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analyze.individually Performing Individual Chemical Analysis

Description

An accessory function for estimate.wqs(). Performs individual chemical analyses to determine
the constraint for the overall mixture effect on the outcome (β1) in WQS regression. After adjusting
for any covariates, the outcome regresses on each chemical individually. Returns a data-frame of
statistics from these analyses.

Usage

analyze.individually(y, X, Z = NULL, family = c("gaussian", "binomial",
"poisson"), offset = NULL)
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Arguments

y Outcome: numeric vector or factor. Assumed to follow an exponential family
distribution given in family.

X Components/chemicals to be combined into an index; a numeric matrix or data-
frame.

Z Any covariates used. Ideally, a numeric matrix, but Z can be a factor, vector
or data-frame. Assumed to be complete; observations with missing covariate
values are ignored with a warning printed. If none, enter NULL.

family The distribution of outcome y. A character value: if equal to "gaussian" a linear
model is implemented; if equal to "binomial" a logistic model is implemented; if
equal to "poisson", a log-link (rate or count) model is implemented. See family
in stats package. Passed to glm2. Default: "gaussian".

offset The at-risk population used as a numeric vector of length equal to the number of
subjects when modeling rates in Poisson regression. Passed to glm2. Default: If
there is no offset, enter NULL.

Details

Individual chemical analyses with the outcome can be used to determine whether the mixture of
chemicals is positively or negatively related to the outcome. The constraint whether the overall
mixture effect, β1, is positive or negative is controlled by b1.pos argument in estimate.wqs. The
b1.pos argument is TRUE if the overall chemical mixture effect is positively related to the outcome;
otherwise, it is negatively related to the outcome. For each analysis, the outcome is regressed on
the log of the observed values for each chemical and any other covariates Z, if they exist. This was
accomplished using glm2. We summarized the results by recording the chemical name, estimating
the log chemical effect and its standard error on the outcome, and using the Akaike Information
Criterion (AIC) to indicate model fit.

By looking at the output, one can decide whether the chemical mixture is positive or negative. Gen-
erally, if the sign of estimates is mainly positive, we would decide to make b1.pos in estimate.wqs
to be TRUE. This is just one approach to determine the direction of this constraint. Alternatively,
one can conduct a WQS analysis for the positively related chemicals and another WQS analysis for
the negatively related chemicals.

Value

A data-frame of statistics of individual chemical analysis is returned:

chemical.name name of the component

estimate the estimate of log chemical effect

Std.Error the standard error of log chemical effect

AIC Model Fit. See AIC.

See Also

Other wqs: coef.wqs, do.many.wqs, estimate.wqs.formula, estimate.wqs, make.quantile.matrix,
plot.wqs, print.wqs
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Examples

# Binomial Example
data("simdata87")
analyze.individually(

y = simdata87$y.scenario, X = simdata87$X.true, Z = simdata87$Z.sim,
family = "binomial"

)
# Here, most of the "Estimate", which is the log_odds of each log of the
# chemical has on the outcome, are positive, possibly indicating a positive
# relationship between mixture of chemicals and the outcome.

coef.wqs Finding WQS Coefficients

Description

An accessor function that returns the coefficients from the validation WQS model, a wqs object.

Usage

## S3 method for class 'wqs'
coef(object, ...)

Arguments

object An object of class "wqs", usually as a result of estimate.wqs.

... other arguments.

Details

In a wqs object, the fit element, a glm2 object, is extracted. See glm2{glm2}.

See Also

coef

Other wqs: analyze.individually, do.many.wqs, estimate.wqs.formula, estimate.wqs, make.quantile.matrix,
plot.wqs, print.wqs

Examples

# Use simulated dataset and set seed for reproducibility.
data(simdata87)
set.seed(23456)
Wa <- estimate.wqs(

y = simdata87$y.scenario, X = simdata87$X.true[ , 1:3],
B = 10, family = "binomial"

)
coef(Wa)
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combine.AIC Combining AICs

Description

Combines individual AIC estimates of separate models to get a sense of overall model fit.

Usage

combine.AIC(AIC)

Arguments

AIC A vector of AICs to combine with length equal to the number of models com-
pleted (i.e. K).

Details

The WQS model fits using different completely observed datasets are combined in Stage 3 of mul-
tiple imputation. Similar to combining WQS parameter estimates, the mean of individual AIC esti-
mates is taken as the central tendency estimate of WQS model fit. The standard deviation between
individual AIC estimates indicates the difference in WQS model fits due to below the detection
limit values.

