Package ‘miraculix’

April 17,2020
Version 0.9.20
Title Algebraic and Statistical Functions for Genetics

Author Martin Schlather [aut, cre], Malena Erbe [aut, cre], Florian Skene [aut], Alexander Freuden-
berg [ctr]

Description This is a collection of fast tools for application in quantitative genetics. For in-
stance, the SNP matrix can be stored in a minimum of memory and the calculation of the ge-
nomic relationship matrix is based on a rapid algorithm. It also contains the window scanning ap-
proach by Kabluchko and Spodarev (2009), <doi:10.1239/aap/1240319575> to detect anoma-
lous genomic areas <doi:10.1186/s12864-018-5009-y>. Furthermore, the pack-
age is used in the Modular Breeding Program Simula-
tor (MoBPS, <https://github.com/tpook92/MoBPS>, <http://www.mobps.de/>). The tools are based on SIMD (Sin-
gle Instruction Multiple Data, <https://en.wikipedia.org/wiki/SIMD>) and OMP (Open Multi-
Processing, <https://de.wikipedia.org/wiki/OpenMP>).

Maintainer Martin Schlather <schlather@math.uni-mannheim.de>
LinkingTo RandomFieldsUtils
Depends R (>= 3.0), RandomFieldsUtils (>= 0.5)

Imports methods, graphics

Suggests
License GPL (>= 3)

Biarch true

URL http://ms.math.uni-mannheim.de/de/publications/software/miraculix
NeedsCompilation yes

Repository CRAN

Date/Publication 2020-04-17 12:50:02 UTC

R topics documented:

miraculix-package L 2
CENOMICTNALIIX . . . v v v v vt v e e e e e e e e e e e e e e e e e e 3
genomicmatrix-class 6

http://ms.math.uni-mannheim.de/de/publications/software/miraculix

2 miraculix-package
haplomatrix e e e e e e e e 7
haplomatrix-class e e 8
Instruction Set L e 9
Manipulate L. e 10
MoPBS . . . e 12
Random Haplotype Values L 13
relationshipMatrix L e e e e e 15
RFoptions e e e 18
SCANNING ottt e e e e e e e 20
vectorO12matriXo e e e e 23
VectorGeno L e e e e 25
Windower 26

Index 28

miraculix-package MIRACULIX

Description

Various functions used in quantitative genetics

Details

1. Very fast calculation of genomic relationship matrix for 0-1-coded haplotypes and 0-1-2-coded

genotypes; Matrix should be in the RAM

(a) relationshipMatrix fast calculation of (M — P)(M — P)T /o?
(b) crossprodx fast implementation of crossprod for SNP matrices

2. further commands

(a) haplomatrix compresses haplotype data
(b) as.matrix uncompresses genomicmatrix or haplomatrix

(c) genomicmatrix transformation to a compressed genotype from a usual matrix or a com-
pressed haplotype

(d) genomicmatrix,fillGeno creating a compressed matrix and filling it with uncompressed
data. These two functions make sense if the SNP matrix is too large to be kept in the
RAM.

(e) solveRelMat calculates the inverse of a relatioship matrix and also solves equations

(f) allele_freq calculates the allele frequencies of a SNP matrix that might have been
compressed by genomicmatrix, for instance.

(g) genoVector, vectorGeno multiplication of vector onto a compressed SNP matrix from
the right and left, respectively.

(h) vectorGeno etc. fast calculation of 012 matrix with an arbitrary vector
(i) matrixvector@12 etc. fast calculation of an arbitrary matrix with a 012 vector

3. Functions related to the package MoBPs by Torsten Pook.

genomicmatrix 3

(a) codeOrigins,decodeOrigins compressed data representation of breeding relevant in-
formation of an individuum

(b) computeSNPS calculates the genome of an individuum from the coding in the population
tree

(c) compute concatenation of computeSNPS, relationshipMatrix, and solveRelMat

Support

This package was partially developed at the Department of Animal Breeding and Genetics and
CiBreed, University of Goettingen.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de;

Malena Erbe

Examples

indiv <- 5

snps <- indiv * 10

M <- matrix(ncol=indiv, sample(@:2, indiv * snps, replace=TRUE))
print(M)

print(relationshipMatrix(M))

genomicmatrix Transform a Matrix to a Compressed Matrix

Description

Coerce to or create a compressed genomic matrix

Usage

genomicmatrix(snps, individuals, file.type,
coding, header, IndividualsPerColumn,
DoubledIndividuals, leadingcolumns, loading,

S3 method for 21ass 'genomicmatrix’
as(object, ...)
Arguments
object, snps integer, matrix, vector, a haplomatrix or file name. See Details.
individuals integer. See Details
file.type if object is a filename then the precise coding of preceding headers, preceding

columns, and the coding of the data can be very different. Instead of giving all
the arguments coding, ..., leadingcolumns, the file. type can be given:

http://ms.math.uni-mannheim.de

genomicmatrix

‘beagle’ i.e.coding="AB? "

‘plink’ i.e. coding="AB? "
‘plink2’ i.e. coding="12?",
‘plinkbinary’ i.e. coding="12345"

coding if object is a filename then coding is a string of 4 or 5 characters.
In case of 5 characters, a file with genomic data is assumed and the characters
have the following meaning:
1st code for 0
2nd code for 1
3rd code for 2
4th code for NA
Sth the field separator character
In case of 4 characters, a file with haplotype information is assumed and the
characters have the following meaning:
1st code for 0
2nd code for 1
3rd code for NA
4th the field separator character
The haplotype data is turned into genomic data.

header integer. If object is a filename then header has the following meaning
positive header: header gives the number of preceding lines in the file that

will be ignored. An ASCII file is assumed in this case.
negative header: a binary file is assumed and —header gives the number of
preceding characters that will be jumped.

IndividualsPerColumn
Logical. If IndividualsPerColumn=TRUE then the first argument indicates a
(SNPs x Individ) matrix. Otherwise, the first argument indicates a (Individ X
SNPs) matrix, which will be transposed before storage.

