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Summary

1. microPop is an R-package for simulating the deterministic dynamics and
interactions of microbial populations by solving a system of ordinary dif-
ferential equations.

2. microPop contains data frames for a number of microbial functional groups
(defined by their metabolic pathways) and these may be added to, or
modified, by the user.

3. Default functions for rates of microbial growth, resource uptake, metabo-
lite production and the entry and exit rates into and out of the system of
each state variable, are provided but can be modified or replaced by the
user.

4. microPop can be used to simulate growth in a single compartment (e.g.
bio-reactor) or ‘compartments’ in series (e.g. human colon) or in a simple
1-d application (e.g. phytoplankton in a water column).

5. A microbial functional group can contain multiple strains in order to study
adaptation and diversity. These strains have the same metabolic pathways
but their parameter values may differ.

6. Simple interactions between viruses (bacteriophages) and bacteria can also
be included in microPop.

7. In addition to this vignette there is (or will soon be!) a paper in Methods
in Ecology and Evolution (in press). Please cite the MEE paper in any
publications using microPop.

1 Introduction

microPop is an R package which uses ordinary differential equations (ODEs) to
predict the dynamics and interactions of microbial communities. For example,
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the general equations for rates of change of a microbial functional group (MFG),
with quantity X, growing on a resource, with quantity R, at time, t, are given
by,

dX(t)

dt
= V in

X (t)X(t) +G(t)X(t)− V out
X (t)X(t) (1)

dR(t)

dt
= V in

R (t)R(t)−
G(t)X(t)

Y
− V out

R (t)R(t) (2)

where V in
i and V out

i are the inflow and outflow rates of the system (units of
inverse time) for microbes (i = X) and resources (i = R). G(t) is the specific
growth rate of microbes on the resource (also units of inverse time) and can be
modelled in a variety of ways (see Appendix A). The second term in Eq. 2 is
the uptake rate of the resource due to microbial growth where Y is the yield i.e.
the quantity of microbial growth per unit of resource taken up. When there are
multiple resources and several microbial groups with multiple strains then Eqs.
1 and 2 expand into a large system with multiple metabolic pathways. This is
where microPop is a useful tool. Rather than coding these equations, the user
simply gives a description of the system (using data frames, ‘resourceSysInfo’
and ‘microbeSysInfo’) and a data frame for each MFG and these equations
are constructed and solved by the function microPopModel using the ODE
solvers provided by the deSolve package (Soetaert et al., 2010). The output
from this function is a list containing two elements - one is the solution to the
ODEs i.e. a matrix of the values of the state variables over time (this is called
‘solution’) and the other is a list containing all of the information used to
produce the solution (called ‘parms’).

Details of a number of MFGs found in the human large intestine (e.g. Bac-
teroides, Acetogens, Methanogens, Butyrate Producers, Lactate Producers and
so on) as described by Kettle et al. (2015); and those found in the rumen (de-
scribed by Munoz-Tamayo et al. (2016)) are included as data frames in the
package and if the user simply wishes to use these MFGs then microPop can be
used ‘off the shelf’. However, if not, the user can add in any number of other
MFGs (by providing a data frame in the correct format or by using a csv file
and the R function data). Alternatively the user can simply modify the entries
in the data frames of the MFGs provided to try out different parameter values
etc (information on the format of these data frames is found using help(MFG)
once the microPop library has been loaded in R).

Since microbial growth, resource uptake and production may be modelled
in a number of ways, the choices behind microPop’s default growth and uptake
functions are explained fully in the Appendix. In brief the default functions
assume that hydrolysis of polymers is bound up with microbial growth. How-
ever, it is also possible to model hydrolysis separately within microPop with
some adjustments (e.g. see Section 3.2 on the rumen). Growth on multiple sub-
strates may also be substitutable or essential (this can be defined in microPop
within the ‘Rtype’ category in the MFG data frames) and the equations used in
these two cases are described in the Appendix. Growth on essential substrates
can be completely determined by stoichiometric ratios such as those used by
Munoz-Tamayo et al. (2016) in which microbes are included in the stoichiome-
tries (again see Section 3.2 rumen example). If microbial biomass is not included
in the stoichiometries, an estimation for the amount of each metabolic product
can be made by subtracting the mass of the new microbial growth from the total
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substrate uptake and then computing metabolite production using the stoichio-
metric ratios (the method used by Kettle et al. (2015)). Errors introduced by
using this method are briefly discussed in Appendix C.

If water is required for microbial growth or is a by-product of growth then
it should be included in the group’s data frame (with ‘Rtype’ of ‘Sw’) . It
will not be used in growth calculations as it is assumed that water will not be
limiting. However, when computing the mass available for products (if microbial
biomass is not included in the stoichiometry) then the uptake of water or the
production of water is needed to balance mass correctly (this is done by using
the stoichiometric ratios).

