Package ‘micEconCES’

February 20, 2015

Version 0.9-8

Date 2014/04/23
Title Analysis with the Constant Elasticity of Substitution (CES) function

Author Arne Henningsen and Geraldine Henningsen
Maintainer Arne Henningsen <arne. henningsen@gmail.com>
Depends R ($>=2.4 .0$), minpack.lm ($>=1.1-4$), DEoptim ($>=2.0-4$)
Suggests maxLik ($>=0.8-0$), xtable ($>=1.5-6$), AER ($>=1.1-9$)
Imports systemfit ($>=1.0-0$), car ($>=2.0-0$), micEcon $(>=0.6-1$), miscTools (>= 0.6-1)
Description Tools for economic analysis and economic modelling with a Constant Elasticity of Substitution (CES) function

License GPL (>=2)
URL http://www.micEcon.org
NeedsCompilation no
Repository CRAN
Date/Publication 2014-04-23 12:58:05

R topics documented:

cesCalc 2
cesEst 4
cesEst-methods 10
GermanIndustry 12
MishraCES 14
plot.cesEst 15
summary.cesEst 16
Index 18

Description

Calculate the endogenous variable of a 'Constant Elasticity of Substitution' (CES) function.
The original CES function with two explanatory variables is

$$
y=\gamma \exp (\lambda t)\left(\delta x_{1}^{-\rho}+(1-\delta) x_{2}^{-\rho}\right)^{-\frac{\nu}{\rho}}
$$

and the non-nested CES function with N explanatory variables is

$$
y=\gamma \exp (\lambda t)\left(\sum_{i=1}^{N} \delta_{i} x_{i}^{-\rho}\right)^{-\frac{\nu}{\rho}}
$$

where in the latter case $\sum_{i=1}^{N} \delta_{i}=1$.
In both cases, the elesticity of substitution is $s=\frac{1}{1+\rho}$.
The nested CES function with 3 explanatory variables proposed by Sato (1967) is

$$
y=\gamma \exp (\lambda t)\left[\delta\left(\delta_{1} x_{1}^{-\rho_{1}}+\left(1-\delta_{1}\right) x_{2}^{-\rho_{1}}\right)^{\frac{\rho}{\rho_{1}}}+(1-\delta) x_{3}^{-\rho}\right]^{-\frac{\nu}{\rho}}
$$

and the nested CES function with 4 explanatory variables (a generalisation of the version proposed by Sato, 1967) is

$$
y=\gamma \exp (\lambda t)\left[\delta \cdot\left(\delta_{1} x_{1}^{-\rho_{1}}+\left(1-\delta_{1}\right) x_{2}^{-\rho_{1}}\right)^{\frac{\rho}{\rho_{1}}}+(1-\delta) \cdot\left(\delta_{2} x_{3}^{-\rho_{2}}+\left(1-\delta_{2}\right) x_{4}^{-\rho_{2}}\right)^{\frac{\rho}{\rho_{2}}}\right]^{-\frac{\nu}{\rho}}
$$

Usage

cesCalc(xNames, data, coef, tName = NULL, nested = FALSE, rhoApprox $=5 \mathrm{e}-6$)

