Success (no insertion error) or Failure (insertion error).

Usage

data(INSERTION)

Format

A data frame with $9(k)$ observations on the following 3 variables.
comp Component, a factor with levels C1 C2 C3 C4 C5 C6 C7 C8 C9
fail Failure, a numeric vector
succ Success, a numeric vector

Details

Components are:
C1: Diode
C2: 1/2 Watt Canister
C3: Jump Wire
C4: Small Corning
C5: Large Corning
C6: Small Bullet
C7: 1/8 Watt Dogbone
C8: 1/4 Watt Dogbone
C9: 1/2 Watt Dogbone

Source

See PLACE

Examples

```
data(INSERTION)
barplot(INSERTION$fail /
            (INSERTION$fail + INSERTION$succ) *
            100,
            names.arg=INSERTION$comp,
            ylab= "Percentage")
```


Description

Number of computer crashes per month, due to power failures experienced at a computer center, over a period of 28 months. After a crash, the computers are made operational with an "Initial Program Load".

Usage
 data(IPL)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
    data(IPL)
```

 plot(IPL, type="b")
 JANDEFECT

Description

Number of defective items found in random samples of size $n=100$, drawn daily from a production line in January.

Usage

data(JANDEFECT)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(JANDEFECT)
plot(JANDEFECT, type="b")

Description

The design of the keyboard might have effect on the speed of typing or on the number of typing errors. Noisy factors are typist or type of job. Letters A, B, C, D of variable keyboard denote the designs.

Usage

data(KEYBOARDS)

Format

A data frame with 25 observations on the following 4 variables.
typist The typist, a factor with levels 12345
job The type of job, a factor with levels 12345
keyboard Keyboard design, a factor with levels A B C DE
errors Number of typing errors, a numeric vector

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(KEYBOARDS)
boxplot(errors ~ keyboard, data=KEYBOARDS, ylab="Errors")

LATHYPPISTON Latin Hypercube Design for the Piston Simulator

Description

A Latin Hypercube Design for the 7 pistonSimulation arguments and Its response in seconds.

Usage

data(LATHYPPISTON)

Format

A data frame with 14 observations on the following 8 variables.
m a numeric vector
s a numeric vector
v0 a numeric vector
k a numeric vector
p0 a numeric vector
t a numeric vector
t0 a numeric vector
seconds a numeric vector

Source

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

```
pistonSimulation
```


Examples

```
data(LATHYPPISTON)
library(DiceEval)
Dice <- km(design=LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"],
    response=LATHYPPISTON[,"seconds"])
#library(DiceView)
#sectionview(Dice,
# center=colMeans(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]),
# conf_lev=c(0.5, 0.9, 0.95),
# title="", col_sur="darkgrey", lwd=2,
# Xname=colnames(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]))
layout(1)
```

```
mahalanobisT2
Mahalanobis T^2
```


Description

Mahalanobis T^{2} and Confidence Region

Usage

mahalanobisT2(x, factor.name, response.names = names(x)[!names(x) \%in\% factor.name], conf.level=0.95, compare. to $=$ NA, plot $=$ FALSE)

Arguments

$x \quad$ a data frame
factor name single character indicating column name of the experiment factor to test, the first level is used as a reference
response. names vector of characters indicating columns names of the responses
conf.level confidence level for the Confidence Region
compare.to a vector of length length(response. names) to be compared to the result in terms of Mahalanobis T^{2}
plot logical, if TRUE also a plot is produced

Value

a list with components:
coord matrix with transformed coordinates of variables in response. names
mahalanobis vector containing Lower Control Region, Center and Upper Control Region of Mahalanobis T^{2}
mahalanobis.compare single value, Mahalanobis T^{2} of compare. to

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.
Tsong et al, (1996).

Examples