Given the ability to redefine the functions called by the ODE solver, microPop
can be applied to a large number of different microbial ecosystems. Although
very complex ecosystems with multiple microbial groups and strains may be
slow to run in R, we hope that the transparency and flexibility of the code
and its accessibility will enable researchers to simulate fairly complex systems
without taking on a large computing project.

2 Running microPop

After installing the microPop package, the function microPopModel is used
to run the simulation. The user need only specify 4 of the input arguments (the
others have defaults) these 4 are:

• microbeNames - a vector of the names of the microbial groups in your
system, e.g. c(‘Bacteroides’,‘Methanogens’).

• times - a vector defining the time sequence at which output is required,
e.g. seq(0,10,0.1).

• resourceSysInfo - this is a data frame or the name of a csv file describing
the inflow, outflow, start values and molar masses of the substrates and
products associated with the microbial groups specified in microbeNames.
Use help(resourceSysInfo) for details.

• microbeSysInfo - this is a data frame or the name of a csv file describing
the inflow, outflow and start values of the microbial groups specified in
microbeNames. Use help(microbeSysInfo) for details.

Details of all the input arguments can be found via help(microPopModel).
One of the most important input arguments is ‘rateFuncs’. MicroPop has
been designed to let the user modify/replace every function pertinent to mod-
elling growth, uptake, production, pH dependency etc required to solve the
ODEs. These functions are gathered together in a list and this list is entered
via ‘rateFuncs’. The default versions of these functions (Table 2) are gathered
together in a list called ‘rateFuncsDefault’ and the default input argument is
‘rateFuncs=rateFuncsDefault’. If the user wishes to define a new version of
a function in this list, e.g. function X (where is X is any of the functions named
in the top section of Table 2) then this can be done by defining a new list and
a changing function X within that list e.g.

‘myRateFuncs=rateFuncsDefault’
‘myRateFuncs$X=function()’
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Table 1: Microbial functional groups (MFGs) included in microPop. The first
ten groups are based on those described by Kettle et al. (2015), the last three
(below dividing line) are based on those described by Munoz-Tamayo et al.
(2016). To see these data frames simply type in the group name at the R
prompt. Users should be aware that the parameter values given in these data
frames will almost certainly change with increasing knowledge of gut microbiota
and in some cases are simply a ‘best guess’.

MFG Description Examples
Bacteroides Acetate-

propionate-
succinate group

Bacteroides spp.

NoButyStarchDeg Non-butyrate-
forming starch
degraders

Ruminococcaceae related to Ru-
minococcus bromii. Might also include
certain Lachnospiraceae.

NoButyFibreDeg Non-butyrate-
forming fibre
degraders

Ruminococcaceae related to Ru-
minococcus albus, Ruminococcus
flavefaciens. Might also include certain
Lachnospiraceae.

LactateProducers Lactate producers Actinobacteria, especially Bifidobac-
terium spp, Collinsella aerofaciens

ButyrateProducers1 Butyrate Producers Lachnospiraceae related to Eubac-
terium rectale, Roseburia spp.

ButyrateProducers2 Butyrate Producers Certain Ruminococcaceae, in particular
Faecalibacterium prausnitzii

PropionateProducers Propionate produc-
ers

Veillonellaceae e.g. Veillonella spp.,
Megasphaera elsdenii

ButyrateProducers3 Butyrate Producers Lachnospiraceae related to Eubac-
terium hallii, Anaerostipes spp.

Acetogens Acetate Producers Certain Lachnospiraceae, e.g. Blautia
hydrogenotrophica

Methanogens Methanogenic
archaea

Methanobrevibacter smithii

Xsu Sugar utilizers
Xaa Amino acid utilizers
Xh2 Hydrogen utilizers Methanobrevibacter smithii
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Table 2: Top section of table: Functions contained in the list rateFuncsDe-
fault (further details on these functions are included in the Appendix). Bottom
section of table: other functions in microPop. To get help on the inputs and
outputs of these functions use help(functionName) in R using the function
names below.