DoubledIndividuals
Logical. If DoubledIndividuals=TRUE the haplotype information for the sec-
ond chromosome is given in direction of the individuals, i.e. if additionally
IndividualsPerColumn=TRUE, the number of columns are doubled. Otherwise,
the information is given in the other direction. The information at one locus is
always given back-to-back. If object is a filename, coding has 4 characters (i.e.
it is a haplo file)

leadingcolumns Integer. If object is a filename then leadingcolumns gives the number of first
columns in the file that are ignored.

loading logical. If object is a filename then 1loading decides whether the file contents is

read into RAM. Otherwise the file is read on the fly whenever possible. loading
is TRUE for genomicmatrix and FALSE otherwise.

options, see RFoptions

genomicmatrix 5

Details

genomicmatrix creates a compressed matrix according to the coding scheme given by RFoptions () $genetics$snpcoding.

In case snps is a string, i.e., a file name, the extension of the file name predefines the file. type:

“txt’ =‘beagle’

‘bgl’ =‘beagle’

‘.phased’ =‘plink’

‘.tped’ =‘plink2’

‘.ped’ =‘plink2’

‘.bed’ =‘plinkbinary’

The definition can be overwritten by file. type. The latter can be overwritten by all other options
(except individuals).

If individuals is given, genomicmatrix creates a snps x individuals compressed data matrix
filled with zeros. The matrix can be modified afterwards by fillGeno.

If a haplomatrix is given, it is transformed into a genomicmatrix.
If genomicmatrix is given, the matrix is returned as is and a warning is given.

Both functions, genomicmatrix and as have exactly the same behavior execept for loading which
is TRUE for genomicmatrix by default and fixed to be FALSE for as.genomicmatrix.

Value

an object of class genomatrix

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

See Also

haplomatrix as.matrix

Examples

set.seed(0)

snps <- 100

indiv <- 10

M <- matrix(sample(@:2, snps * indiv, replace=TRUE), nrow = snps)
(GM <- genomicmatrix(M))

stopifnot(all(as.matrix(GM) == M))

There is a difference between genomicmatrix and as.genomicmatrix
in case of files: 'as.genomicmatrix' creates only a pointer to
the file, while 'genomicmatrix' reads the file

file <- "miraculix”

http://ms.math.uni-mannheim.de

6 genomicmatrix-class

if (interactive() && !file.exists(paste@(file, ".bgl"))) {
f <- rhaplo(indiv=100, loci=1000, file=file, file.type="beagle")
print(f)
print(G <- as.genomicmatrix(f))
print(g <- genomicmatrix(f))
Print(object.size(G), object.size(g)) ## g needs much more memory
file.remove(f)

genomicmatrix-class Class genomicmatrix

Description

Class representing a genomic matrix

Usage
S3 method for class 'genomicmatrix'
print(x, ...)
S3 method for class 'genomicmatrix'
str(object, ...)
S3 method for class 'genomicmatrix'
as.matrix(x, ...)
Arguments
x,object a compressed (SNP x Individuals) matrix
see print, str for options; see section ‘Details’ for as.matrix.
Details

Since the genomic matrix has only the values 0,1,2, genomicmatrix uses a two bit compressed
storing mode in case RFoptions(snpcoding = TwoBit) or snpcoding = Shuffle, for instance, see
RFoptions for more information and further options.

The options . .. for as.matrix are
N vector of integers, which gives the selected rows. If missing all rows are selected.

do.centering logical. If TRUE the value of RFoptions()$genetics$centering is considered.

TRUE centering by rowMeans.
FALSE no centering is performed (although do.centering = TRUE!)
is.numeric the values given by the user are substracted.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

http://ms.math.uni-mannheim.de

haplomatrix 7

See Also

genomicmatrix haplomatrix-class

Examples

set.seed(0)

snps <- 100

indiv <- 10

M <- matrix(sample(@:2, snps * indiv, replace=TRUE), nrow = snps)
GM <- genomicmatrix(M)

print(GM)

str(GM)

stopifnot(all(as.matrix(GM) == M))

haplomatrix Transform a Haplotype Vector to a Compressed Haplotype Vector

Description

Coerce a matrix to a compressed haplotype matrix

Usage

haplomatrix(M, IndividualsPerColumn=TRUE, DoubledIndividuals=TRUE)
S3 method for class 'haplomatrix'

as(object, ...)

Arguments
M,object matrix of two rows containing only the values O and 1
IndividualsPerColumn

Logical. If IndividualsPerColumn=TRUE then the first argument indicates a
(SNPs x Individ) matrix. Otherwise, the first argument indicates a (Individ x
SNPs) matrix, which will be transposed before storage.
DoubledIndividuals

Logical. If DoubledIndividuals=TRUE the haplotype information for the sec-
ond chromosome is given in direction of the individuals, i.e. if additionally
IndividualsPerColumn=TRUE, the number of columns are doubled. Otherwise,
the information is given in the other direction. The information at one locus is
always given back-to-back.

All arguments of haplomatrix except M

Value

an object of class genomicmatrix

8 haplomatrix-class

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

See Also

Note that a haplotype file can be read in by genomicmatrix.

as.matrix transforms a genomicmatrix to a human readable matrix.