```
    data(DISS)
```

 mahalanobisT2(DISS[, c("batch", "min15", "min90")],
 factor. name="batch",
 conf.level=0.90,
 compare.to=c(15, 15))
 MPG Gasoline Consumption of Cars by Origin

Description

Gasoline consumption (in miles per gallon in city driving) of cars by origin. There are 3 variables representing samples of sizes $n 1=58, n 2=14$ and $n 3=37$.

Usage

data(MPG)

Format

A data frame with 58 observations on the following 3 variables.
origin1 Gasoline consumption, a numeric vector
origin2 Gasoline consumption, a numeric vector
origin3 Gasoline consumption, a numeric vector

Source

See CAR

Examples

data(MPG)
library(boot)
set.seed(123)
B <- apply(MPG, MARGIN=2, FUN=boot, statistic=function(x, i)\{ $\operatorname{var}(x[i]$, na.rm $=$ TRUE $)$
\},
$R=500)$
Bt0 <- sapply(B,

```
            FUN=function(x) x$t0)
    Bt <- sapply(B,
        FUN=function(x) x$t)
    Bf <- max(Bt0)/min(Bt0)
    FBoot <- apply(Bt, MARGIN=1,
        FUN=function(x){
                max(x)/min(x)
        })
    Bf
    quantile(FBoot, 0.95)
    sum(FBoot >= Bf)/length(FBoot)
    rm(Bt0, Bt, Bf, FBoot)
```

 OELECT Electric Voltage Outputs of Rectifying Circuits

Description

99 electric voltage outputs of a rectifying circuit (V).

Usage

data(OELECT)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(OELECT)
```

summary (OELECT)
mean (OELECT)

Description

25 electric voltage outputs of a rectifying circuit (V).

Usage

data(OELECT1)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(OELECT)
data(OELECT1)
randomizationTest(list(a=OELECT, b=OELECT1),
            R=500, calc=mean,
            fun=function(x) x[1]-x[2])
```

OTURB
Cycle Times of a Piston

Description

100 cycle times (s) of a piston, as from pistonSimulation.

Usage

data(OTURB)

References

See pistonSimulation

Examples

data(OTURB)
plot(OTURB, type="b")

OTURB1
Cycle Times of a Piston from the Piston Simulator

Description

50 cycle times (in s)of a piston gerated with pistonSimulation(seed=123). Cycle times are rounded to 3 decimals.

Usage

data(OTURB1)

References

See pistonSimulation

Examples

data(OTURB1)
REF <- round(pistonSimulation(seed=123)\$seconds, 3)
plot(OTURB1, type="b", lwd=6)
lines(REF, col=2, lwd=2)
sum(OTURB1 - REF)

OTURB2 Sample Mean and Standard Deviation of Cycle Times of a Piston

Description

In this data frame we have three variables. In the first we have the sample size. In the second and third we have the sample means and standard deviation.

Usage

data(OTURB2)

Format

A data frame with 10 observations on the following 3 variables.
groupSize a numeric vector
xbar a numeric vector
std a numeric vector

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(OTURB2)
plot(OTURB2$xbar, type="b")
plot(OTURB2$std, type="b")
```

PBX

Description

Software errors found in testing a Private Branch Exchange electronic switch. Errors are labeled according to the software unit where they occurred (e.g. "EKT", Electronic Key Telephone).

Usage

data(PBX)

Format

The format is: Named num [1:5] $47325211010065-\operatorname{attr}(*$, "names")= chr [1:5] "GEN" "VHS" "HI" "LO" ...

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

data(PBX)
barplot(PBX)

```
pistonSimulation The Piston Simulator
```


Description

A simulator of a piston moving whithin a cylinder. The piston's performance is measured by the time it takes to complete one cycle, in seconds. Several factors can affect the piston's performance, they are listed in the arguments section.