Function name Description
entryRateFunc Rate of entry of each state variable to system at

time t
removalRateFunc Rate of exit of each state variable from system at

time t
pHFunc pH value at time t
pHLimFunc pH limit on growth (varies between 0 and 1 for a

given pH value)
extraGrowthLimFunc Another limit on growth (default value is 1 i.e. no

limit). This is included to allow the user to add in
any kind of growth limitation as its output is used
to scale the maxGrowthRate value)

growthLimFunc This scales the maximum growth value (value be-
tween 0 and 1)

combineGrowthLimFunc Combining growth on multiple resources
uptakeFunc Uptake of resource due to microbial growth
productionFunc Production of metabolites resulting from microbial

growth
combinePathsFunc Combining the results of growth on multiple

metabolic pathways
createDF Creates a data frame from a .csv file
derivsDefault Describes the ODEs; called by ode
getGroupName Returns the name of the group from the strain name
makeInflowFromSoln Returns the exit rate of each state variable (ma-

trix[time,variable])
microPopModel Simulates growth of microbial populations (main

function)
pHcentreOfMass Finds the mean pH weighted by the pH limitation
plotTraitChange Plots the average group trait over time (when there

are multiple strains per group)
runMicroPopExample Used to run the scripts for the examples described

in Section 3
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and then setting ‘rateFuncs=myRateFuncs’ in microPopModel. More details
on these rate functions are included in the Appendix. Furthermore, if the user
wishes to make fundamental changes to the structure of microPop, the default
function describing the ODEs, derivsDefault, may also be replaced via the
input argument ‘odeFunc’ in microPopModel.

MicroPop also contains a number of checking functions. These are controlled
by the ‘checkingOptions’ list input to microPopModel. These can be used
to check that mass is conserved, that stoichiometries balance, that the solution
does not become negative and so on - more information is given in the help for
microPopModel under ‘checkingOptions’.

3 Example Applications

To look at the code used in these applications, find the location of the R scripts
by typing system.file(DemoFiles/ExampleFileName.R”, package = mi-
croPop”) in R and then view the file in any text editor. The examples can be
run by typing, for example, runMicroPopExample(‘human1’) or by chang-
ing the directory in R (use setwd) to the folder containing the R scripts and
using source. Most of the plots shown in this paper are automatically gen-
erated by microPop and can be tweaked using the plotOptions input list in
microPopModel.

3.1 Modelling human gut microbiota

The model described by Kettle et al. (2015) uses 10 different microbial groups to
represent the microbial community in the human colon (Table 1). Here we use
three of these – Bacteroides, NoButyStarchDeg (starch degraders that do not
produce butyrate) and Acetogens – to demonstrate some features of microPop.
The names of the R scripts for each of these is in brackets in the section head-
ing. The information describing the inflows and outflows of each state variable
for these scenarios is contained in the data frames resourceSysInfoHuman and
microbeSysInfoHuman which are included with the package and are based on
the system described by Kettle et al. (2015) and Walker et al. (2005). To look
at these simply type resourceSysInfoHuman or microbeSysInfoHuman at the
R prompt. Since these contain information on all 10 groups used in the full
simulation by Kettle et al. (2015) the reader can use these to look at the be-
haviour of any/all of the groups by changing the names in the input argument
microbeNames in microPopModel.

3.1.1 Microbial growth in a constant environment [human1.R]

A simple example to show how microPopModel can be run using most of the
default settings. In this scenario there is no limit on growth due to pH and
Bacteroides dominate the system (Fig. 1)

3.1.2 Microbial growth with pH change [human2.R]

In this scenario, pH changes from 5.5 to 6.5 halfway through the simulation.
This is implemented by altering pHFunc and turning on the pH limitation on
growth (microPopModel input argument ‘pHLimit’). Due to their preferred
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pH ranges (determined by pHcorners in the data frames for each group) NoBu-
tyStarchDeg now dominate the first half of the simulation, however when the
pH rises to 6.5 Bacteroides regain dominance (Fig. 2).

3.1.3 Microbial growth in two compartments with downstream flow
[human3.R]

In this scenario we simulate the pH variation along the human colon by defining
the system as two compartments where the first one flows into the second. The
pH is now constant in time but varies between compartments with the first
one set at pH 5.5 and the second at 6.0. To simulate two compartments we
add a loop to call microPopModel twice. The first call simulates growth
in the first compartment over the whole of the simulation time. The results
from this are then used to provide the entry rates to the second compartment
in the second microPopModel call. The entry rates of each state variable
are computed using the function makeInputFromSoln to create a matrix
called inflow.mat which is used in the newly defined entryRateFunc. The
starting conditions are the same in each compartment but can be changed by
using different sysInfo files for each call to microPopModel. The results (Fig.
3) show that NoButyStarchDeg dominate in first compartment (top row) and
Bacteroides begin dominating the second compartment but this changes due to
large inflow of NoButyStarchDeg from the previous compartment.