Examples

set.seed(0)

snps <- 100

cols <- 2

M <- matrix(sample(@:1, snps * cols, replace=TRUE), ncol = snps)
Print(M)

print(GM <- haplomatrix(M))

stopifnot(all(as.matrix(GM) == M))

haplomatrix-class Class haplomatrix

Description

Class representing a haplo matrix

Usage

S3 method for class 'haplomatrix'

print(x, ...)
S3 method for class 'haplomatrix'
str(object, ...)
S3 method for class 'haplomatrix'
as.matrix(x, ...)
Arguments
X,0object a compressed (SNP x Individuals) matrix

see print, str for their options. The command as.matrix has the following
options
indiv vector of integer, indicating individuals to be extracted

sets value 1, 2 or 1:2. Indicates the chromosome set to be returned. De-
fault:1:2

http://ms.math.uni-mannheim.de

Instruction Set 9

IndividualsPerColumn Logical. If IndividualsPerColumn=TRUE then the
first argument indicates a (SNPs x Individ) matrix. Otherwise, the first
argument indicates a (Individ x SNPs) matrix, which will be transposed
before storage. Default: TRUE

DoubledIndividuals Logical. If DoubledIndividuals=TRUE the haplotype
information for the second chromosome is given in direction of the indi-
viduals, i.e. if additionally IndividualsPerColumn=TRUE, the number of
columns are doubled. Otherwise, the information is given in the other direc-
tion. The information at one locus is always given back-to-back. Default:
TRUE

Details

Since the haplo matrix takes only the values 0 and 1, haplomatrix uses a one bit compressed
storing mode. A haplomatrix can quickly be transformed into a genomicmatrix (by exactly this
command) in case of the default two-bit coding, e.g. RFoptions(snpcoding=Shuffle).

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

See Also

genomicmatrix-class

Examples

set.seed(0)

indiv <- 5

loci <- 4

M <- matrix(sample(@:1, 2 x indiv * loci, replace=TRUE), nrow = loci)
str(M)

GM <- haplomatrix(M)

print(GM)

str(GM)

print(as.matrix(GM))

print(as.matrix(GM, indiv=2:4, sets=1))
stopifnot(sum(abs(as.matrix(GM) - M)) == @)

Instruction Set CPU instruction set

Description

The function checks whether a certain instruction is available under the current compilation of the
package.

http://ms.math.uni-mannheim.de

10 Manipulate

Usage

has.instruction.set(which=c("SSE2", "SSSE3", "AVX", "AVX2"))
Arguments

which character vector.
Value

logical vector of length which. An element is TRUE if the instruction set is recognized by the
package.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

Examples

has.instruction.set("AVX2")

Manipulate Manipulating Compressed Matrices

Description

copyGeno copies a coded SNP matrix
zeroNthGeno writes zeros into selected rows of a coded SNP matrix

fillGeno allows to fill (or replace) colums of a compressed (snps x indiv) matrix.

Usage

fillGeno(SNPxIndiv, indiv, values, IndividualsPerColumn=TRUE,
DoubledIndividuals=TRUE)

copyGeno (SNPxIndiv)

zeroNthGeno(SNPxIndiv, snps)

Arguments
SNPxIndiv a compressed SNP (genotype) vector or matrix, obtained from genomicmatrix
or haplomatrix
indiv integer vector. It gives the columns of the (SNP x Indiv) matrix that has to be
filled with values
values coded or uncoded vector or matrix of haplotype or genotypes.
snps vector of integers, which gives the selected rows. If missing all rows are se-

lected.

http://ms.math.uni-mannheim.de

Manipulate 11

IndividualsPerColumn
Logical. If IndividualsPerColumn=TRUE then the first argument indicates a
(SNPs x Individ) matrix. Otherwise, the first argument indicates a (Individ x
SNPs) matrix, which will be transposed before storage.

DoubledIndividuals
Logical. If DoubledIndividuals=TRUE the haplotype information for the sec-
ond chromosome is given in direction of the individuals, i.e. if additionally
IndividualsPerColumn=TRUE, the number of columns are doubled. Otherwise,
the information is given in the other direction. The information at one locus is
always given back-to-back.

Value

All functions return a compressed SNP matrix of class genomicmatrix.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

See Also

genomicmatrix-class
vectorGeno for multiplying a vector from the left

genoVector for multiplying a vector from the right

Examples

require(RandomFieldsUtils)
set.seed(0)

indiv <- sample(1000, 1)

snps <- indiv * 2*sample(7,1)

M <- matrix(nrow = snps, sample(@:2, snps * indiv, replace=TRUE))
storage.mode(M) <- sample(c("integer”, "double"”), 1)

CM <- genomicmatrix(M)

str(CM)

Z <- as.matrix(CM)

Print(M, CM, Z)

stopifnot(all(M == Z))

N <- sample(snps, snps / 4)
Z1 <- as.matrix(CM, snps=N)
stopifnot(all(M[N, 1 == Z1))

http://ms.math.uni-mannheim.de

12 MoPBS

MoPBS Functions designed for the R package MoBPS

Description

The functions below have been written mainly for use in the package MoBPS written by Torsten
Pook.

codeOrigins compresses information about generation of introduced new genes, sex, number of
individuals and haplotype in a single 32 Bit integer value.

decodeOrigins make the compressed data human readable again.

computeSNPS extracts from a coded, complete breeding scheme an individuum defined by its gen-
eration, sex and number within its cohort.

compute essentially concatenates (efficiently) the three commands computeSNPS, relationshipMatrix,
solveRelMat

Usage

codeOrigins(M)
decodeOrigins(CM, row)
computeSNPS(population, gen, sex, nr, from_p = 1, to_p = Inf,
output_compressed=FALSE, select = NULL, what = c("geno"”, "haplo"))
compute(population, gen, sex, nr, tau, vec, betahat, select = NULL,
matrix.return=FALSE)

Arguments

M matrix with information on generation of introduced new genes, sex, number of
individual and haplotype on each line. the generation takes values in 1...26,
sex values in 1...271, individual values in 1...2722 and the haplotype values in
1..273

CM a vector obtained from coding a matrix by codeOrigins

row integer. Row number of the matrix M or CM to be decoded.

population list of list, as described in package MoBPs, which contains the whole informa-
tion of all generations of a breeding scheme

gen,sex,nr information specifying an individuum; instead of the three argument, only gen
might be given, which is matrix of three columns then.

from_p, to_p loci between which the genomic information of the specified individuum is ex-

tracted. Default: whole genomic information

output_compressed
logical. If FALSE the output is human readable

select integer vector. List of loci that should be returned; the loci might be further
restricted by from_P and to_p.

what The type of information that should be extracted and returned

Random Haplotype Values 13

tau,vec,betahat
see solveRelMat

matrix.return logical. If TRUE also the relationship matrix is returned.