Usage

$$
\begin{aligned}
& \text { pistonSimulation }(m=60, s=0.02, v 0=0.01, \\
& k=5000, p 0=110000, t=296, \\
& t 0=360, \text { each }=50, \text { seed }=N A, \\
&\text { check }=\text { TRUE })
\end{aligned}
$$

Arguments

$\mathrm{m} \quad$ the impact pressure determined by the piston weight (kg). A single value or a vector of length n.
s
the piston surface area $\left(m^{2}\right)$. A single value or a vector.
v0 the initial volume of the gas inside the piston $\left(m^{3}\right)$. A single value or a vector of length n.
$\mathrm{k} \quad$ the spring coefficient $\left(N / m^{3}\right)$. A single value or a vector of length n.
p0 the atmospheric pressure $\left(N / m^{2}\right)$. A single value or a vector of length n.
t the surrounding ambient temperature (K). A single value or a vector of length n.
t0 the filling gas temperature (K). A single value or a vector of length n.
each non-negative integer. Each element of previous parameters is repeated each times.
seed a single value, interpreted as an integer. If specified make the simulation replicable.
check if TRUE (the default) then a formal check on piston parameters is perfomed

Details

Factors affect the Cycle Time s via a chain of nonlinear equations:

$$
s=2 \pi \sqrt{\frac{M}{k+S^{2} \frac{P_{0} V_{0}}{T_{0}} \frac{T}{V^{2}}}}
$$

where

$$
V=\frac{S}{2 k} \sqrt{A^{2}+4 k \frac{P_{0} V_{0}}{T_{0}} T-a}
$$

and

$$
A=P_{0} S+19.62 M-\frac{k V_{0}}{S}
$$

Value

A data frame, a matrix-like structure, with each * n rows and with columns:

m	numeric	value of m
s	numeric	value of s
v 0	numeric	value of v 0
k	numeric	value of k
p 0	numeric	value of p 0
t	numeric	value of t
t 0	numeric	value of t 0
seconds	numeric	time to complete one cycle (s)

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

powerCircuitSimulation, simulationGroup, LATHYPPISTON

Examples

```
Ps <- pistonSimulation(
    m = rep(60, 100),
    s = rep(0.02, 100),
    v0 = rep(0.01, 100),
    k = rep(5000, 100),
    p0 = rep(110000, 100),
    t = c(rep(296,35), 296*1.1^(1:65)),
    t0 = rep(360, 100),
    each = 1,
    seed = 123,
    check = FALSE)
head(Ps)
tail(Ps)
plot(Ps$seconds)
```


Description

The observations are the displacements (position errors) of electronic components on printed circuit boards. There are 26 boards. 16 components are placed on each board. Each component has to be placed at a specific location (x, y) on a board and with correct orientation θ.

Usage

```
data(PLACE)
```


Format

A data frame with 416 observations on the following 4 variables.
crcBrd Circuit board number, a numeric vector
xDev Error in placement along the x-axis, a numeric vector
yDev Error in placement along the y-axis, a numeric vector
tDev Error in orientation θ, a numeric vector