3.1.4 Microbial growth with pH change and multiple strains per
group [human4.R]

In this scenario we include microbial diversity by assigning 5 strains to each mi-
crobial group (microPopModel input argument, ‘numStrains=5’). We assume
that the strains within a microbial group have the same metabolic pathways i.e.
those specified in the group data frame, but diversity is incoporated by ran-
domly varying some of the strain parameters (based on Kettle et al. (2015)).
The extent of this variation is controlled by setting ‘percentTraitRange’ and
‘maxPHshift’ in the ‘strainOptions’ input list. The parameters that can
be randomly varied between strains are halfSat, yield, maxGrowthRate and
pHtrait but a subset of these can be defined using the microPopModel in-
put argument ‘strainOptions$randomParams’ (the default is all four). Fur-
thermore, trait values may be traded-off against each other to avoid the cre-
ation of a ‘super bug’ using ‘strainOptions$applyTradeOffs=TRUE’ and set-
ting the chosen parameters in ‘strainOptions$tradeOffParams’ (only two pa-
rameters are allowed and pH trait is not one of them since the fitness of the
pH trait can change from ‘good’ to ‘bad’ as the environment changes). More-
over, the user may also specify the parameter values for individual strains using
‘strainOptions$paramsSpecified=TRUE’ and giving the name of the csv file or
the data frame object where these values are stored in ‘strainOptions$paramDataName’.
This file/data frame has the following column headings: strainName, param-
Name, paramVal, paramUnit, resource, path. Not all parameter values need to
be specified - those that are specified will simply overwrite the randomly gen-
erated values. Fig. 4a,b show the results for each strain (to plot the sum of the
strains in each group set ‘plotOptions$sumOverStrains = TRUE’).

When there are multiple strains per group it is possible to examine how a
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Figure 1: Human Colon Application (human1)

mean group trait adapts over time using a biomass-weighted average at each
time step:

x(t) =

∑n

i ximi(t)
∑n

i mi(t)
(3)

where x(t) is the average group trait at time t, xi is the trait value for strain
i and mi(t) is the mass of strain i at time t. For example when pH changes,
strains which prefer that pH will flourish whilst others will be washed out.
The centre of mass of this limit function can be computed using the function
pHcentreOfMass and we define this one parameter as the pH trait. We can
compute and plot the change in time of any of the stochastically-varying param-
eters/traits using the function plotTraitChange. Fig. 4c shows the variation
of the pH trait over time for each microbial group. If microPop is run mul-
tiple times with populations of strains with different random traits each time
(this is done by changing the value of ‘strainOptions$seed’ each time) and
run to steady state then a population of viable microbial communities can be
generated (e.g. Kettle et al. (2015)). Moreover, if only one strain per group
is specified it is also possible to randomly generate its parameters for each run
by setting microPopModel input argument ‘oneStrainRandomParams=TRUE’.
This might be useful, for example, for generating model output to represent
samples from a number of volunteers.

3.2 Methane production from rumen microbiota [rumen.R]

In this example we show how microbial biomass can be included within the
stoichiometries and how hydrolysis can be included. The model we use here
is based on that described by Munoz-Tamayo et al. (2016), however, we sim-
plify this for demonstration purposes by considering only constituents dissolved
in the rumen fluid (thereby removing gas transfer from the fluid fluid to the
rumen head space), removing carbon chemistry (we only consider dissolved in-
organic carbon) and removing the mechanistic calculation of pH from acid-base
reactions. Also, we use units of mass rather than moles. We follow the conven-
tion of Munoz-Tamayo et al. (2016) where dissolved components are denoted
Si, polymer components are denoted Zi and microbial groups are denoted Xk.
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Figure 2: Human Colon Application (human2) - pH change.
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Figure 3: Human Colon Application (human3) - two compartments (top row:
first compartment, bottom row: second compartment).
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Figure 4: Human Colon Application (human4) - five strains per group.

The system consists of polymers which are hydrolised to soluble sugars and
amino acids. The microbial groups are sugar-utilisers (Xsu), amino-acid utilisers
(Xaa) and hydrogen utilisers (Xh2); the data frames for these three groups are
provided as part of microPop (type ‘Xsu’, ‘Xaa’ or ‘Xh2’ at the R prompt to view
them). Also in this system dead microbial cells are recycled into the polymers.
Fig. 5 shows a schematic diagram of the system and notation of state variables
(figure caption).

The metabolic pathways for these three groups differ from the those of the 10
groups we used in the human colon model in that their stoichiometries contain
microbial biomass. Note that microbial products are referred to as ‘Biomass’
in the group file with ‘Rtype’ of ‘Pb’ for biomass product. Also note that it is
not necessary to add ‘Biomass’ to the resource SysInfo file as these information
is covered in the microbe sysInfo file. Furthermore for all three groups every
substrate is essential. A ‘key resource’ must be defined and the biomass yield
upon this (mass of biomass per mass of key resource consumed) is given for this
resource only. More detail on how this is modelled is given in the Appendix.

To include hydrolysis of polymers we first need to add polymers as state
variables. Since none of the microbial groups use polymers directly they are not
included in any of the group data frames which means they are not automatically
included as state variables by microPopModel. Thus we add Znsc, Zndf and
Zpro to the microPop data frame for Xsu, e.g. Xsu[[’Zndf’]]=c(‘X’, rep(NA,6)).
We then add in the parameters needed to model hydrolysis and recycling of
dead cells into polymers as these are not included in the input files.