Arguments

x Names a vector of strings containing the names of the explanatory variables.
data data frame containing the explanatory variables.
coef numeric vector containing the coefficients of the CES: if the vector is unnamed, the order of the coefficients must be γ, eventuelly λ, δ, ρ, and eventually ν in case of two expanatory variables, γ, eventuelly $\lambda, \delta_{1}, \ldots, \delta_{N}, \rho$, and eventually ν in case of the non-nested CES with $N>2$ explanatory variables, γ, eventuelly $\lambda, \delta_{1}, \delta, \rho_{1}, \rho$, and eventually ν in case of the nested CES with 3 explanatory variables, and γ, eventuelly $\lambda, \delta_{1}, \delta_{2}, \delta, \rho_{1}, \rho_{2}, \rho$, and eventually ν in case of the nested CES with 4 explanatory variables, where in all cases the ν is only required if the model has variable returns to scale. If the vector is named, the names must
be "gamma", "delta", "rho", and eventually "nu" in case of two expanatory variables, "gamma", "delta_1", ..., "delta_N", "rho", and eventually "nu" in case of the non-nested CES with $N>2$ explanatory variables, and "gamma", "delta_1", "delta_2", "rho_1", "rho_2", "rho", and eventually "nu" in case of the nested CES with 4 explanatory variables, where the order is irrelevant in all cases.
tName optional character string specifying the name of the time variable (t).
nested logical. ; if FALSE (the default), the original CES for n inputs proposed by Kmenta (1967) is used; if TRUE, the nested version of the CES for 3 or 4 inputs proposed by Sato (1967) is used.
rhoApprox if the absolute value of the coefficient ρ is smaller than or equal to this argument, the endogenous variable of the non-nested CES is calculated using the Kmenta approximation, which is more precise than the non-linear CES formula for very small values of ρ (and the CES formula cannot even be used for $\rho=0$). This feature is not (yet) available for the nested CES.

Value

A numeric vector with length equal to the number of rows of the data set specified in argument data.

Author(s)

Arne Henningsen and Geraldine Henningsen

References

Kmenta, J. (1967): On Estimation of the CES Production Function. International Economic Review 8, p. 180-189.
Sato, K. (1967): A Two-Level Constant-Elasticity-of-Substitution Production Function. Review of Economic Studies 43, p. 201-218.

See Also

cesEst.

Examples

```
data( germanFarms, package = "micEcon")
    # output quantity:
    germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
    # quantity of intermediate inputs
    germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
    ## Estimate CES: Land & Labor with fixed returns to scale
    cesLandLabor <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms )
    ## Calculate fitted values
```

```
cesCalc( c( "land", "qLabor" ), germanFarms, coef( cesLandLabor ) )
# variable returns to scale
cesLandLaborVrs <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
    vrs = TRUE )
## Calculate fitted values
cesCalc( c( "land", "qLabor" ), germanFarms, coef( cesLandLaborVrs ) )
```

```
cesEst Estimate a CES function
```


Description

Estimate a Constant-Elasticity-of-Substitution (CES) function with two exogenous variables or a nested Constant-Elasticity-of-Substitution (CES) function proposed by Sato (1967) with three or four exogenous variables by Least Squares. The functional forms are shown in the documentation of function cesCalc.

Warning: The econometric estimation of a CES function is (almost) always very problematic, because very different parameter vectors could result in very similar values of the objective function (sum of squared residuals). Hence, even if the optimizer reports that the nonlinear minimization has converged, there might be another rather different parameter vector that results in a lower sum of squared residuals.

Usage

```
cesEst( yName, xNames, data, tName = NULL, vrs = FALSE, method = "LM",
    start = NULL, lower = NULL, upper = NULL, multErr = FALSE,
    rho1 = NULL, rho2, rho = NULL, returnGridAll = FALSE, random.seed = 123,
    rhoApprox = c( y = 5e-6, gamma = 5e-6, delta = 5e-6,
        rho = 1e-3, nu = 5e-6 ),
    ... )
```

\#\# S3 method for class 'cesEst'
print(x, digits $=\max (3$, getOption("digits") - 3),
...)

Arguments

yName	a string containing the name of the dependent variable. a vector of two, three or four character strings containing the names of the inde- pendent variables.
data	data frame containing the data.
tName	optional character string specifying the name of the time variable (t). vrs
	logical. Allow for variable returns to scale?