Value

codeOrigins : a vector with length equal to the number of rows of M.
decodeOrigins : an integer vector of 4 components.

computeSNPS : vector of integers with either human readable values or compressed data depending
on the argument what.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

Examples

set.seed(0)

n <- sample(1000, 1)

M <- cbind(sample(1:2%6, n, replace=TRUE),
sample(1:2%1, n, replace=TRUE),
sample(1:2%22, n, replace=TRUE),
sample(1:2*3, n, replace=TRUE))

print(head(M))

Z <- matrix(NA, ncol=ncol(M), nrow=nrow(M))

CM <- codeOrigins(M)

print(head(CM))

for (i in 1:nrow(M)) Z[i,] <- decodeOrigins(CM, i)

stopifnot(all(M == Z))

Random Haplotype Values
Generation of Random Haplotype Matrix

Description

A random haplotype matrix is generated according to some given frequencies.

Usage

rhaplo(freq, indiv, loci, freq2, file,
file.type = c("beagle”, "plink”, "plink2"),
debugging = FALSE)

http://ms.math.uni-mannheim.de

14

Arguments

freq

indiv

loci

freqg2

file, file.type

debugging

Value

Random Haplotype Values

vector of probabilities which gives the allele frequencies for one or both haplo-
types; if not given, a half is assumed and loci must be given.

number of individuals

if not given, the number of loci equals the length of freq, otherwise freq is
recycled to reach the given nnumber of loci

optional. Frequencies for the second chromosome. The vector freq2 may have
a different length than freq if loci is given or freq2 is a scalar. The vector
freq2 may contain NAs. Then, the value of the second chromosome at this locus
is taken over from the first chromosome.

string. If given, a file is written that mimics the file. type style. An extension
is appended to file according to the file. type style.

logical. Mainly for internal purposes. If TRUE the genomic matrix is appended
as an attribute to the return value.

If missing(file) an object of class genomicmatrix is returned, else the file name with appended
extension according to file. type

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

See Also

A haplotype file can be read in by genomicmatrix.

as.matrix transforms a genomicmatrix to a human readable matrix.

Examples

as.matrix(rhaplo(seq(@, 1, len=10), indiv=5))

note that the

next examples write a file on the current directory

file <- "miraculix”
if (interactive() && !file.exists(paste@(file, ".bgl"))) {
f <- rhaplo(freq = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6),
freq2 = c(0.6, 0.4, 0.5, 0.3, 0.0, 1.0),
indiv=5, file=file, file.type="beagle",
debugging = TRUE)

print(f)

print(as.genomicmatrix(f))
print(g <- genomicmatrix(f))
print(as.matrix(g))

stopifnot(all(as.matrix(g) == attr(f, "M")))

http://ms.math.uni-mannheim.de

relationshipMatrix 15

file.remove(f)

3
relationshipMatrix Fast calculation of the Genomic Relationship Matrix and its deriva-
tives
Description

relationshipMatrix calculates the relationship matrix A = (M — P)T(M — P)/o? from the
SNP matrix M where P = p(1,...,1) with p = M% x %(1,...,1)T /n. Furthermore, sigma?
equals 02 = pT' (1 — p/2) € [0, 00).

crossprodx calculates the cross-product of SNPxIndiv, i.e. itisidentical to call relationshipMatrix
with optional argument, centered=FALSE, cf. RFoptions

allele_freq calculates p/2.
SNPeffect calculates M (A + 71)~ v
solveRelMat calculates
(A+7D) "t
and
AA+TD v+

where A is the relationship matrix.

Usage

relationshipMatrix(SNPxIndiv, ...)
crossprodx (SNPxIndiv)

solveRelMat (A, tau, vec, betahat=NULL, destroy_A=FALSE)
SNPeffect (SNPxIndiv, vec, centered=TRUE, tau=0)
allele_freq(SNPxIndiv)

Arguments

SNPxIndiv {0,1 2}-valued (snps x indiv) matrix or the result of genomicmatrix.
see RFoptions — better use RFoptions. The main two options are:
centered: see below
normalized:logical. if FALSE then the division by sigma? is not performed

centered if FALSE then P is not substracted.

A a symmetric, positive definite matrix, which is a relationship matrix

tau non-negative scalar

vec the vector v

betahat scalar or NULL. See also section value.

destroy_A logical. If TRUE the values of the matrix A will be overwritten during the calcu-

lations (leading to a faster execution with less memory needs).

16 relationshipMatrix

Details

Let p = M% %(1,...,1)T /n where n is the number of individuals. Then, the matrix P equals
P=p(,....1).

The constant sigma? equals 02 = pT (1 — p/2).

solveRelMat has a speed and memory advantage in comparison to the direct implementation of the
above formulae.

Value

relationsshipMatrix returns a (Indiv X Indiv) numerical matrix.

The return value of solveRelMat depends on betahat. If the latter is NULL, only the vector (A +
71)_111 is returned. Else, a list of 2 elements is returned. First element equals the vector

(A4 7)o,

the second element equals
AA+ 1D v+ B.

Benchmarks

Computing times for the relationship matrix in comparison to ’crossprod’ in standard implementa-
tion on Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, R version 3.6.0 (Linux) with indiv = 1000
and snps = 5e5 are:

Shuffle256 : 48 x faster (AVX2; 16x compressed)
Packed256 : 36 x faster (AVX2; 16x compressed)
Shuffle : 35 x faster (SSSE3; 16x compressed)
Multiply256 : 29 x faster (AVX2; 16x compressed)
Packed : 28 x faster (SSE2; 16x compressed)
Hamming?2 : 24 x faster (SSE2; 4x compressed)
Hamming3 : 21 x faster (SSSE3; 4x compressed)
Multiply : 17 x faster (SSE2; 16x compressed)
ThreeBit : 17 x faster (uint64_t; 10x compressed)
TwoBit : 15 x faster (uint64_t; 16x compressed)
NoSNPcoding : 4 x faster (int, AVX2; not compressed)
NoSNPcodingAVX: 2 x faster (double, AVX; not compressed)
NoSNPcodingR : calls crossprod

In parantheses, first the instruction set or s the main data type is given, then the data compression
with respect to 32 bit integer.