The next step is adding the process of hydrolysis to the system. This involves
the break down of polymers and the production of Ssu and Saa, therefore,
the removalRateFunc now includes the reduction rate for polymers and the
entryRateFunc includes the equivalent increase for Ssu and Saa. Similarly the
death of microbial cells is included in removalRateFunc and the increase in
polymers from the dead cells is included in entryRateFunc.

Using the same settings as Munoz-Tamayo et al. (2016), we now investigate
how increasing the initial concentrations of the feed polymers, Znsc, Zndf and
Zpro, affects the concentration of methane in the rumen (Sch4). Thus we set
the initial polymer concentrations at 1 g/l and then increase each one in turn to
20 g/l (Fig. 6). Increasing Zndf and Zpro leads to increasing methane concen-
trations as expected, however, the second row in Fig. 6 shows that somewhat
counter-intuitively the amount of methane produced decreases as initial concen-
trations of Znsc increases over a threshold between 15-20 g/l. SIC and Sh2

(not
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Figure 5: The rumen system based on the model by Munoz-Tamayo et al.
(2016) consists of polymers (non-structural carbohydrates (Znsc), cell wall car-
bohydrates (Zndf ) and proteins (Zpro) which are hydrolised to the soluble com-
ponents: sugars (Ssu) and amino acids (Saa). The microbial groups are sugar-
utilisers (Xsu), amino-acid utilisers (Xaa) and hydrogen utilisers (Xh2). They
convert their respective substrates to short chain fatty acids, SCFA, (acetate,
Sac, butyrate Sbu and propionate Spr), hydrogen (Sh2), ammonia (Snh3), inor-
ganic carbon (SIC) and methane (Sch4). Dead microbial cells are recycled to
the polymer compartments (not shown).

shown) both increase with Znsc, therefore the cause of this appears to be the
decrease in Snh3 (third column in Fig. 6) which rapidly falls to zero for high
initial values of Znsc. This is because Znsc is hyrolysed at a much faster rate
(0.2 h−1) than Zndf (0.05 h−1) so increased Znsc leads to increased Ssu and
rapid growth of Xsu and hence rapid uptake of Snh3. The depletion of Snh3

inhibits the growth of Xh2 and thus the production of methane in this simple
model example.

3.3 Nutrient-light balance for phytoplankton growth in
the water column [phyto.R]

This example shows how microPop can be used in a 1D application to examine
the depth at which phytoplankton blooms occur given they rely on nutrients
welling up from below and sun light entering from above. By simulating the
competing growth of three different (theoretical) microbial groups we show how
the phytoplankton form a vertical assemblage based on their different levels of
requirement for light and nutrient. We begin by simulating growth of just one
phytoplankton group for 3 months over a depth of 20 m divided up into 1 m
layers (when running runMicroPopExample(‘phyto’) you will be prompted
to enter a case number - this is case 1). At the beginning the phytoplankton
are spread evenly through the depth of the water column (for example this
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Figure 6: Methane concentration in the rumen for initial concentrations between
1 and 20 g/l (legend in centre column) of the feed polymers Znsc, Zndf and Zpro

(while one polymer concentration is changed the other two are held at 1 g/l).
Note change in scale for Snh3 for Zpro.
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may occur after vertical mixing caused by high winds). Thereafter there is no
mixing and the phytoplankton are stationary in water but grow at different rates
according to the light and nutrient levels at their particular depth. To define
this system in microPop we consider nutrient to be the only resource since light
is not depleted through microbial use. The limiting effect of light on growth is
incorporated via the extraGrowthLimFunc as the output from this function
is used to scale the maximum growth rate in a similar way to pHLimFunc.
The light level is computed using

exp(−kLz) (4)

where kL is the light attenuation coefficient (we use kL=0.5 m−1) and z is
depth (distance below surface; m). Nutrient upwelling is incorporated into
entryRateFunc by assuming that the inflow of nutrient increases with depth
such that

IN = vNz (5)

where vN is the inflow rate of nutrient with depth (g l−1 m−1). There is no wash
out rate for resources but we set a small wash out rate for the phytoplankton of
0.005 d−1 (see ‘systemInfoMicrobesPhyto.csv’) to represent death rate. Note all
parameter values for the microbial groups are not based on data - this example
is simply for illustration purposes.

The microPopModel function is then called to simulate growth over 3 months
for each depth and the results are saved after each model run. Fig. 7a shows
how the magnitude and depth of the bloom changes with time as nutrients are
depleted when there is only one group present (Phyto1).