method	character string indicationg the estimation method: either "Kmenta" for the Kmenta approximation or "LM", "NM", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Newton", "PORT", or "DE" for non-linear least-squares (see section 'Details’).
start	optional numeric vector giving the starting values of the parameters in the nonlinear estimations (see section 'Details').
lower	lower bounds of the parameters (see section 'Details').
upper	upper bounds of the parameters (see section 'Details').
multErr	logical. If TRUE, the error term is assumed to be multiplicative, i.e. $y=\hat{y}$. $\exp (\epsilon)$. If FALSE (the default), the error term is assumed to be additive, i.e. $y=\hat{y}+\epsilon$.
rho1, rho2, rho	numeric scalar or vector at which the coefficients ρ_{1}, ρ_{2}, and/or ρ should be fixed; if argument rho1, rho2, or rho is NULL (default), this coefficient is estimated together with the other parameters; if these arguments have more than one element, a grid search for ρ_{1}, ρ_{2}, and/or ρ is performed (see section 'Details').
returnGridAll	logical value that indicates whether the estimates for all values of ρ obtained during the grid search (not just the estimations with the 'best' ρ) should be returned (ignored if argument rho is NULL or has only a single element).
random.seed	an integer used to seed R's random number generator. This is to ensure replicability when the "SANN" or "DE" method is used. Defaults to 123 .
rhoApprox	numeric vector with exactly 5 elements; the endogenous variable of the CES and the derivatives with respect to its coefficients are calculated using a first-order Taylor series approximation at $\rho=0$ (non-nested CES) or by interpolation between ρ, ρ_{1}, or ρ_{2} equal to zero and ρ, ρ_{1}, or ρ_{2} equal to \pm rhoApprox (nested CES), if the absolute value of the coefficients ρ, ρ_{1}, or ρ_{2} is smaller than or equal to the corresponding element of this argument (see also argument rhoApprox of cesCalc); the first element determines the threshold for calculating the endogenous variable; the second element determines the threshold for calculating the derivatives with respect to γ; the third element determines the threshold for calculating the derivatives with respect to δ_{1}, δ_{2}, and δ; the fourth element determines the threshold for calculating the derivatives with respect to ρ, ρ_{1}, and ρ_{2}; the fifth element determines the threshold for calculating the derivatives with respect to ν.
x	an object of class cesEst.
digits	number of digits.
	further arguments to cesEst are passed to optim, nls.lm, nlm, nlminb, or DEoptim; further arguments to print. cesEst are currently ignored.

Details

Estimation method

Argument method determines the estimation method. If it is "Kmenta", the CES is estimated by ordinary least squares using the Kmenta approximation; otherwise, it is estimated by non-linear least-squares. Several different optimizers can be used for the non-linear estimation. The optimization method LM (Levenberg-Marquardt, see Moré 1978) uses nls.lm for the optimization. The
optimization methods NM or Nelder-Mead (Nelder and Mead 1965), BFGS (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970), CG (Conjugate Gradients based on Fletcher and Reeves 1964), L-BFGS-B (with box-constraints, Byrd, Lu, Nocedal, and Zhu 1995), and SANN (Simulated Annealing, Bélisle 1992) use optim for the optimization. The optimization method Newton (Newton-type, see Dennis and Schnabel 1983 and Schnabel, Koontz, and Weiss 1985) uses nlm for the optimization. The optimization method PORT (PORT routines, see Gay 1990) uses nlminb for the optimization. The optimization method DE (Differential Evolution, see Storn and Price 1997) uses DEoptim for the optimization. Analytical gradients are used in the LM, BFGS, CG, L-BFGS-B, Newton, and PORT method.

Starting values

Argument start should be a numeric vector. The order must be as described in the documentation of argument coef of function cesCalc. However, names of the elements are ignored. If argument start is NULL, pre-defined starting values are used. The starting value of λ (if present) is set to 0.015 ; the starting values of δ_{1}, δ_{2}, and δ (if present) are set to 0.5 , the starting values of ρ_{1}, ρ_{2}, and ρ (if present and required) are set to 0.25 (i.e. \backslash elasticity of substitution $=0.8$ in the two-input case), the starting value of ν (if present) is set to 1 , and the starting value of γ is set to a value so that the mean of the error term is zero. Hence, in case of an additive error term (i.e. argument multErr is set to FALSE, the default) γ is set to mean (y) / mean (CES (X, start1)) and in case of a multiplicative error term (i.e. argument multErr is set to TRUE) γ is set to mean $(\log (\mathrm{y})$) - mean $(\log (\operatorname{CES}(\mathrm{X}, \operatorname{start1})$)), where y is the dependent variable (defined by argument yName), X is the set of covariates (defined by arguments xNames and tName), CES() defines the (nested) CES function, and start1 is a coefficient vector with $\gamma=1$ and all other coefficients having the starting values described above.