The following code was used:

RFoptions(cores = 1)

indiv <- 1000

snps <- 5e5 ## may cause memory allocation problems in R; better use 5e4 !!

methods <- c(NoSNPcodingR, NoSNPcodingAVX,
FirstGenuineMethod:LastGenuineMethod)

M <- matrix(ncol=indiv, sample(@:2, indiv * snps, replace=TRUE))

for (storageMode in c("integer"”, "double")){

relationshipMatrix 17

storage.mode(M) <- storageMode

cat("\n\n")

print(S <- system.time(C <- crossprod(M)))

p <- rowMeans(M)

P <- p %*% t(rep(1, indiv))

sigma2 <- sum(p * (1- p/2))

A <- crossprod(M-P) / sigma2

print(S <- system.time(C <- crossprod(M)))

for (method in methods) {
RFoptions(snpcoding = method)
cat(”\nstorage=", storageMode, " method=", SNPCODING_NAMES[method + 1],
"\n")
SO <- system.time(G <- genomicmatrix(M))
print(S1 <- system.time(C1 <- crossprodx(M)))
print(S2 <- system.time(C2 <- crossprodx(G)))

stopifnot(all(C == C1))
stopifnot(all(C == C2))
R1 <- S / S1
R2 <- S/ S2

print(0.5 *x (R1 + R2))

print(S3 <- system.time(C3 <- relationshipMatrix(M)))
print(S4 <- system.time(C4 <- relationshipMatrix(G)))
R3 <- S/ S3

R4 <- S / S4

print(0.5 x (R3 + R4))
stopifnot(all.equal(as.double(A), as.double(C3)))
stopifnot(all.equal(as.double(A), as.double(C4)))
gcO)

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

Examples

require(RandomFieldsUtils)

set.seed(0)

snpcodes <- c(TwoBit, ThreeBit)

if (has.instruction.set(”SSE2")) snpcodes <- c(shpcodes, Hamming2)

if (has.instruction.set(”SSSE3")) snpcodes <- c(snpcodes, Hamming3, Shuffle)
if (has.instruction.set(”AVX2")) snpcodes <- c(snpcodes, Shuffle256)

Print(snpcodes)
indiv <- 1 + sample(100:500, 1)

snps <- indiv * 2*sample(1:if (interactive()) 7 else 5, 1)
RFoptions(snpcoding=sample(snpcodes, 1))

http://ms.math.uni-mannheim.de

18 RFoptions

M <- matrix(ncol=indiv, sample(@:2, indiv * snps, replace=TRUE))
print(system.time(G <- genomicmatrix(M)))
print(G)

crossprodx vs crossprod: about 10x faster
Print(system.time(C <- crossprodx(M)))
print(system.time(C2 <- crossprod(M)))
stopifnot(all(C == C2))

allele_freq vs rowMeans: about equally fast
Print(system.time(af <- allele_freq(M)))
print(system.time(alleleFreq <- 0.5 * rowMeans(M)))
stopifnot(all.equal(as.double(alleleFreq), as.double(af)))

relationshipMatrix vs crossprod: about 10x faster
Print(system.time(R <- relationshipMatrix(M)))
print(system.time(R <- relationshipMatrix(G)))
print(system.time({
sigma2 <- 2 * sum(alleleFreq * (1 - alleleFreq))
R2 <- crossprod(M - 2 * alleleFreq) / sigma2

1))
stopifnot(all.equal(as.double(R), as.double(R2)))

#i## solveRelMat vs. solve: about equally fast
tau <- 0.0001
vec <- runif(indiv)
beta <- runif(1)
Print(system.time(S <- solveRelMat(R, tau=tau, vec=vec, betahat=beta)))
print(system.time({r <- solve(R + diag(indiv) * tau, vec);
y <- as.vector(R %*% r + beta)}))
stopifnot(all.equal(S$rest, r))
stopifnot(all.equal(S$yhat, y))

RFoptions Setting control arguments

Description

RFoptions sets and returns control arguments for diverse packages (miraculix, RandomFields).

RFoptions should not be used within parallelizing R commands such as mclapply in package
parallel.

Details

The specific parameters for miraculix are the following. See RFoptions in RandomFieldsUtils
for further options.

any2bit logical. If TRUE then always the most time efficient code is used among

RFoptions 19

* TwoBit (no SIMD needed)

Packed (SSE2 needed)

Shuffle (SSSE3 needed)

Shuffle256 (AVX2 needed)
whatever is available.
Default : FALSE. This value might change to TRUE in future.

centered logical or numerical. If TRUE the P matrix is substracted before the crossproduct of the
the SNP matrix is calculated, see relationshipMatrix for the P matrix.
If numeric, then the length of this vector must equal the number of SNPs per individual. Then
this vector is substracted for each individual. Furthermore, normalized is FALSE. As the size
of centered can be large, this vector is never returned by RFoption(); instead NA is returned.
Note that centered also sets the value of normalized.
Default : TRUE

cores Number of cores for multicore algorithms.

digits OBSOLETE. scalar. If digits is negative no rounding is performed. Else the matrix P
when calculating the relationsship matrix (M — P)T' (M — P) is rounded to the given number
of absolute (not significant) digits.
Default : 3.0.