We now add in 2 more groups (choose case 2 when running runMicroP-
opExample(‘phyto’)). The groups have different requirements for nutrient
and light as determined by their half saturation values (KN and KL respec-
tively - see Fig. 7 caption). All three groups start with the same concentration;
Fig. 7b shows how over time the groups occupy different levels in the water
column.

3.4 Bacteriophages [phages.R]

microPop is not really designed for the study of bacteriophages (viruses which
attack bacteria) but we show how phages can be included in microPop in a
simplistic way. In this example we consider 2 (fictious) groups of bacteria (called
Bacteria1 and Bacteria2) and 2 bacteriophages called Virus1 and Virus2. Both
bacteria have the same substrate, nutrient, and the same parameters with the
difference that Bacteria2 has a higher maximum growth rate than Bacteria1.
Virus1 attacks Bacteria1; Virus2 attacks Bacteria2. The two viruses have the
same parameter values and differ only in their choice of host cell (bacterial
group). We consider a simple system with a constant dilution rate of 0.1 d−1.
There is inflow of nutrient but nothing else and all variables have a starting
value of 1.

In order to infect a host cell, the bacteriophage attaches itself to the bacterial
cell wall and then injects its genetic material (its nucleic acid) into the host cell,
switching the cell’s programme in its favour so the host cell will eventually die
and release about 100 new phage particles. To model this within microPop
we make some simplifying assumptions. Firstly, since one phage attacks one
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Figure 7: a) Concentration of Phyto1 at 9 day intervals when it is the only
group present (KN=1e-6 g l−1, KL=0.8 light units). b) Concentration of all
three groups at monthly intervals with Phyto1 in black (KN=1e-6 g l−1, KL=0.8
light units), Phyto2 in red (KN=1e-4 g l−1, KL=0.4 light units) and Phyto3 in
green (KN=1e-2 g l−1, KL=0.2 light units).

bacterial cell, the ‘consumption’ rate does not follow a Monod Equation but it
is more like a host-parasitoid model where the rate of change of the number of
cells of the virus, V , due to viral attack on B bacterial cells is

dV

dt
= αV B (6)

where α is the specific reproduction rate (number of new virus cells made from
one viral cell per bacterial cell per day). To put this in microPop we put the
maxGrowthRate of V1 on B1 equal to α and redefine growthLimFunc so the
‘limitation’ is now simply B rather than the Monod equation (this is multiplied
by V later in derivesDefault). The rate of change of the number of bacterial
cells due to death by virus attack is

dB

dt
= −

α

Y
V B (7)

where Y is the yield i.e. the number of new virus cells per bacterial cell (note
α = Y b where b is the binding rate (units of V −1d−1)). By using the equations
above we have made the simplifying assumption that there is no time delay
between viral attack and the production of new virus cells. To put in a time
delay derivsDefault could be altered to use dde rather than ode from the
package deSolve which microPop depends upon.

To add in mutations of Bacteria1 to a resistant strain we simply redefine
entryRateFunc so that a fraction of the Bacteria1 population is converted to
a resistant group (‘resistantBacteria1’, BR

1
) per day, denoted fB . Thus the rate

of change of BR
1

due to mutations is

dBR
1

dt
= fBB1 (8)

and the loss rate from B1 is the negative of this (also modelled via entryRate-
Func).
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Figure 8: a) Case 1: Two bacterial groups compete for one substrate (Nutrient);
no viruses present. b) Case 2: A virus (Virus1) which attacks Bacteria1 is added
to the system. c) Case 3: As in b) but a virus (Virus2) which attacks Bacteria2
is also added to the system. d) Case 4: As in c) but Bacteria1 randomly
mutates into a group which is identical to Bacteria1 apart from it has resistance
to Virus1.

We run microPop for 4 different system scenarios (when running runMi-
croPopExample(‘phages’) you will be prompted to choose from case 1 to 4);
the results are shown in Fig. 8. To begin with we look at the system without
viruses and see the two bacteria competing for nutrient, since Bacteria2 has the
highest growth rate it dominates the system (case 1; Fig. 8a). We now add
in Virus2 which attacks Bacteria2 allowing Bacteria1 to dominate the system
causing Bacteria2, and hence Virus2, to die out (case 2; Fig. 8b). If we now
add in Virus1, so that we have both bacterial groups and both viral groups, we
see more complex dynamics emerge (case 3; Fig. 8c). In the fourth case we add
in random mutations within the Bacteria1 group to a strain that is resistant
to Virus1, called resistantBacteria1. This has all the same characteristics as
Bacteria1 but is not present at the start of the simulation and is generated at a
rate fBB1(t). We set fB = 0.001 d −1 which means that 0.1% of the population
of Bacteria1 mutates into the resistant strain per day (case 4; Fig. 8d).
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Appendix

Most of the equations governing microbial growth in microPop are based on
a previous model (Kettle et al. (2015) (open access)) for which a detailed de-
scription is given in the supporting information. In microPop the governing
equations are contained in the function derivsDefault.R which is the function
file for the ODE solver (ode from the deSolve pacakge). The functions called
within derivsDefault.R are described in the sections below. These functions are
collected into a list called rateFuncsDefault. This list is called by default for the
input argument rateFuncs in microPopModel (also see Table 2 and Section 2
for details).