Lower and upper bounds

Arguments lower and upper can be used to set lower and upper bounds for the estimated parameters. If these arguments are -Inf and Inf, respectively, the parameters are estimated without unconstraints. By default, arguments lower and upper are both NULL, which means that the bounds are set automatically depending on the estimation method: In case of the L-BFGS-B, PORT, and DE method, the lower bound is 0 for $\gamma, \delta_{1}, \delta_{2}$, and δ (if present), -1 for ρ_{1}, ρ_{2}, and ρ (if present), and eventually 0 for ν. In case of the L-BFGS-B and PORT method, the upper bound is infinity for $\gamma, 1$ for δ_{1}, δ_{2}, and δ (if present), infinity for ρ_{1}, ρ_{2}, and ρ (if present), and eventually infinity for ν. Since the 'Differential Evulation' algorithm requires finit bounds, the upper bounds for the DE method are set to 1 e 10 for $\gamma, 1$ for δ_{1}, δ_{2}, and δ (if present), 10 for ρ_{1}, ρ_{2}, and ρ (if present), and eventually 10 for ν. In case of all other estimation methods, the lower and upper bounds are set to -Inf and Inf, respectively, because these methods do not support parameter constraints. Of course, the user can specify own lower and upper bounds by setting arguments lower and upper to numeric vectors that should have the same format as argument start (see above).

Grid search for ρ

If arguments rho1, rho2, and/or rho have more than one element, a one-dimensional, two-dimensional, or three-dimensionsl grid search for ρ_{1}, ρ_{2}, and/or ρ is performed. The remaining (free) parameters of the CES are estimated by least-squares, where ρ_{1}, ρ_{2}, and/or ρ are fixed consecutively at each value defined in arguments rho1, rho2, and rho, respectively. Finally the estimation with the ρ_{1}, ρ_{2}, and/or ρ that results in the smallest sum of squared residuals is chosen (and returned).

Random numbers

The 'state' (or 'seed') of R's random number generator is saved at the beginning of the cesEst function and restored at the end of this function so that this function does not affect the generation of random numbers although the random seed is set to argument random. seed and the 'SANN' and 'DE' algorithms use random numbers.

Value

cesEst returns a list of class cesEst that has following components:

coefficients	estimated coefficients/parameters of the CES (including a possible fixed ρ). ela constant elasticity/elasticities of substitution.
iter	number of iterations (only for non-linear least-squares estimations). convergence logical value indicating if the non-linear estimation has converged (only for non- linear least-squares estimations with solvers that have a convergence criterion). additional information from the optimizer (only if a message was returned by optim or nls.lm.
message	approximate covariance matrix of the estimated parameters calculated from the parameters of the linearized model by the Delta method (only if argument method is "Kmenta").
vcov	unscaled covariance matrix of the estimated parameters (including a possible fixed ρ), i.e. the inverse of the cross-product of the gradient matrix evaluated at the estimated parameters.
cov.unscaled	

kmenta	estimation results of the Kmenta approximation (a restricted translog model) returned by systemfit (only if argument method is "Kmenta"). testKmenta test of the restrictions implied by the Kmenta approximation (including constant returns to scale if argument vrs is FALSE) in the unrestricted translog model returned by linear. hypothesis (only if argument method is "Kmenta").
allRhoSum	data frame with summary results of the estimations with all values of ρ used in the grid search (only if a grid search was performed); this data frame has foll- wing columns: rho = the value of ρ, rss = the corresponding sum of squared residuals, and (if appropriate for the method used for the estimation) convergence = logical value indicating whether the estimation converged.
allRhoFull \quadlist of estimation results returned by cesEst for all values of ρ used in the grid search (only if a grid search was performed and argument returnGridAll is set to TRUE).	
rho1Values, rho2values, rhoValues	
numeric vectors giving the values that are used in the grid search for the coeffi-	
cients ρ_{1} and ρ, respectively (only if a grid search was performed).	

