
microsamplingDesign

Finding optimal microsampling designs for non-compartmental pharmacokinetic analysis

Adriaan Blommaert; Open Analytics

2020-04-05

Contents

1 Introduction 2

2 Model details 2

2.1 Parametrization . 3

2.2 Log-normal parameters . 3

3 microsamplingDesign shiny application 4

3.1 Construct a pharmacokinetic model . 4

3.2 Generate possible time points . 5

3.3 Rank time points . 5

3.4 Generate possible schemes . 7

3.5 Rank schemes . 7

4 Finding optimal designs using code 9

4.1 Settings . 9

4.2 Construct a pharmacokinetic model . 10

4.3 Generate time points . 10

4.4 Rank time points . 11

4.5 Generate possible schemes . 12

4.6 Rank schemes . 13

5 Advanced options 14

5.1 Parallelization . 14

5.2 Working with ranges . 15

6 Memo of main functions 15

6.1 Data generation . 15

6.2 Generate and rank time points . 15

6.3 Generate and rank schemes . 15

References 15

1

knitr::opts_chunk$set(fig.width=12)

1 Introduction

Microsampling, a novel blood sampling technique allows multiple blood samples to be taken per animal,
reducing the number of animals required for pharmacokinetic-pharmacodynamic studies (Chapman et al.
(2014)). Using sparce designs can in addition, avoid unnecessary sampling of these animals, provided an
appropriate choice of sample times per animals is made. The microsamplingDesign package implements a
general simulation methodology to find optimal sparse microsampling schemes aimed at non-compartmental
pharmacokinetic analysis (algorithm III in Barnett et al. (2017)). This methodology consist of (1) specifying
a pharmacokinetic model including variability among animals; (2) generating possible sampling times; (3)
evaluating performance of each time point choice on simulated data; (4) generating possible schemes given a
time point choice and additional constraints and finally (5) evaluating scheme perfomance on simulated data.
The default settings differ from (Barnett et al. (2017))) in the default pharmacokinetic model used and the
parameterization of variability among animals (see next section). A shiny web application is included, which
guides users from model parametrization to optimal microsampling scheme.

2 Model details

A two compartmental oral dosing pharamcokinetic model (Gabrielsson and Weiner (2001)) is assumed:

dDg

dt
= −ka.Dg

Vc

dC

dt
= F.ka.Dg − Cl.C − Cld.C + Cld.Ct

Vt

dCt

dt
= Cld.C − Cld.Ct

A dose of a substance (Dg) is administered to the gut, than graduadely absorbed into a central compartment
leading to a increased concentration in the plasma (C). Where it can either be excreted or exchanged with
a second peripheral compartment, the peripheral tissues, where the compound has a distinct concentration
(Ct) in time, depending on the rate of exchange with the central compartment. We do not assume any
excretion from the peripheral compartment.

Substance absorption and clearance are by default assumed to be capacity dependent (Michaelis-Menten
kinetics):

ka =
Va,max

κa,m + Dg

Cl =
Ve,max

κe,m + C

We also leave the option open for one or both of these parameters to be constant.

For details see (Gabrielsson and Weiner (2001)).

2

2.1 Parametrization

• ka is the absorption rate per unit of dose.
• Vc is the volume of the central compartment (plasma)
• Vt is the volume of the peripheral compartment (tissue)
• F bioavailability, the fraction of the dose that reaches the systemic circulation intact (dimensionless)
• Cl is the elimination rate from the central compartment (assumed the only spot where elimination

occurs); in volume per time, related to the elimination rate in dose: (ke = Cl
Vc

)
• Cld is the distribution parameter between central and peripheral compartment; expressed in volume

per time unit. It related to rates: Cld = kct

Vc

= ktc

Vt

; with kct the rate from central to tissue (dose per
time unit) , and ktc the rate from tissue to central compartment.

• Va,max is the maximum absorption rate (absolute rate is rate per dose x dose)
• κa,m is the Michaelis-Menten constant for absorption
• Ve,max is the maximum clearance rate (absolute rate is rate per concentration x concentration)
• κe,m is the Michaelis-Menten constant for clearance.

