impute_in_classes() allows to apply any imputation function inside imputation classesimpute_hot_deck_in_classes() hot deck imputation inside of imputation classes (adjustment cells)impute_EM() imputes values using EM parameter estimatesimputed_expected_values() imputes expected values from a multivariate normal distributionimpute_LS_adaptive() performs LSimpute_adaptive as described by Bo et al. (2004)impute_LS_array() performs LSimpute_array as described by Bo et al. (2004)impute_LS_combined() performs LSimpute_combined as described by Bo et al. (2004)impute_LS_gene() performs LSimpute_gene as described by Bo et al. (2004)cov_only and cor_only as parameter in evaluate_imputation_parameters()cols variables: now all should be named cols_mis, cols_ctrl etc.ds variables: now all should be named ds_imp, ds_orig etc.pars variables: now all should be named pars_est or pars_truecols_seq is no correct, if the donor is only one numeric valueFunctions for the creation of missing values:
delete_MAR_censoring() and delete_MNAR_censoring() create missing (not) at random values using a censoring mechanismdelete_MAR_one_group() and delete_MNAR_one_group() create missing (not) at random values by deleting values in one of two groupsdelete_MAR_rank() and delete_MNAR_rank() create missing (not) at random values using a ranking mechanismFunctions for evaluation:
evaluate_imputation_parameters() compares estimated parameters after imputation to true parametersdelete_MAR_1_to_x() and delete_MNAR_1_to_x() can now handle (unordered) factorsevaluate_imputed_values() and evaluate_parameters(): six forms of NRMSE, nr_equal, nr_NA and precisionevaluate_imputed_values(): add argument cols_which to select columns for evaluation.delete_ functions now take the same first three arguments: ds, p, cols_misFunctions for the creation of missing values:
delete_MCAR() creates missing completely at random values in different waysdelete_MAR_1_to_x() and delete_MNAR_1_to_x() create missing (not) at random values using a 1:x mechanismFunctions for imputation:
impute_mean(), impute_median(), impute_mode() different forms of mean, median and mode imputationimpute_sRHD() simple Random Hot-Deck imputation with the possibility to specify a donor limitapply_imputation() a function to apply aggregating functions for imputationFunctions for evaluation:
evaluate_imputed_values() compares imputed to true valuesevaluate_parameters() compares estimated to true parametersMiscellaneous:
median.factor() computes medians for ordered factors