Author(s)

Arne Henningsen and Geraldine Henningsen

References

Bélisle, C.J.P. (1992): Convergence theorems for a class of simulated annealing algorithms on Rd, Journal of Applied Probability 29, p. 885-895.
Broyden, C.G. (1970): The Convergence of a Class of Double-rank Minimization Algorithms, Journal of the Institute of Mathematics and Its Applications 6, p. 76-90.

Byrd, R.H., Lu, P., Nocedal, J. and Zhu, C. (1995): A limited memory algorithm for bound constrained optimization, SIAM J. Scientific Computing 16, p. 1190-1208.
Dennis, J.E. and Schnabel, R.B. (1983): Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ.

Fletcher, R. (1970): A New Approach to Variable Metric Algorithms, Computer Journal 13, p. 317-322.

Fletcher, R. and Reeves, C.M. (1964): Function minimization by conjugate gradients, Computer Journal 7, p. 148-154.

Gay, D.M. (1990): Usage Summary for Selected Optimization Routines, Computing Science Technical Report No. 153, AT\&T Bell Laboratories, Murray Hill NJ, http://netlib.bell-labs. com/cm/cs/cstr/153.pdf.

Goldfarb, D. (1970): A Family of Variable Metric Updates Derived by Variational Means, Mathematics of Computation 24, p. 23-26.

Moré, J.J. (1978): The Levenberg-Marquardt algorithm: implementation and theory, in G.A. Watson (Ed.), Lecture Notes in Mathematics 630: Numerical Analysis, pp. 105-116, Springer-Verlag: Berlin.
Nelder, J.A. and Mead, R. (1965): A simplex algorithm for function minimization, Computer Journal 7, p. 308-313.

Schnabel, R.B., Koontz, J.E. and Weiss, B.E. (1985): A modular system of algorithms for unconstrained minimization, ACM Trans. Math. Software, 11, pp. 419-440.
Shanno, D.F. (1970): Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation 24, p. 647-656.
Storn, R. and Price, K. (1997): Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11(4), p. 341-359.

See Also

summary. cesEst for the summary method, plot.cesEst for plotting the results of the grid search for ρ, coef. cesEst for several further methods, cesCalc for calculations or simulations with the CES, translogEst for estimating translog functions, and quadFuncEst for estimating quadratic functions.

Examples

```
data( germanFarms, package = "micEcon" )
# output quantity:
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
# quantity of intermediate inputs
germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
## CES: Land & Labor (Levenberg-Marquardt algorithm)
cesLandLabor <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms )
    # variable returns to scale, increased max. number of iter. (LM algorithm)
    cesLandLaborVrs <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
        vrs = TRUE, control = nls.lm.control( maxiter = 1000 ) )
    # using the Nelder-Mead optimization method
    cesLandLaborNm <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
        method = "NM" )
    # using the BFGS optimization method
    cesLandLaborBfgs <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
        method = "BFGS" )
    # using the L-BFGS-B optimization method with constrained parameters
    cesLandLaborBfgsCon <- cesEst( "qOutput", c( "land", "qLabor" ),
        germanFarms, method = "L-BFGS-B" )
    # using the CG optimization method
    cesLandLaborSann <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
        method = "CG" )
```

```
# using the SANN optimization method
# (with decreased number of iteration to decrease execution time)
cesLandLaborSann <- cesEst( "qOutput", c( "land", "qLabor"), germanFarms,
    method = "SANN", control = list( maxit = 1000 ) )
# using the Kmenta approximation
cesLandLaborKmenta <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
    method = "Kmenta" )
# using the PORT optimization routine with unconstrained parameters
cesLandLaborPortCon <- cesEst( "qOutput", c( "land", "qLabor" ),
    germanFarms, vrs = TRUE, method = "PORT", lower = -Inf, upper = Inf )
# using the PORT optimization routine with constrained parameters and VRS
cesLandLaborPortCon <- cesEst( "qOutput", c( "land", "qLabor"),
    germanFarms, vrs = TRUE, method = "PORT" )
# using the Differential Evolution optimization method
# (with decreased number of iteration to decrease execution time)
cesLandLaborDe <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms,
    method = "DE", control = DEoptim.control( itermax = 50 ) )
## estimation with a grid search for rho (using the LM algorithm)
cesLandInt <- cesEst( "qOutput", c( "land", "qLabor" ),
    data = germanFarms, rho = seq( from = -0.6, to = 0.9, by = 0.3 ) )
```


Description

Methods for Objects of Class cesEst and cesEst.