2.2 Log-normal parameters

Individual animals are assumed to have the same underlying model, with different parameters simulated from
an underlying log-normal distribution parametrized in terms of the mean and the coefficient of variation.

we assume a random variable X to be log-normally distributed with parameters µ and σ:

X = exp
(

µ + σZ
)

with Z a standard normal variable.

Now, we want to extract µ and σ from and coefficient of variation (CV = sd(X)/E(X)) of the original scale.

we can use the relation for the mean:

E(X) = exp
(

µ +
σ2

2

)

and the relation for the coefficient of variation:

CV (X) =
√

exp σ2 − 1

Therefore:
σ =

√

ln(CV 2 + 1)

and

µ = ln
(

E(X)
)

−
σ2

2

For the multivariate log-normal distribution, we use a the same approach per variable and can simulate a
random vector:

X = exp
(

µ + ZσT
)

with Z ∼ N (0, Σ) and Σ a specified correlation matrix. More information see (Halliwell (2015))

3

Figure 1: Construct a PK model

3 microsamplingDesign shiny application

Before diving into the R code of the microsamplingDesign package, we give a more intuitive introduction to
the methodology using the included shiny application. In a local R session we can start the application:

library(microsamplingDesign)

runMicrosamplingDesignApp(installDependencies = TRUE)

The first time you want to run the application, use installDependencies = TRUE to automatically install
the additional R-package required for this shiny application in addition to the microsamplingDesign package
dependencies.

3.1 Construct a pharmacokinetic model

Start the application by constructing a pharacokinetic model.

Example parameters are shown on start up. To modify these parameters click on Modify parameters and
a spreadsheet is displayed allowing modifying parameter values and their coefficient of variation (see Figure
1).

Next include dosing information by filling out one or several lines, click on Generate example curves to
check simulated time-concentration curves (see Figure 2).

One can adapt the scale of the graphs by clicking on Graphical settings.

Note that the pharmacokinetic model in the application does not contain any measurement error.

4

Figure 2: Check model by generating example curves

3.2 Generate possible time points

Time point options are generated from a time constraints table specifying the number of time points per
time zone and minimum sampling interval in each row. Note that the endTime is not included in the zone
itself but is the startTime of the next zone.

Finally click on the button Generate time points, to recieve all possible combinations in table form (see
Figure 3).

3.3 Rank time points

Time points options are ranked by measuring the difference between approximating the average time-
concentration curve based on a limited number of time points on sample data and the actual average curve
at the maximal number of time points you want to consider. This is a measure of bias caused by choosing a
certain time point option rather then sampling at the maximum number of time points.

In the application ranking time points takes 2 steps:

3.3.1 Generate sample data

Specify the approximate number of animals you would like to use in you scheme and the number of simulated
datasets to generate. Then press Generate data to rank time points. A selection of simulated data will
be displayed (see Figure 4).

5

Figure 3: Generate time points

Figure 4: Generate data to rank time points

6

Figure 5: Rank time points and select one

3.3.2 Rank time points

After checking the generatated data, click on Rank time points to estimate the bias of each time point
option. Calculations might take a few minutes, depending on the the number of simulation samples and
time point options. When calculations are finished, time point options are tabulated from small to large
deviation from the best accuracy. You can select a time point option by clicking on a row in the time point
ranking table (see Figure 5).

3.4 Generate possible schemes

Given the time points, we will construct schemes specifying which subjects are sampled at which time points.

To generate these schemes, fill out the scheme’s dimensions and the maximum number of repetitions of
individual schemes. You can already assess the possible number of schemes by clicking on Check number

of schemes before constraints wich is much faster then generating the schemes first. Reconsider scheme
dimensions when the number of schemes is too large. The possible number of schemes can also be cut
down by imposing scheme constraints. Finally click on Generate schemes to receive all schemes meeting
constraints. This might take a few minutes (see Figure 6).

3.5 Rank schemes

Schemes are ranked by their precision of estimating the area under the curve (AUC) and maximum concen-
tration (Cmax) on simulated data.

Again we work in 2 steps:

7

Figure 6: Generate schemes

Figure 7: Generate data to rank schemes

8

Figure 8: Rank schemes

3.5.1 Generate sample data

Generate data by specifying the number of simulation samples and click Generate data to rank schemes

(see Figure 7).