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
    data(PLACE)
    plot(PLACE[,-1])
    boxplot(xDev ~ crcBrd, data=PLACE,
        ylab="xDev", xlab="crcBrd")
    PLACE$code <- factor(c(rep("lDev", 9*16),
            rep("mDev", 3*16),
            rep("hDev", 14*16)))
    plot(PLACE[,"xDev"], PLACE[,"yDev"],
        pch=as.integer(PLACE[,"code"]),
        main="", xlab="xDev", ylab="yDev")
    grid()
```


The Power Circuit Simulator

Description

A simulator of a voltage conversion power circuit. The target output voltage of the power circuit is 220 volts DC. The circuit consists of 10 resistances labeled A to J, and 3 transistors, labeled K to M. These components can be purchased with different tolerance grades.

Usage

$$
\begin{aligned}
\text { powerCircuitSimulation(rsA } & =8200, r s B=220000, r s C=1000, \\
r s D & =33000, r s E=56000, r s F=5600, \\
r s G & =3300, r s H=58.5, r s I=1000, \\
r s J & =120, \operatorname{trK}=130, \operatorname{trL}=100, \\
\mathrm{trM} & =130, \\
\mathrm{tlA} & =5, \mathrm{tlB}=10, \mathrm{tlC}=10, \\
\mathrm{tlD} & =5, \mathrm{tlE}=5, \mathrm{tlF}=5, \\
\mathrm{tlG} & =10, \mathrm{tlH}=5, \mathrm{tlI}=5, \\
\mathrm{tlJ} & =5, \mathrm{tlK}=5, \mathrm{tlL}=10, \\
\mathrm{tlM} & =5, \\
\mathrm{each} & =50, \text { seed }=\mathrm{NA})
\end{aligned}
$$

Arguments

rsA the resistance (Ω) of A. A single value or a vector of length n.
rsB the resistance (Ω) of B. A single value or a vector of length n.
$\operatorname{rsC} \quad$ the resistance (Ω) of C. A single value or a vector of length n.
rsD the resistance (Ω) of D. A single value or a vector of length n.
rsE the resistance (Ω) of E. A single value or a vector of length n.
rsF the resistance (Ω) of F. A single value or a vector of length n.
rsG the resistance (Ω) of G. A single value or a vector of length n.
rsH the resistance (Ω) of H. A single value or a vector of length n.
rsI the resistance (Ω) of I. A single value or a vector of length n.
rsJ the resistance (Ω) of J. A single value or a vector of length n.
trk the resistance (Ω) of K. A single value or a vector of length n.
$\operatorname{trL} \quad$ the resistance (Ω) of L. A single value or a vector of length n.
$\operatorname{trM} \quad$ the resistance (Ω) of M. A single value or a vector of length n.
$\mathrm{tlA} \quad$ the tolerance of A. It is a number >0 (e.g. 5% is 5.0)
tlB the tolerance of B. It is a number >0 (e.g. 5% is 5.0$)$
tlC the tolerance of C. It is a number $>0($ e.g. 5% is 5.0$)$
tlD the tolerance of D. It is a number >0 (e.g. 5% is 5.0)
$\mathrm{tlE} \quad$ the tolerance of E. It is a number >0 (e.g. 5% is 5.0)
tlF the tolerance of F. It is a number >0 (e.g. 5% is 5.0)
tlG the tolerance of G. It is a number >0 (e.g. 5% is 5.0)
$\mathrm{tlH} \quad$ the tolerance of H. It is a number >0 (e.g. 5% is 5.0)
tlI
tlu the tolerance of I. It is a number >0 (e.g. 5% is 5.0)
tlk the tolerance of J. It is a number >0 (e.g. 5% is 5.0)
tlK the tolerance of K. It is a number >0 (e.g. 5% is 5.0)
$\mathrm{tlL} \quad$ the tolerance of L. It is a number >0 (e.g. 5% is 5.0)
tlM the tolerance of M. It is a number >0 (e.g. 5% is 5.0)
each non-negative integer. Each element of previous parameters is repeated each times.
seed a single value, interpreted as an integer. If specified make the simulation replicable.

Details

Factors affect the voltage output V via a chain of nonlinear equations:

$$
V=\frac{136.67\left(a+\frac{b}{Z(10)}\right)+d(c+e) \frac{g}{f}-h}{1+d \frac{e}{f}+b\left[f r a c 1 Z(10)+0.006\left(1+\frac{13.67}{Z(10)}\right)\right]+0.08202 a}
$$

where

$$
\begin{gathered}
a=\frac{Z(2)}{Z(1)+Z(2)} \\
b=\frac{1}{Z(12)+Z(13)}\left(Z(3)+\frac{Z(1) Z(2)}{Z(1)+Z(2)}\right)+Z(9) \\
c=Z(5)+Z(7) / 2 \\
d=Z(11) \frac{Z(1) Z(2)}{Z(1)+Z(2)} \\
e=Z(6)+Z(7) / 2 \\
f=(c+e)(1+Z(11)) Z(8)+c e \\
g=0.6+Z(8) \\
h=1.2
\end{gathered}
$$

with $Z(1), \ldots, Z(10)$ resistances in Ω of the 10 resistances and $Z(11), Z(12), Z(13)$ are the $h_{F E}$ values of three transistors.

Value

A data frame, a matrix-like structure, with each * n rows and with columns:

rsA	numeric	value of $r s A$
rsB	numeric	value of rsB
rsC	numeric	value of rsC
rsD	numeric	value of rsD
rsE	numeric	value of rsE
rsF	numeric	value of rsF
rsG	numeric	value of rsG
rsH	numeric	value of rsH
rsI	numeric	value of rsI
rsJ	numeric	value of rsJ
trK	numeric	value of trK
trL	numeric	value of trL
trM	numeric	value of trM
tlA	numeric	value of tlA
tlB	numeric	value of tlB
tlC	numeric	value of tlC
tlD	numeric	value of tlD
tlE	numeric	value of tlE
tlF	numeric	value of tlF
tlG	numeric	value of tlG
tlH	numeric	value of tlH
tlI	numeric	value of tlI
tlJ	numeric	value of tlJ
tlK	numeric	value of tlK
tlL	numeric	value of tlL
tlM	numeric	value of tlM
volts	numeric	output in volts (V)

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

pistonSimulation, simulationGroup

Examples