Usage

```
## S3 method for class 'cesEst'
coef( object, ... )
## S3 method for class 'summary.cesEst'
coef( object, ... )
## S3 method for class 'cesEst'
fitted( object, ... )
## S3 method for class 'cesEst'
residuals( object, ... )
## S3 method for class 'cesEst'
vcov( object, ... )
```


Arguments

object an object of class cesEst or summary.cesEst.
... further arguments are currently ignored.

Value

coef. cesEst returns a vector of the estimated coefficients.
coef.summary.cesEst returns a matrix with four columns: the estimated coefficients/parameters of the CES, their standard errors, the t -statistic, and corresponding (two-sided) P -values.
fitted. cesEst returns a vector of the fitted values.
residuals.cesEst returns a vector of the residuals.
vcov.cesEst returns the variance covariance matrix of the estimated coefficients.

Author(s)

Arne Henningsen and Geraldine Henningsen

See Also

cesEst and summary.cesEst.

Examples

```
data( germanFarms, package = "micEcon" )
    # output quantity:
    germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
    # quantity of intermediate inputs
    germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
    ## CES: Land & Labor
    cesLandLabor <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms )
    # estimated coefficients
    coef( cesLandLabor )
    # estimated coefficients, their standard errors, t-statistic, P-values
    coef( summary( cesLandLabor ) )
    # fitted values of the estimated model
    fitted( cesLandLabor )
    # residuals of the estimated model
    residuals( cesLandLabor)
    # covariance matrix of the estimated coefficients
    vcov( cesLandLabor )
```


Description

The data frame GermanIndustry contains annual aggregated data of the entire West German industry from 1960 until 1993 as well as data of seven industrial sectors from 1970 to 1988/1992. This data set has been used by Kemfert (1998).

Usage
 data(GermanIndustry)

Format

This data frame contains the following columns/variables:
year the year.
Y output: gross value added of the West German industrial sector (in billion Deutsche Mark at prices of 1991).
K capital: gross stock of fixed assets of the West German industrial sector (in billion Deutsche Mark at prices of 1991).
A labor: total number of persons employed in the West German industrial sector (in million).
E energy: final energy consumption in the West German industrial sector (in GWh).
$\mathbf{C}_{-} \mathbf{Y}$ gross value added of the West German chemical industry (in billion Deutsche Mark at prices of 1991).

C_K capital: gross stock of fixed assets of the West German chemical industry (in billion Deutsche Mark at prices of 1991).
C_A labor: total number of persons employed in the West German chemical industry (in thouands).
C_E final energy consumption in the West German chemical industry (in GWh).
S_Y gross value added of the West German stone and earth industry (in billion Deutsche Mark at prices of 1991).
S_K capital: gross stock of fixed assets of the West German stone and earth industry (in billion Deutsche Mark at prices of 1991).
S_A labor: total number of persons employed in the West German stone and earth industry (in thouands).

S_E final energy consumption in the West German stone and earth industry (in GWh).
I_Y gross value added of the West German iron industry (in billion Deutsche Mark at prices of 1991).

I_K capital: gross stock of fixed assets of the West German iron industry (in billion Deutsche Mark at prices of 1991).
I_A labor: total number of persons employed in the West German iron industry (in thouands).

I_E final energy consumption in the West German iron industry (in GWh).
N_Y gross value added of the West German non-ferrous industry (in billion Deutsche Mark at prices of 1991).
N_K capital: gross stock of fixed assets of the West German non-ferrous industry (in billion Deutsche Mark at prices of 1991).

N_A labor: total number of persons employed in the West German non-ferrous industry (in thouands).
N_E final energy consumption in the West German non-ferrous industry (in GWh).
$\mathbf{V}_{-} \mathbf{Y}$ gross value added of the West German vehicle industry (in billion Deutsche Mark at prices of 1991).