3.5.2 Rank schemes

After data generation, specify the objective function by attaching a relative importance to different non-
compartmental statistics and click on Rank schemes (see Figure 8). This might take some time.

Finally select a scheme by clicking on the Scheme ranking table.

When a final scheme is chosen, first click on Generate report and next on Download report to recieve
a word document summarizing the main results.

4 Finding optimal designs using code

4.1 Settings

settings <- list()

settings$nSamples <- 100 # increase for real life example

set.seed(124)

9

4.2 Construct a pharmacokinetic model

library(microsamplingDesign)

pkModel <- getExamplePkModel()

some useful functions:

modelParameters <- getParameters(pkModel)

knitr::kable(modelParameters[, c(1:2)])

parameter value
F 1.00
volumePlasma 10.00
Cld 15.00
volumeTissue 15.00
VmaxAbsorption 5.00
kappaMMAbsorption 2.50
KaConstant NA
VmaxClearance 30.00
kappaMMClearance 0.25
ClConstant NA

To generate your own pharmacokinitic model see:

?construct2CompModel

4.3 Generate time points

Possible time points are generated from a full set of time points:

fullTimePointsEx <- seq(0 , 16 , 0.5)

print(fullTimePointsEx)

#> [1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

#> [15] 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5

#> [29] 14.0 14.5 15.0 15.5 16.0

With the choice of options constraints by timeZones:

#timeZonesEx <- getExampleTimeZones()

timeZonesEx <- data.frame(startTime = c(0 , 2 , 3) ,

endTime = c(2 , 3 , 16) ,

nPointsPerZone = c(2 , 1 , 2))

knitr::kable(timeZonesEx)

startTime endTime nPointsPerZone
0 2 2
2 3 1
3 16 2

timeZones concept is defined such that : time zero is never included, last timePoint is always included.

Correct names should be used!

10

Now we can generate all time point options from a vector of possible time points under constraints defined
in timeZones:

setOfTimePoints <- getAllTimeOptions(timeZones = timeZonesEx ,

fullTimePoints = fullTimePointsEx)

?SetOfTimePoints # class definition

#str(setOfTimePoints) # to see all slots in the example

slotNames(setOfTimePoints)

#> [1] ".Data" "fullTimePoints" "nFullTimePoints"

#> [4] "nTimePointsSelect" "nTimePointOptions" "ranking"

knitr::kable(head(getData(setOfTimePoints)))

TimePoint1 TimePoint2 TimePoint3 TimePoint4 TimePoint5 TimePoint6
timePointOption1 0.5 1.0 2.0 3 3.5 16
timePointOption2 0.5 1.5 2.0 3 3.5 16
timePointOption3 1.0 1.5 2.0 3 3.5 16
timePointOption4 0.5 1.0 2.5 3 3.5 16
timePointOption5 0.5 1.5 2.5 3 3.5 16
timePointOption6 1.0 1.5 2.5 3 3.5 16

knitr::kable(tail(getData(setOfTimePoints)))

TimePoint1 TimePoint2 TimePoint3 TimePoint4 TimePoint5 TimePoint6
timePointOption1945 0.5 1.0 2.0 15 15.5 16
timePointOption1946 0.5 1.5 2.0 15 15.5 16
timePointOption1947 1.0 1.5 2.0 15 15.5 16
timePointOption1948 0.5 1.0 2.5 15 15.5 16
timePointOption1949 0.5 1.5 2.5 15 15.5 16
timePointOption1950 1.0 1.5 2.5 15 15.5 16

note 0 never chosen , time 16 always included

4.4 Rank time points

To rank the timePoint options inside a SetOfTimePoints object , we first need to simulate PkData.

model <- getExamplePkModel()

fullTimePoints <- getTimePoints(setOfTimePoints)

pkDataForTimePoints <- getPkData(pkModel = model , timePoints = fullTimePoints ,

nSubjectsPerScheme = 5 , nSamples = settings$nSamples)

plotObject(pkDataForTimePoints , nCurves = 5)

11

0.00

0.01

0.02

0.03

0.04

0 5 10 15

 Time in hours

 C
o
n
c
e
n
tr

a
ti
o
n
 i
n
 p

la
s
m

a

curve

sample curve

This is just small number of samples, in reality one would use a larger number such as 1000.