```
powerCircuitSimulation(seed=123, each=3)
```

PRED Soldering Points

Description

1,000 records on variable x and y . x is the number of soldering points on a board, and y is the number of defective soldering points.

Usage

data(PRED)

Format

A data frame with 1000 observations on the following 2 variables.
x Number of soldering points, a numeric vector
y Number of defective soldering points, a numeric vector

Details

Electronic systems such as television sets, radios or computers contain printed circuit boards with electronic components positioned in patterns determined by design engineers. After assembly (either by automatic insertion machines or manually) the components are soldered to the board. In the relatively new Surface Mount Technology minute components are simultaneously positioned and soldered to the boards. The occurrence of defective soldering points impacts the assembly plant productivity and is therefore closely monitored

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(PRED)
    library(boot)
    set.seed(123)
    YRatioPred <- boot(data=PRED$x,
        statistic=function(x,i){
                mean(x[i[1:100]])*7.495/148.58
                },
            R=1000)$t
hist(YRatioPred, main="",
    xlab="",
    xlim=c(7, 8))
```


Description

A function to perform randomization test

Usage

randomizationTest(list, $R=500$, calc, fun $=N A$,
seed $=$ NA, printSummary $=$ TRUE)

Arguments

list a list with two or more numeric vectors
R
calc a function to be applied to every vector in list
fun a function to be applied to a vector (e.g. x) of length length(list), containing result of function calc
seed a single value, interpreted as an integer. If specified make the simulation replicable.
printSummary logical, if TRUE print a summary of the randomization test

Value

The silently returned value is an object of class "boot"

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

boot

Examples

```
data(OELECT)
data(OELECT1)
# test difference in mean:
randomizationTest(list(a=0ELECT, b=0ELECT1),
R=500, calc=mean,
fun=function(x) x[1]-x[2],
seed=123)
```

```
renewDis Renewals Disribution
```


Description

Provide the Empirical Bootstrap Distribution of the number of renewals in a specified time interval.

Usage

renewDis(ttf, ttr, time, n, printSummary = TRUE)

Arguments

ttf	numeric vector of Time To Failure
ttr	numeric vector of Time To Repair
time	numeric value representing the time horizon on which number of renewals are calculated
n	the number of bootstrap replicates
printSummary	logical, if TRUE print the Mean Number of Renewals, and a summary of renewals values

Value

A numeric vector of lenght n with simulated number of renewals

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

availDis

Examples

```
    set.seed(123)
    Ttf <- rgamma(50,
        shape=2,
        scale=100)
    Ttr <- rgamma(50,
        shape=2,
        scale=1)
RenewEbd <- renewDis(ttf=Ttf,
    ttr=Ttr,
    time=1000,
    n=1000)
```

 RNORM10 Random Sample from \(N(10,1)\)

Description

Random sample of size $n=28$ from the normal distribution $N(10,1)$.