V_K capital: gross stock of fixed assets of the West German vehicle industry (in billion Deutsche Mark at prices of 1991).

V_A labor: total number of persons employed in the West German vehicle industry (in thouands).
$\mathbf{V} _\mathbf{E}$ final energy consumption in the West German vehicle industry (in GWh).
$\mathbf{P}_{-} \mathbf{Y}$ gross value added of the West German paper industry (in billion Deutsche Mark at prices of 1991).
$\mathbf{P}_{-} \mathbf{K}$ capital: gross stock of fixed assets of the West German paper industry (in billion Deutsche Mark at prices of 1991).

P_A labor: total number of persons employed in the West German paper industry (in thouands).
$\mathbf{P}_{-} \mathbf{E}$ final energy consumption in the West German paper industry (in GWh).
$\mathbf{F}_{-} \mathbf{Y}$ gross value added of the West German food industry (in billion Deutsche Mark at prices of 1991).

F_K capital: gross stock of fixed assets of the West German food industry (in billion Deutsche Mark at prices of 1991).

F_A labor: total number of persons employed in the West German food industry (in thouands).
$\mathbf{F}_{-} \mathbf{E}$ final energy consumption in the West German food industry (in GWh).

Note

Please note that Kemfert (1998) disregards the years 1973-1975 in her estimations due to economic disruptions.

Source

German Federal Statistical Office (Statistisches Bundesamt), data taken from Kemfert (1998).

References

Kemfert, Claudia (1998): Estimated Substitution Elasticities of a Nested CES Production Funktion Approach for Germany, Energy Economics 20: 249-264 (doi:10.1016/S0140-9883(97)00014-5)
MishraCES Mishra's (2006) CES data

Description

The MishraCES data set contains artificial production data. It has 50 observations (e.g. firms, sectors, or countries).

Usage

data(MishraCES)

Format

This data frame contains the following columns:
No Firm number.
Y Output quantity.
X1 Quantity of first input.
X2 Quantity of second input.
X3 Quantity of third input.
X4 Quantity of fouth input.

Source

Mishra, SK (2006): A Note on Numerical Estimation of Sato's Two-Level CES Production Function MPRA Working Paper No. 1019, http: //mpra. ub. uni-muenchen. de/1019/.

Examples

```
    # load the data set
    data( "MishraCES" )
    # show mean values of all variables
    colMeans( MishraCES )
    # re-calculate the endogenous variable (see Mishra 2006)
    # coefficients of the nested CES function with 4 inputs
    b <- c( "gamma" = 200 * 0.5^(1/0.6), "delta_1" = 0.6, "delta_2" = 0.3,
            "delta" = 0.5, "rho_1" = 0.5, "rho_2" = -0.17, "rho" = 0.6 )
    MishraCES$Y2 <- cesCalc( xNames = c( "X1", "X2", "X3", "X4" ),
        data = MishraCES, coef = b, nested = TRUE )
    all.equal( MishraCES$Y, MishraCES$Y2 )
```

```
plot.cesEst Plot RSSs of a CES Function Estimated by Grid Search
```


Description

Plot a scatter plot, where the values of ρ are on the x axis and the corresponding sums of the squared residuals obtained by a grid search for ρ are on the y axis. Estimations that did not converge are marked with red.
Note that this method can be applied only if the model was estimated by a grid search for ρ, i.e. \backslash cesEst was called with argument rho set to a vector of more than one values for ρ.

Usage

\#\# S3 method for class 'cesEst'
plot (x , negRss = TRUE, bw = FALSE, ...)

Arguments

$x \quad$ object returned by cesEst if it was called with argument rho set a vector containing more than one value for ρ so that a grid search was performed.
negRss logical. Indicates whether the negative sum of squared residuals should be plotted in 3D plots (ignored in 2D plots).
bw logical. Indicates whether 3D plots should be in black-and-white or colored.
... All further arguments are passed to plot. default or persp.

Author(s)

Arne Henningsen and Geraldine Henningsen

See Also

cesEst.