normalized logical. If TRUE the relationship matrix is normalized by 02, see relationshipMatrix.
Its value is set to the value of centered whenever the value of centered is changed. So
normalized must be set always after centered, e.g. RFoptions(centered=TRUE, normalized=FALSE),
but not RFoptions(normalized=FALSE,centered=TRUE).
Default : TRUE

snpcoding integer. Possible values are
Shuffle two bit mini hash table based on SSSE3
Shuffle256 two bit mini hash table based on AVX2
Packed 4-bit integer arithmetic based on SSE2
Packed256 4-bit integer arithmetic based on AVX2
Multiply 16-bit integer arithmetic based on SSE2
Multiply256 16-bit integer arithmetic based on AVX2
Twobit two bit hash table
Threebit three bit hash table
Hamming2 method used in PLINK
Hamming3 method used in PLINK
AutoCoding method is chosen by the programme itself
NoSNPcoding no coding, i.e. 32 bit integer
NoSNPcodingR No coding: 32 bit integer, R code. Only for testing purposes.
NoSNPcodingAVX No coding: AVX implementation if available (double precision or integer).
In for loops that run through all available methods the constants FirstGenuineMethod and
LastGenuineMethod might be useful.
In case of the package MoPBS or if interest is in the 2 bit methods only, use the constants
FirstMoBPSmethod and LastMoBPSmethod.
In case the names of the method is needed, use SNPCODING_NAMES[snp_coding + 1].
Default : Shuffle

returnsigma logical. Whether o2 shall be also returned when the relationship matrix is calculated.

L]

L]

20 scanning

Value

NULL if any argument is given, and the full list of arguments, otherwise.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de/
de/publications/software

See Also

RFoptions,

Examples

RFoptions()$genetics

scanning Scan Statistics

Description

The function implements the scan statistics method of Kabluchko and Spodarev (2009), Theorem
3.1

Usage

scanning(pos, freq, file, tuningUnits, alpha = @.1, coarsening = 1,
minscans=0, maxscans = 0, sumscan = FALSE, perSNP = TRUE,
colname , n, threshold, collect=!old.def, old.def=FALSE,
max.intervals = length(alpha) * 100000,
max.basepair.distance = 50000, exclude.negative.at.boundary = TRUE,
maximum = TRUE, mean.freq, sd.freq, mean.n)

scan.statistics(file, tuningUnits, alpha=c(0.05, 0.01), repet=1000,
coarsening = 1,
minscans=0, maxscans=0, sumscan = FALSE, perSNP=TRUE,
colname, n, return.simu = FALSE,
debug = FALSE, formula = FALSE,
old.def=FALSE,
max.intervals = length(alpha) * 100000,
max.basepair.distance = 50000,
exclude.negative.at.boundary = TRUE,
pos, freq)

http://ms.math.uni-mannheim.de/de/publications/software
http://ms.math.uni-mannheim.de/de/publications/software

scanning 21

Arguments

pos, freq alternatively to the file name, two vectors, pos and freq might be given.

file filename or list. The rda file must contain the variables pos, freq, colname, and
n. Or it is a list with the same named elements.
If the extension of the filename is ‘bed’, the behaviour of the programme is
different, see the details

tuningUnits real number. The value 0 codes the case of Theorem 3.1 in Kabluchko and
Spordarev (2009). A positive value codes the case of Theorem 2.1 (which is
very much preferred). The case of Theorem 3.2 does not suit, hence is not
coded.
Good values for tuningUnits seem to be around 0.85.
Note that first, the frequencies are standardized. Then tuningUnitsxmean(n)/n
is substracted.

alpha level(s) of testing. The levels should decrease.

coarsening integer. If the value is larger than 1 then the data are first windower’ed by
length=coarsening. This is important to do if the data are fine scaled!

repet The number of simulation to determine the threshold(s) for testing in scan. statistics;

see also formula. Should be at least 100 better 1000.

minscans,maxscans
integers. The minimunm and maximum length of the window, respectively. If
non-positive the window sizes are not restricted from below or above, respec-

tively.

sumscan logical. If TRUE the old style picture appears. Otherwise the relative number of
significant intervals containing a certain point is shown.

perSNP logical. If TRUE then the test is based on SNPs as units. If FALSE the test is based

on basepairs (not programmed yet).

colname the column of the data frame that gives the relative frequencies. The default
name (i.e., if missing) is "HeterAB". Alternatively colname is a number indi-
cating the respective column.

In case the extension of the filename equals ‘bed’, the behaviour is different, see

Details.

n The number of individuals, the data are based on. Usually that number is deter-
mined automatically, but might be given for safety explicitely

return.simu logical. to do

debug logical or 2. If not FALSE important data are saved on the disk. If debug ==

pictures of each simulation are shown. [to do in more detail]

threshold scanning counts the number of intervals found above the given threshold.
threshold is an alternative to alpha and is used instead of alpha if both are
given. This threshold is applied to the standardized frequency data.
A value around 0.8 seems to be appropriate for Christian’s data whereas values
around 18 are appropriate for Amanda’s data.

collect scanning can be used in two ways. If collect=FALSE essentially only the
scan statistic is determined. If collect=TRUE then also all the intervalls are
determined that are considered to be significant at the given alpha levels.

22 scanning

old.def logical. If TRUE all the tiny snippets that have not been agglutinated yet, are also
returned. If TRUE it takes a lot of memory.
Further, if TRUE, negative (modified) values are allowed at the borders of an
interval.
Finally, if TRUE the parameters max . intervals, max.basepair.distance, exclude.negative.at.bour
are not considered.

max.intervals [only if old.def=FALSE]
As the number of intervals is determined dynamically, the total number of signif-
icant intervals cannot be determined in advance. To economise a lot of copying,
an upper threshold is given by the user. 100000 for each level should be large
enough. If not, please contact the author.
max.basepair.distance
[only if 01d. def=FALSE] if a basepair distance is larger than max . basepair.distance
then the significant areas are considered as two separate areas.
exclude.negative.at.boundary
logical. If TRUE negative values at boundaries are not allowed. L.e. each signifi-
cant area starts and ends with a positive modified frequency.

maximum logical. MISSING DOC

mean.freq If given, mean. freq overwrites mean(freq)

sd.freq If given, sd. freq overwrites sd(freq)

mean.n If given, mean. n overwrites mean(n)

formula if formula=TRUE then the formula of Kabluchko and Spodarev (2009) is used

in scan.statististics. Otherwise, a repet number of simulations under the
null hypothesis are performed to get the threshold right.