Usage

data(RNORM10)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(RNORM10)
plot(RNORM10, type="b")
abline(h=10, lwd=2, col=2)
```

```
shroArlPfaCed ARL, PFA and CED of Shiryayev-Roberts procedure
```


Description

Average Run Length, the Probability of False Alarm and the Conditional Expected Delay, given that the alarm is given after the change-point for Normal and Poisson cases

Usage

```
shroArlPfaCedNorm(mean0 = 0, mean1 = NA, sd = 1, n = 10,
    delta = 1, tau = NA, N = 100, limit = 10000,
    seed = NA, w = 19, printSummary = TRUE)
shroArlPfaCedPois(lambda0 = 10, lambda1 = NA, delta = 1,
    tau = NA, N = 100, limit = 10000, seed = NA,
    w = 19, printSummary = TRUE)
```


Arguments

mean0 value of the mean of a normal distributed process
mean1 optional value of the mean after a shift in a normal process, ignored if delta is not NA
sd standard deviation of a normal distributed process
$\mathrm{n} \quad$ sample size
lambda0 mean of a Poisson distributed process
lambda1 optional value of the mean after a shift in a Poisson process, ignored if delta is not NA
delta value of the shift from mean0 or lambda0, set to NA if the alternative specification with mean 1 or lambda1 is needed
tau location of the point of change in the process parameter mean0 or lambda0, if NA simulation is perfomed without any shift: mean1, lambda1 and delta are ignored

N
limit safety parameter, stop rule for procedures with very long ARL
seed a single value, interpreted as an integer. If specified make the simulation replicable.
w
Shiryayev-Roberts statistics used as the stopping threshold
printSummary logical, if TRUE print a summary of the Shiryayev-Roberts ARL, PFA and CED

Value

a list with elements:
rls a numeric vector representing the Run Length of the simulation
statistics a numeric vector with summary statistics
run a list of length N elements each of which has single numeric elements violationLower, violationUpper and rl

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

Examples

$$
\begin{gathered}
\text { shroArlPfaCedNorm(mean } 0=10, \\
\text { sd=3, } \\
\mathrm{n}=5, \\
\text { delta }=0.5, \\
\text { tau=10, } \\
\mathrm{w}=99, \\
\text { seed=123) } \\
\\
\text { shroArlPfaCedPois (lambda0 }=5, \\
\text { delta }=0.5, \\
\text { tau=10, } \\
\text { w=99, } \\
\text { seed }=123) \\
\\
\text { shroArlPfaCedNorm(mean } 0=15, \\
\text { sd=3, } \\
n=5, \\
\text { delta }=0.5, \\
\text { tau=NA, } \\
\text { w=99, } \\
\text { seed }=123)
\end{gathered}
$$

Description

Add a column named group to an object of class "mistatSimulation".

Usage

simulationGroup(x, n)

Arguments

$x \quad$ an object of class "mistatSimulation"
n size of the group or sample

Value

Add a column named group to an object of class "mistatSimulation".

Author(s)

Daniele Amberti

See Also

pistonSimulation, powerCircuitSimulation

Examples

```
simulationGroup(pistonSimulation(each=20), 5)
simulationGroup(powerCircuitSimulation(each=20), 5)
```


SOCELL Short Circuit Current of Solar Cells

Description

Short circuit current (ISC) of 16 solar cells measured at three time epochs, one month apart.

Usage
 data(SOCELL)

Format

A data frame with 16 observations on the following 3 variables.
t1 ISC at time epoch 1, a numeric vector
t2 ISC at time epoch 2, a numeric vector
t3 ISC at time epoch 3, a numeric vector

Details

Telecommunication sattelites are powered while in orbit by solar cells. Tadicell, a solar cells producer that supplies several satellite manufacturers, was requested to provide data on the degradation of its solar cells over time. Tadicell engineers performed a simulated experiment in which solar cells were subjected to temperature and illumination changes similar to those in orbit and measured the short circuit current ISC (ampers), of solar cells at three different time periods, in order to determine their rate of degradation.

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(SOCELL)
LmISC <- lm(t2 ~ 1 + t1,
    data=SOCELL)
summary(LmISC)
```

SOLDEF Solder Defects

Description

Solder defects on 380 printed circuits boards of varying size.

Usage

data(SOLDEF)

Details

In SOLDEF we present results of testing batches of circuit boards for defects in solder points, after wave solderings. The batches includes boards of similar design. There were close to 1,000 solder points on each board. The results Xtare number of defects per 10^{6} points ($P P M$). The quality standard is $\lambda_{0}=100(P P M)$. λ_{t} values below λ_{0} represent high quality soldering. In this data file there are $\mathrm{N}=380$ test results. Only 78 batches had an X_{t} value greater than $\lambda_{0}=100$.