A Growth Equations

A microbe has a maximum specific growth rate, here denoted by µm (with
units of inverse time), at which it may grow if there is no limitation on growth.
Growth limitation functions, here denoted by λ, scale the maximum growth rate
and their output must lie in the interval [0,1]. Limitations are typically due to
substrate availability (e.g. λS) and pH, (λpH), however the user may add in
further limitations using the function rateFuncs$extraGrowthLimFunc.

A.1 Substrate Limitation

For a substrate, i, with concentration, S, we express the limit on growth using
the Monod equation

λSe(Si) =
Si

Ki + Si

, (9)

where Ki is the half-saturation constant (with the same units as those of Si).
This applies to growth on essential substrates (‘Rtype’ of ‘Se’). However, if the
microbe can grow on a variety of substrates then, for Ns substitutable substrates
(‘Rtype’ of ‘S’), the limit on growth due to substrate, i, is given by

λSs(Si) =
Si/Ki

1 +
∑Ns

j=1
Sj/Kj

(10)

based on Ballyk and Wolkowicz (1993). Note that if water is a resource (‘Rtype’
of ‘Sw’) then it is not included in growth limitation equations as we assume water
is not limiting. These options are included in the default function in microPop
but can be altered by redefining rateFuncs$growthLimFunc.

A.2 pH limitation

It is well known that pH has a significant effect on growth rates (Walker et al.,
2005) and that this varies between different microbial groups. To incorporate
this we define a pH limitation function for each group, denoted here by λpH(g)
for group g. The preferred pH range for each group is stated in the group’s
data frame under ‘pHcorners’ and the default function is a trapezium with
the points on the x axis (pH) specified by pHcorners and the y-axis (limi-
tation) values (0,1,1,0). However, this function can be redefined using rate-
funcs$pHLimFunc to allow any form of pH limitation. The output from this
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function, which must lie between 0 and 1, is used to scale the specific growth
rate, µ, discussed in the previous section.

A.3 Combining growth on substrates

If there areNs substrates they are combined in one of two ways. If the substrates
are substitutable i.e. the microbes can grow on any of them, then, for group, g,
we use,

µs = λpH(g)

Ns
∑

i=1

µm
i λSs(Si). (11)

If the substrates are essential i.e. there is no growth without all of them, then
we use,

µe = λpH(g)µm

n
∏

i=1

λSe(Si), (12)

where
∏

indicates multiplication of the following terms; note µm is not substrate
specific. If the microbial group can grow on substitutable resources but also
requires, or is boosted by, another resource, Sb, (which it can not grow on
alone) then we define another growth limitation - that from the booster which
is given by

λb = fb + (1− fb)λSe(Sb) (13)

where fb is the fraction of the maximum growth achievable if the boosting
resource is not present (i.e. when λSe(Sb) = 0). Growth rate is given by

µ = λbµs. (14)

Note that if water is a resource (‘Rtype’ of ‘Sw’) then it is not included in growth
equations as we assume water is not limiting. To alter any of these expressions
redefine rateFuncs$combineGrowthLimFunc.

B Resource Uptake

The rate of uptake of a resource, i is given by the microbial mass growth rate
on that resource divided by the mass yield of microbes, Y g

X,i, on that resource,
i.e. the mass of microbial growth resulting from the consumption of 1 g of the
resource. We use the superscript g to distinguish it from molar yield. Thus if the
microbial concentration is X then the biological uptake rate of a substitutable
resource, Si, is

λbλpH(g)
λSs

(Si)µ
m
i

Y g
X,Si

X. (15)

If there are multiple essential resources, then the uptake rate of essential re-
source i must be proportional to the uptake of the other resources according to
the stoichiometry. To ensure the stoichiometric mass ratios are maintained we
choose one of the substrates to be the ‘key resource’ (denoted Sk), compute its
uptake (shown in parentheses in the equation below) and then determine the
uptake of the other substrates using

mini

mknk

(

λpH(g)µmλSe
(Sk)

Y g
X,Sk

X

)

, (16)
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where the molar mass of i is denoted mi and the number of moles of i in the
stoichiometry is ni. If the substrate is a boosting resource then we compute
the uptake rate of the substitutable resources (shown in square brackets in the
equation below) and then use the mean of the stoichiometric masses of the
substitutable resources, such that

mbnb

1

n

∑n

i=1
(mini)

[

λbλpH(g)

n
∑

i=1

(

λSs
(Si)µ

m
i

Y g
X,Si

)

X

]

(17)

Note that in the stoichiometries the substitutable resources are all regarded as
hexose (or hexose equivalents) and therefore have the same m and n values. To
alter any of these expressions redefine rateFuncs$uptakeFunc.