Details

The ideas for the code are taken from Kabluchko and Spordarev (2009) although the values are not
calculated from the respective theorems. Instead, values are obtained by simulation in a procedure
similar to Bootstrapping.

In case the file is a bed-file, the following differences to the standard behaviour appears:

1. colname must be of the form c(pos=, freq=,n=) with default value c(pos=3, freq=4,n=5)
2. the sign of the frequency is changed

3. it is not checked whether the frequencies * n equals an integer number

Value

scanning returns invisibly a list that contains always
file, pos, freq, tuningUnits, alpha, n, maxscans, perSNP the input data
above.threshold the number of intervals showing a total sum larger than the given threshold.
threshold corresponding to alpha, if not given explicitely

maximum the maximum value reached scanning over all windows

if collect=TRUE then the list also contains

vectorOQ12matrix 23

areas matrix of three rows containing information of all the (overlapping) intervals where
the sums exceeds the thresholds. Each interval is given by a column. First row: left
end point of the interval. Second row: right end point of the interval. Third interval:
maximum number of threshold that are passed.

values the sums that correspond to the maxima in areas

significant.areas list of matrices. For each threshold, all the overlapping intervals are
joined that overlap, so that non-overlapping intervals are finally obtained.

Message whether the null hypothesis is rejected at the lowest alpha level.

scan.statistics returns invisibly a list containing all elements of scanning for collect=TRUE.
Additionally, it contains

maxima the maxima of repet simulated data if formula=FALSE

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>

References

Kabluchko, Z. and Spodarev, E. (2009) Scan statistics of Levy noises and marked empirical pro-
cesses. Adv. Appl. Probab. 41, 13-37.

Examples

if (interactive()) {
n <- 30
loci <- 9000
positions <- 25000:15000000
} else {
n <-3
loci <- 900
positions <- 2500:1500000
3
pos <- sort(sample(positions, loci))
freq <- rpois(loci, lambda=0.3) / n

alpha <- c(0.1, 0.05, 0.01)

s <- scan.statistics(n=n, pos=pos, freg=freq, repet=100,
tuningUnits=0.65, alpha=alpha)

str(s)

vector@l12matrix multiplication from left of 012 vector with a matrix

24 vectorOQ12matrix

Description

vector@l12matrix and matrixvector12 multiply a real-valued matrix from left and right with a
vector that contains only the values 0,1,2, respectively. For larger matrices (greater than 25 x 25)
the functions are 3 to 10 times faster than the matrix multiplication %*%.

This function is not based on RFoptions () $genetics$snpcoding.

Usage

vector@12matrix(v, M)
matrixvector@12(M, v)

Arguments
v an integer valued with values 0,1,2 only. Anything different from 1 and 2 is
treated as 0.
M a real-valued matrix whose size matches v
Value

The two function vector@12matrix and matrixvector@12 return a vector of length ncol (M) and
nrow(M), respectively.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>

See Also

vectorGeno

relationshipMatrix

Examples

set.seed(Q)

n <- 800
m <- 800

vl <- sample(@:2, m, replace = TRUE)
vr <- sample(@:2, n, replace = TRUE)
M <- matrix(1 : (n * m), ncol=n) + 0.0

v1 and v2 are the same

vl <= M %*% vr

v2 <- matrixvector@12(M, vr)
stopifnot(all(vl == v2))

v1 and v2 are the same
vl <= vl %x% M
v2 <- vector@l2matrix(vl, M)

vectorGeno 25

stopifnot(all(vl == v2))

matrixvector@12 is 3 to 15 times faster for larger matrices

N <- 1 + as.integer (100000000 / n*2)

print(system.time(for (i in 1:N) M %x% vr))

print(system.time(for (i in 1:N) matrixvector@12(M, vr))) # much faster

vector@12matrix is 3 to 10 times faster for larger matrices
print(system.time(for (i in 1:N) vl %*x% M))
print(system.time(for (i in 1:N) vector@12matrix(vl, M))) # much faster

vectorGeno Multiplication of a vector to a compressed SNP matrix

Description

vectorGeno multiplies a vector from the left onto a compressed SNP matrix.

genoVector does it from the right.

Usage

vectorGeno(V, SNPxIndiv, do.centering=FALSE, decode=TRUE)
genoVector (SNPxIndiv, V, do.centering=FALSE)

Arguments

SNPxIndiv a compressed SNP (genotype) vector or matrix obtained from genomicmatrix.
Uncoded SNP matrix is also possible.

do.centering not programmed yet.

decode Logical. This option only applies when RFoptions () $genetics$snpcoding
equals Shuffle256, Shuffle, Packed256, Packed, Multiply, or TwoBit. If
TRUE the matrix is decoded and standard matrix multiplication performed after-
wards. This is currently faster than to operate on the coded version (decode=FALSE),
but takes (considerably) more memory.

v numerical vector

Details

Let G be a (SNPx Indiv) matrix. vectorGeno and genoVector return VG and GV, respectively.

26 Windower

Value

vector of length nrow(SNPxIndiv) and ncol (SNPxIndiv) for vectorGeno and genoVector, re-
spectively.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, http://ms.math.uni-mannheim.de

Examples

require(RandomFieldsUtils)
set.seed(0)

indiv <- 1 + sample(500, 1)

snps <- indiv * 2*sample(7, 1)

snps <- indiv * 100

M <- matrix(ncol=indiv, sample(@:2, indiv * snps, replace=TRUE))
print(system.time(CM <- genomicmatrix(M)))

V %*% G

V1 <- runif(snps)

print(system.time(VM1 <- vectorGeno(V1l, CM))) # 1.2x slower than '%*x%'
print(system.time(VM <- as.vector (V1 %*% M)))
stopifnot(all.equal(as.double(VM), as.double(VM1)))

G %*% V

Vr <- runif(indiv)

print(system.time(MV1 <- genoVector(CM, Vr))) ## 3x faster than '%*x%'
print(system.time(MV <- as.vector(M %x% Vr)))
stopifnot(all.equal(as.double(MV), as.double(MV1)))

Windower Windower

Description

averages over running windows

Usage

windower (data, length=20000, step=length/2, start=0, n.min=0, na.rm=TRUE,
what=c("mean”, "var", "sd", "min”, "max", "median",
llsumll))

n

http://ms.math.uni-mannheim.de

Windower

Arguments

data

length
step
start

n.min

na.rm
what

Value

27

data frame from a ‘.bed’ file. The first column indicates the chromosome. The
second and the third row give starting and end point [in base pairs]. The 4th
column gives the values. All the other columns will be ignored

length in base pairs of the window
positive integer. shift of the window by step base pairs
the base pair position where the very first window starts.

the required minimal number of SNPs in the window. If there are less SNPs
inside, this window is not reported.

logical. if TRUE then na.rm are just ignored.
string. Name of the function that should be *windowed’; "mean” is standard.