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(SOLDEF)
hist(SOLDEF)
```

STEELROD 50 Measurements of the Length of Steel Rods in cm

Description

Steel rods are used in the car and truck industry to strengthen vehicle structures. Steel rods supplied by Urdon Industries are produced by a process adjusted to obtain rods of length 20 cm . However, due to natural fluctuations in the production process, the actual length of the rods varies around the nominal value of 20 cm .

Usage

data(STEELROD)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(STEELROD)
plot(STEELROD,
    ylab = "Steel rod Length",
    xlab = "Index")
```

 STRESS Stress Levels

Description

Results of a 33 factorial experiment to investigate the effects of three factors A, B, C on the stress levels of a membrane Y. The first three columns of the data provide the levels of the three factors, and column 4 presents the stress values.

Usage

data(STRESS)

Format

A data frame with 27 observations on the following 4 variables.
A levels of factor A, a numeric vector
B levels of factor B, a numeric vector
C levels of factor C, a numeric vector
stress stress levels of a membrane Y, a numeric vector

Source

Oikawa and Oka (1987)

Examples

```
data(STRESS)
summary(
    aov(stress ~ (A+B+C)^3 +I(A^2)+I(B^2)+I(C^2),
            data=STRESS))
```

 THICKDIFF Difference in Thickness

Description

Difference between the thickness of the grown silicon layer and its target value.

Usage

data(THICKDIFF)

Source

E. Yashchin (1991)

Examples

data(THICKDIFF)
plot(THICKDIFF, type="b")

TSQ $\quad T^{\wedge} 2$ values of PLACE data

Description

$368 T^{2}$ values corresponding to the vectors (x, y, θ) of displacements (position errors) of electronic components on printed circuit boards.

Usage

data(TSQ)

Source

See PLACE

Examples

data(TSQ)
plot(TSQ, type="b")

VENDOR Number of cycles required until latch failure

Description

Number of cycles reqiored until latch failure in 30 floppy disk drives from three different disk vendors.

Usage

data(VENDOR)

Format

A data frame with 10 observations on the following 3 variables.
vendor1 number of cycles required until latch failure for vendor A_{1}, a numeric vector vendor2 number of cycles required until latch failure for vendor A_{2}, a numeric vector vendor3 number of cycles required until latch failure for vendor A_{3}, a numeric vector

Details

Three different vendors are considered for supplying cases for floppy disk drives. The question is whether the latch mechanism that opens and closes the disk loading slot is sufficiently reliable. In order to test the reliability of this latch, three independent samples of cases, each of size $n=10$, were randomly selected from the production lots of these vendors. The testing was performed on a special apparatus that opens and closes a latch, until it breaks. The number of cycles required until latch failure was recorded. In order to avoid uncontrollable environmental factors to bias the results, the order of testing of cases of different vendors was completely randomized. In data VENDOR there are the results of this experiment, arranged in 3 columns. Column 1 represents the sample from vendor A_{1}; column 2 that of vendor A_{2} and column 3 of vendor A_{3}.

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(VENDOR)
VENDOR <- stack(VENDOR)
VENDOR$ind <- as.factor(VENDOR$ind)
VENDOR$values <- sqrt(VENDOR$values)
confint(lm(values ~ -1 + ind,
        data=VENDOR))
```

 WEIBUL
 Random sample from a Weibull distribution

Description

Values of a random sample of size $n=50$ from a Weibull distribution.

Usage

data(WEIBUL)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(WEIBUL)
```

hist(WEIBUL)

| YARNSTRG \quad Yarn strength |
| :--- | :--- |

Description

Yarn strength is typically analyzed on a logarithmic scale. This logarithmic transformation produces data that is more symmetrically distributed. in YARNSTRG data there are $n=100$ values of $Y=\ln (X)$ where X is the yarn-strength in lb./22yarns of woolen fibers.