Examples

```
data( germanFarms, package = "micEcon")
# output quantity:
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
# quantity of intermediate inputs
germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
## CES: Land & Intermediate Inputs
cesLandInt <- cesEst( yName = "qOutput",
    xNames = c( "land", "qVarInput" ), data = germanFarms,
    rho = seq( from = -0.6, to =0.9, by =0.3 ) )
# plot the rhos against the sum of squared residuals
plot( cesLandInt )
```


Description

summary method for objects of class cesEst.

Usage

```
## S3 method for class 'cesEst'
summary( object, rSquaredLog = object$multErr, ela = TRUE, ... )
## S3 method for class 'summary.cesEst'
print( x, ela = TRUE, digits = max(3, getOption("digits") - 3),
    ... )
```


Arguments

object	an object returned by cesEst.
rSquaredLog	logical. If FALSE (the default for models with additive error term), the returned R^{2}-value measures the fraction of the explained variance of the dependent vari- able in natural units. If TRUE (the default for models with multiplicative error term), the returned R^{2}-value measures the fraction of the explained variance of the logarithmized dependent variable.
elalogical. If TRUE (the default), the summary method calculates the (co)variances of the constant elasticities of substitution and the print method prints these elas- ticities together with corresponding summary statistics. If FALSE, the summary method does not calculate the (co)variances of the constant elasticities of sub- stitution and the print method does not print these elasticities.	
xan object returned by summary.cesEst. digits number of digits.	
	nurther arguments are currently ignored.

Value

summary. cesEst returns a list of class summary. cesEst that contains the elements of the provided object with with following changes or additions:
coefficients a matrix with four columns: the estimated coefficients/parameters of the CES (including a possible fixed ρ), their standard errors, the t -statistic, and corresponding (two-sided) P -values.
sigma square root of the estimated (asymptotic) variance of the random error (calculated without correcting for degrees of freedom).
r.squared $\quad R^{2}$-value, i.e. the 'fraction of variance explained by the model'. If argument rSquaredLog is TRUE, the R^{2}-value measures the fraction of the explained variance of the logarithmized dependent variable.

vcov	covariance matrix of the estimated parameters (including a possible fixed ρ).
ela	a matrix with four columns: the estimated elasticities of substitution, their stan- dard errors, the t-statistic, and corresponding (two-sided) P-values (only if argu- ment ela is TRUE).
elaCov	covariance matrix of the estimated elasticities of substitution (only if argument ela is TRUE).

Author(s)

Arne Henningsen

See Also

cesEst and cesCalc.

Examples

```
data( germanFarms, package = "micEcon" )
# output quantity:
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
# quantity of intermediate inputs
    germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
    ## CES: Land & Labor
    cesLandLabor <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms )
    # print summary results
    summary( cesLandLabor )
```


Index

```
*Topic datasets
    GermanIndustry, 12
    MishraCES, 14
*Topic models
    cesCalc, 2
    cesEst,4
    cesEst-methods,10
    plot.cesEst, 15
    summary.cesEst,16
*Topic nonlinear
    cesEst,4
    plot.cesEst, 15
*Topic regression
    cesEst,4
    plot.cesEst, 15
cesCalc, 2, 4-6, 9, 17
cesEst, 3, 4, 8, 11, 15-17
cesEst-methods, 10
coef.cesEst, }
coef.cesEst (cesEst-methods),10
coef.summary.cesEst (cesEst-methods),10
DEoptim, 5-7
fitted.cesEst (cesEst-methods),10
GermanIndustry, 12
linear.hypothesis, }
MishraCES, 14
nlm, 5-7
nlminb, 5-7
nls.lm, 5,7
optim, 5-7
persp, }1
plot.cesEst, 9,15
```

```
plot.default, 15
print.cesEst (cesEst),4
print.summary.cesEst (summary.cesEst),
    16
quadFuncEst, 9
residuals.cesEst (cesEst-methods),10
summary.cesEst, 9, 11,16
systemfit,8
translogEst, 7, 9
vcov.cesEst (cesEst-methods),10
```