It returns a matrix with 4 columns: the first and the second column contain the starting and end
point of the window in ‘.bed’ coding. The third column gives the mean (or variance etc). The 4th
column gives the number of values the mean is based on.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>

Examples

loci <- 10000

pos <- sort(sample(10%4:10%6, loci))

pos2 <- pos + 1

freq <- runif(loci)*5
data <- data.frame(Vi=rep(1, loci), V2=pos, V3=pos2, V4=freq)

win.mean <- windower(data, n.min=25)

head(win.mean)

win.var <- windower(data, n.min=25, what="var")

head(win.var)

win.sd <- windower(data, n.min=25, what="sd")

head(win.sd)

win.min <- windower(data, n.min=0, what="min")

head(win.min)

win.max <- windower(data, n.min=0, what="max")

head(win.max)

win.median <- windower(data, n.min=0, what="median")

head(win.median)

Index

+Topic algebra
miraculix-package, 2
relationshipMatrix, 15
vector@12matrix, 23
+Topic attribute
haplomatrix, 7
Random Haplotype Values, 13
*Topic classes
genomicmatrix-class, 6
haplomatrix-class, 8
xTopic htest
scanning, 20
Windower, 26
*Topic manip
miraculix-package, 2
*Topic misc
Manipulate, 10
MoPBS, 12
vectorGeno, 25
xTopic models
RFoptions, 18
+Topic print
genomicmatrix-class, 6
haplomatrix-class, 8
xTopic sysdata
genomicmatrix, 3
Instruction Set, 9
*Topic ts
scanning, 20
Windower, 26

allele_freq(relationshipMatrix), 15
as.genomicmatrix (genomicmatrix), 3
as.haplomatrix (haplomatrix), 7
as.matrix, 5,8, 14
as.matrix.genomicmatrix
(genomicmatrix-class), 6
as.matrix.haplomatrix
(haplomatrix-class), 8
AutoCoding (RFoptions), 18

28

C_matrixvector@12 (vector@12matrix), 23
C_vector@12matrix (vector@l12matrix), 23
codeOrigins (MoPBS), 12

compute (MoPBS), 12

computeSNPS (MoPBS), 12

copyGeno (Manipulate), 10
crossprod, 2, 16

crossprodx, 2

crossprodx (relationshipMatrix), 15

decodeOrigins (MoPBS), 12

fillGeno, 5

fillGeno (Manipulate), 10
FirstGenuineMethod (RFoptions), 18
FirstMoBPSmethod (RFoptions), 18

genomicmatrix, 2,3, 7-9, 14, 15
genomicmatrix-class, 6
genoVector, 11

genoVector (vectorGeno), 25

Hamming2 (RFoptions), 18

Hamming3 (RFoptions), 18
haplomatrix, 2, 3, 5,7
haplomatrix-class, 8
has.instruction.set (Instruction Set), 9

Instruction Set, 9

LastGenuineMethod (RFoptions), 18
LastMoBPSmethod (RFoptions), 18

Manipulate, 10

matrixvectoroi12, 2

matrixvector@12 (vector@12matrix), 23
miraculix (miraculix-package), 2
miraculix-package, 2

MoBPS (MoPBS), 12

MoPBS, 12

Multiply (RFoptions), 18

INDEX

Multiply256 (RFoptions), 18

NoSNPcoding (RFoptions), 18
NoSNPcodingAVX (RFoptions), 18
NoSNPcodingR (RFoptions), 18

Packed (RFoptions), 18

Packed256 (RFoptions), 18

plot.scan.statistics (scanning), 20

plot.scanning (scanning), 20

print, 6,8

print.genomicmatrix
(genomicmatrix-class), 6

print.haplomatrix (haplomatrix-class), 8

print.scan.statistics (scanning), 20

print.scanning (scanning), 20

Random Haplotype Values, 13
relationshipMatrix, 2, 12, 15, 19, 24
RFoptions, 4-6, 15, 18, 18, 20, 24, 25
rhaplo (Random Haplotype Values), 13

scan (scanning), 20

scanning, 20

Shuffle (RFoptions), 18

Shuffle256 (RFoptions), 18

SNPCODING_NAMES (RFoptions), 18

SNPeffect (relationshipMatrix), 15

solveRelMat, 12, 13

solveRelMat (relationshipMatrix), 15

str, 6,8

str.genomicmatrix
(genomicmatrix-class), 6

str.haplomatrix (haplomatrix-class), 8

summary.scan.statistics (scanning), 20

summary.scanning (scanning), 20

ThreeBit (RFoptions), 18
TwoBit (RFoptions), 18

vector@12matrix, 23
vectorGeno, 2, 11, 24, 25
vwm (relationshipMatrix), 15

Windower, 26
windower, 2/
windower (Windower), 26

zeroNthGeno (Manipulate), 10

	miraculix-package
	genomicmatrix
	genomicmatrix-class
	haplomatrix
	haplomatrix-class
	Instruction Set
	Manipulate
	MoPBS
	Random Haplotype Values
	relationshipMatrix
	RFoptions
	scanning
	vector012matrix
	vectorGeno
	Windower
	Index