Usage

data(YARNSTRG)

Source

Kenett, R. and Zacks, S. (1998) Modern Industrial Statistics: The Design and Control of Quality and Reliability. Duxbury Press.

Examples

```
data(YARNSTRG)
hist(YARNSTRG,
    breaks=6,
    main="",
    xlab = "Log yarn strength")
```


Index

```
*Topic datagen
    pistonSimulation,35
    powerCircuitSimulation,38
*Topic datasets
    ALMPIN, 4
    BLEMISHES, }
    CAR,7
    COAL, }
    COMPURESP, }
    CONTACTLEN, 11
    CYCLT, 14
    DISS,15
    DOJ01935, 16
    DOW1941, 16
    ELECFAIL, 17
    ELECINDX,17
    ETCHRATE, 18
    ETCHRATETWO,18
    FAILTIME,19
    FILMSP, 19
    FLEXPROD,20
    GASOL, 21
    GASTURBINE, 22
    HADPAS, 23
    HYBRID,24
    INSERTION, 24
    IPL, 25
    JANDEFECT, 26
    KEYBOARDS, 27
    LATHYPPISTON, 27
    MPG, 30
    OELECT, 31
    OELECT1, 32
    OTURB, }3
    OTURB1,33
    OTURB2,33
    PBX, 34
    PLACE, 36
    PRED,41
```

RNORM10, 44
SOCELL, 47
SOLDEF, 48
STEELROD, 49
STRESS, 49
THICKDIFF, 50
TSQ, 51
VENDOR, 51
WEIBUL, 52
YARNSTRG, 53
*Topic distribution
availDis, 5
renewDis, 43
*Topic math
pistonSimulation, 35
powerCircuitSimulation, 38
*Topic multivariate
mahalanobisT2, 29
*Topic nonparametric
availDis, 5
cusumArl, 11
cusumPfaCed, 13
randomizationTest, 42
renewDis, 43
shroArlPfaCed, 45
*Topic package
mistat-package, 3
*Topic ts
availDis, 5
cusumArl, 11
cusumPfaCed, 13
renewDis, 43
shroArlPfaCed, 45
*Topic utilities
simulationGroup, 46

ALMPIN, 4
ALMPIN2 (ALMPIN), 4
availDis, 5, 43

BLEMISHES, 7
boot, 42
CAR, 7, 30
COAL, 8
COMPURESP, 9
CONTACTLEN, 11
cusumArl, 11
cusumPfaCed, 13
cusumPfaCedBinom (cusumPfaCed), 13
cusumPfaCedNorm (cusumPfaCed), 13
cusumPfaCedPois (cusumPfaCed), 13
CYCLT, 14
DISS, 15
DOJ01935, 16
DOW1941, 16
ELECFAIL, 17
ELECINDX, 17
ETCHRATE, 18
ETCHRATETWO, 18
FAILTIME, 19
FILMSP, 19
FLEXPROD, 20
GASOL, 21
GASTURBINE, 22
HADPAS, 23, 24
HYBRID, 24
HYBRID1 (HYBRID), 24
HYBRID2 (HYBRID), 24
INSERTION, 24
IPL, 25
JANDEFECT, 26
KEYBOARDS, 27
LATHYPPISTON, 27, 36
mahalanobisT2, 29
mistat (mistat-package), 3
mistat-package, 3
MPG, 30
OELECT, 17,31
OELECT1, 32

OTURB, 32
OTURB1, 33
OTURB2, 33
PBX, 34
pistonSimulation, 28, 32, 33, 35, 40, 47
PLACE, 25, 36, 51
powerCircuitSimulation, 36, 38, 47
PRED, 41
randomizationTest, 42
renewDis, 6,43
RNORM10, 44
shroArlPfaCed, 45
shroArlPfaCedNorm (shroArlPfaCed), 45
shroArlPfaCedPois (shroArlPfaCed), 45
simulationGroup, 36, 40, 46
SOCELL, 47
SOLDEF, 48
STEELROD, 49
STRESS, 49
THICKDIFF, 50
TSQ, 51
VENDOR, 51
WEIBUL, 52
YARNSTRG, 53