If water is needed for growth and is included in the stoichiometry in the
group data frame then we also compute the uptake of water. This is done in
derivsDefault and is calculated using mass stoichiometric ratios.

C Metabolite Production

When microbes grow on a substrate they release waste products (metabolites;
‘Rtype’ of ‘P’) which in some cases can become substrates for other microbes.
The rate of production of these metabolites can be computed in two ways.
Firstly if the stoichiometry also contains biomass product (e.g. as in Munoz-
Tamayo et al. (2016); ‘Rtype’ of ‘Pb’) and if all of the substrates on the pathway
are essential then the production rate is computed similarly to uptake rate such
that the uptake rate of the key resource, Uk, is scaled by the mass stoichiometry
ratio, e.g. for metabolic product, j, the production rate is,

mjnj

mknk

Uk. (18)

However, if microbial growth is not included in the stoichiometry then, in order
to conserve mass this must be substracted from total resource uptake and then
the remaining mass is divided between the metabolites using stoichiometric ra-
tios. If this case, if Ui is the uptake rate of substrate i, there are Np metabolites,
and Ns substrates and dX is the rate of microbial growth, then we estimate the
production rate of metabolite j by

mjnj
∑Np

k=1
mknk

(

Ns
∑

i=1

Ui + Uw − dX) (19)

where Uw is the uptake rate of water if it is included in the group’s stoichiometry.
These expressions can be altered by redefining rateFuncs$productionFunc.

The first method requires microbial growth to be contained in the stoichiom-
etry. This is usually done by assuming that the molecular formula for microbiota
is C5H7O2N (Batstone et al., 2002) - the composition is given in detail in Table
3. Since this contains nitrogen, then the stoichiometries can no longer simply
be carbohydrate based. Commonly ammonia is added to the stoichiometry to
provide nitrogen. In our previous work (Kettle et al. (2015)) we do not include
nitrogen but we assume that it is not limiting. Fortunately the errors introduced
by using the approximation of Eq. 19, instead of stoichiometries which include
microbial biomass, are very small due the following:
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Table 3: Composition of microbiota using the formula C5H7O2N (Batstone
et al., 2002).
atom molar mass (g) number mass (g) percentage mass (%)
C 12 5 60 53.1
O 16 2 32 28.3
N 14 1 14 12.4
H 1 7 7 6.2

• The values we use for the biomass yield on a substrate implicitly includes
ammonia whether or not it is included in the stoichiometries. This also
goes for other elements e.g. minerals etc that are not explicitly included.

• If ammonia (NH3) and biomass are included in the stoichiometry and
the molecular formula for biomass is C5H7O2N (Batstone et al., 2002)
then due to conservation of N , for 1 mole of biomass growth, 1 mole of
ammonia is taken up and all of the N in the ammonia must go to biomass
creation (not metabolite production). This means that the maximium
mass of ammonia that can go to products for 1 mole of biomass growth is
3 g (i.e. H3). Given 1 mole of biomass is 113 g (Batstone et al., 2002) and
since mass yields (mass biomass/mass substrate) are typically well below
1 e.g. on hexose it is approx. 1/3, then substrate mass taken up for 1
mole of microbial growth, is 339 g, leaving 226 g for product formation -
thus the addition of 3 g from ammonia is negligible (approx. 1%).

D Growth on multiple paths

The previous sections all describe processes occuring on one metabolic pathway.
However, some microbial groups will have multiple metabolic pathways. If this
is the case then the total microbial growth for the group is a result of growth
on each of these pathways. However, more metabolic pathways should not
immediately mean more growth therefore we do not simply add the growth rates.
Furthermore we also do not simply assume that the microbiota will divide their
time equally between each of the pathways. Instead we assume that the more
potential growth there is on a pathway the more the microbiota will prioritise
it. In reality it may be that the microbiota will only grow on the favourable
pathway and not at all on the others but at present we scale the growth on each
pathway according to its fraction of the total growth. For example for growth
µ on three pathways the actual growth on pathway, µi, is

µi
∑

3

j=1
µj

µi. (20)

This expression can be altered by redefining rateFuncs$combinePathsFunc.
However, it should be noted that complete pathway switching (e.g. where an if
statement determines which pathway to choose) can lead to rapid rate changes
creating a stiff system of ODEs. This can cause the ODE solver to fail or at
the very least become extremely slow (different solver methods may be specified
using odeOptions in microPopModel).
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