We can than use the rank function to find the optimal time points:

rankedTimePoints <- rankObject(setOfTimePoints , pkData = pkDataForTimePoints ,

nGrid = 150 , nSamplesAvCurve = settings$nSamples)

rankingTimePoints <- getRanking(rankedTimePoints)

knitr::kable(head(rankingTimePoints))

name criterion rank
timePointOption1306 0.0055133 1
timePointOption1216 0.0055254 2
timePointOption1300 0.0055293 3
timePointOption1307 0.0055303 4
timePointOption1217 0.0055424 5
timePointOption1301 0.0055463 6

#knitr::kable(tail(rankingTimePoints))

indTimeChoice <- getTopNRanking(rankingTimePoints , 1)

bestTimeChoice <- setOfTimePoints[indTimeChoice ,]

bestTimeChoice

#> TimePoint1 TimePoint2 TimePoint3 TimePoint4 TimePoint5 TimePoint6

#> 0.5 1.0 2.5 8.0 14.5 16.0

4.5 Generate possible schemes

timePointsChoice <- bestTimeChoice

To generate schemes we can define additional constraints:

constraintsExample <- getConstraintsExample()[c(2 , 4) ,]

knitr::kable(constraintsExample)

check level value
2 maxConsecSamples subject 3
4 minObsPerTimePoint scheme 2

Constraints are defined on 2 levels: subject or scheme.

12

setOfSchemes <- getSetOfSchemes(minNSubjects = 4 , maxNSubjects = 5 ,

minObsPerSubject = 4 , maxObsPerSubject = 5 ,

timePoints = timePointsChoice , constraints = constraintsExample ,

maxRepetitionIndSchemes = 1 , maxNumberOfSchemesBeforeChecks = 10^8)

slotNames(setOfSchemes)

#> [1] ".Data" "timePoints" "nSchemes"

#> [4] "nSubjects" "designConstraints" "ranking"

The number of combinations can get get very large especially with maxRepetitionIndSchemes > 1.

4.6 Rank schemes

To rank schemes, we need matching Pkdata (number of animals and timePoints):

timePointsEx <- getTimePoints(setOfSchemes)

pkData <- getPkData(pkModel, timePoints = timePointsEx ,

nSubjectsPerScheme = 5 , nSamples = settings$nSamples)

plotObject(pkData , nCurves = 7 , addZeroIsZero = TRUE)

0.00

0.02

0.04

0.06

0.08

0 5 10 15

 Time in hours

 C
o
n
c
e
n
tr

a
ti
o
n
 i
n
 p

la
s
m

a

curve

sample curve

To rank schemes, we have to define an objective function, based on the a scheme based statistic (AUC , . . .
) a weight representing its relative importance.

exampleObjective <- data.frame(

criterion = c("auc" , "cMax" , "tMax") ,

weight = c(9 , 1, 1))

knitr::kable(exampleObjective)

criterion weight
auc 9
cMax 1
tMax 1

But be carefull cMax and tMax might be very variable when multiple doses are administered.

setOfSchemesRanked <- rankObject(setOfSchemes , pkData = pkData ,

objective = exampleObjective , varianceMeasure = "var" , scaleWith = "max")

13

#> start Ranking Schemes on cluster with 1 cores

schemeRanking <- getRanking(setOfSchemesRanked)

knitr::kable(head(schemeRanking))

name var_auc var_cMax var_tMax criterion rank
scheme2174 0.0038693 8.35e-05 5.923712 0.3944018 1
scheme1117 0.0038757 7.02e-05 7.022727 0.3984378 2
scheme1083 0.0039049 7.02e-05 7.022727 0.4006205 3
scheme1520 0.0040224 7.02e-05 7.022727 0.4093937 4
scheme1554 0.0040353 7.02e-05 7.022727 0.4103594 5
scheme1759 0.0041947 7.51e-05 6.038283 0.4151664 6

knitr::kable(tail(schemeRanking))

name var_auc var_cMax var_tMax criterion rank
2272 scheme92 0.0109541 0.0001181 6.096364 0.9445893 2272
2273 scheme295 0.0105663 0.0001506 7.516439 0.9478580 2273
2274 scheme367 0.0104885 0.0001597 7.754015 0.9494683 2274
2275 scheme218 0.0107443 0.0001266 8.381313 0.9563801 2275
2276 scheme219 0.0109218 0.0001298 7.503510 0.9626993 2276
2277 scheme365 0.0108802 0.0001506 7.516439 0.9713021 2277

indTopSchemes <- getTopNRanking(schemeRanking , nSelect = 1)

indBottomSchemes <- getTopNRanking(schemeRanking , nSelect = 1 , top = FALSE)

bestScheme <- setOfSchemesRanked[, , indTopSchemes]

knitr::kable(bestScheme)

timePoint1 timePoint2 timePoint3 timePoint4 timePoint5 timePoint6
subject1 TRUE FALSE TRUE TRUE TRUE FALSE
subject2 TRUE FALSE TRUE TRUE FALSE TRUE
subject3 TRUE FALSE FALSE TRUE TRUE TRUE
subject4 FALSE TRUE FALSE TRUE TRUE TRUE
subject5 TRUE TRUE TRUE FALSE TRUE TRUE

worstScheme <- setOfSchemesRanked[, , indBottomSchemes]

knitr::kable(worstScheme)

timePoint1 timePoint2 timePoint3 timePoint4 timePoint5 timePoint6
subject1 TRUE TRUE FALSE TRUE FALSE TRUE
subject2 TRUE TRUE FALSE FALSE TRUE TRUE
subject3 TRUE FALSE TRUE FALSE TRUE TRUE
subject4 FALSE TRUE TRUE TRUE FALSE TRUE
subject5 FALSE FALSE FALSE FALSE FALSE FALSE

5 Advanced options

5.1 Parallelization

Parallelization by forking is supported on linux machines and can be used to seed up simulating pkData,
generating or ranking timepoints or schemes. You need to specify the number of cores inside these functions
(nCores):

14

setOfSchemesRanked <- rankObject(setOfSchemes , pkData = pkData ,

objective = exampleObjective , varianceMeasure = "var" , scaleWith = "max" ,

nCores = 2)

5.2 Working with ranges

Using ranges of parameters is also supported, see

?rankObjectWithRange

for details.

6 Memo of main functions

6.1 Data generation

• getExamplePkModel: Get an example of a PkModel
• construct2CompModel Construct your own 2 compartmental model
• getPkData to generate data from your a PkModel
• plotObject visualize model or data

6.2 Generate and rank time points

• getAllTimeOptions

• getPkData

• rankObject

6.3 Generate and rank schemes

• getSetOfSchemes

• getPkData

• rankObject

References

Barnett, Helen, Helena Geys, Tom Jacobs, and Thomas Jaki. 2017. “Optimal Designs for Non-
Compartmental Analysis of Pharmacokinetic Studies.”

Chapman, Kathryn, Simon Chivers, Dan Gliddon, David Mitchell, Sally Robinson, Tim Sangster, Susan
Sparrow, Neil Spooner, and Amanda Wilson. 2014. “Overcoming the Barriers to the Uptake of Nonclinical
Microsampling in Regulatory Safety Studies.” Drug Discovery Today 19 (5). Elsevier: 528–32.

Gabrielsson, Johan, and Daniel Weiner. 2001. Pharmacokinetic and Pharmacodynamic Data Analysis:

Concepts and Applications. Vol. 1. CRC Press.

Halliwell, Leigh J. 2015. “The Lognormal Random Multivariate.” In Casualty Actuarial Society E-Forum,

Spring 2015.

15

	Introduction
	Model details
	Parametrization
	Log-normal parameters

	microsamplingDesign shiny application
	Construct a pharmacokinetic model
	Generate possible time points
	Rank time points
	Generate possible schemes
	Rank schemes

	Finding optimal designs using code
	Settings
	Construct a pharmacokinetic model
	Generate time points
	Rank time points
	Generate possible schemes
	Rank schemes

	Advanced options
	Parallelization
	Working with ranges

	Memo of main functions
	Data generation
	Generate and rank time points
	Generate and rank schemes

	References