A vector of AICs may be generated from do.many.wqs().

Value

The overall fit of a model across all imputation models: the mean AIC +/- the standard error. Saved
as a 1x1 character vector.

Warning

If AIC is a vector with one element, the AIC is returned as a character rounded to the nearest whole
number with a warning printed that AIC cannot be combined.

See Also

pool.mi

Examples

# AICs from do.many.wqs() example are as follows.
bayes.AIC <- c(1295.380, 1295.669)
combine.AIC(bayes.AIC)

# One AIC
combine.AIC(1295.380)
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do.many.wqs Performing Many WQS Regressions

Description

Second Stage of Multiple Imputation: In order to analyze a complete imputed chemical array
(X.imputed, n subjects by C chemicals by K imputations) via weighted quantile sum regression,
do.many.wqs() repeatedly performs the same WQS analysis on each imputed dataset. It repeatedly
executes the estimate.wqs() function.

Usage

do.many.wqs(y, X.imputed, Z = NULL, B = 100L, ...)

Arguments

y Outcome: numeric vector or factor. Assumed to follow an exponential family
distribution given in family.

X.imputed Array of complete components with n subjects and C components and K impu-
tations. Must be complete.

Z Any covariates used. Ideally, a numeric matrix, but Z can be a factor, vector
or data-frame. Assumed to be complete; observations with missing covariate
values are ignored with a warning printed. If none, enter NULL.

B Number of bootstrap samples to be used in estimating the weights in the training
dataset. In order to use WQS without bootstrapping, set B = 1. However, Carrico
et al 2014 suggests that bootstrap some large number (like 100 or 1000) can
increase component selection. In that spirit, we set the default to 100.

... Additional arguments passed to estimate.wqs, but the arguments y, X, Z, and
place.bdls.Q1 have no effect.

Value

Returns a list with elements that consist of matrix and list versions of estimate.wqs() output:

• call: the function call, processed by rlist.

• C: the number of chemicals in mixture, number of columns in X.

• n: the sample size.

• wqs.imputed.estimates: Array with rows = # of parameters, 2 columns = mean and standard
deviation, and 3rd dimension = K.

• AIC: The overall fit of WQS models taken as the mean AIC and standard error across all
imputation models. Saved as a character element. Calling wqs.fit allows us to see all models.

• train.index: Observations that are selected to train the data in the last WQS model.

• q.train: Vector of quantiles used in training data from the last WQS model
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• train.comparison: A list of data-frames that compares the training and validation dataset for
all WQS models.

• initial: Matrix with K columns that contains the initial values used for each WQS analysis.

• wqs.train.estimates: Data-frame with rows = B. Summarizes statistics from nonlinear regres-
sion in the training datasets of all analyses:

beta1 estimate using solnp
beta1_glm, SE_beta1, test_stat, pvalue estimates of WQS parameter in model using glm2.
convergence whether or not the samples have converged
weight estimates estimates of weight for each bootstrap.
imputed A number indicating the completed dataset used in WQS analysis.

• wqs.fit: A list (length = K) of glm2 objects of the WQS model fit to validation data. These are
all the WQS estimates for all analyses. See glm2.

Note

Note #1: We only impute the missing values of the components, X. Any missing data in the outcome
and covariates are removed and ignored.

Note #2: No seed is set in this function. Because bootstraps and splitting is random, a seed should
be set before every use.

Note #3: If there is one imputed dataset, use the estimate.wqs function as do.many.wqs was not
designed in this case.

See Also

Other wqs: analyze.individually, coef.wqs, estimate.wqs.formula, estimate.wqs, make.quantile.matrix,
plot.wqs, print.wqs

Examples

#Example takes 11 seconds -- too long to run.
## Not run:
data("simdata87")
# Create 2 multiple imputed datasets using bootstrapping, but only use first 2 chemicals.
set.seed(23234)
l <- impute.boot(

X = simdata87$X.bdl[ , 1:2], DL = simdata87$DL[1:2],
Z = simdata87$Z.sim[, 1], K = 2

)
# Perform WQS regression on each imputed dataset
set.seed(50679)
bayes.wqs <- do.many.wqs(

y = simdata87$y.scenario, X.imputed = l$X.imputed,
Z = simdata87$Z.sim,
B = 2, family = "binomial"

)
bayes.wqs$wqs.imputed.estimates

## End(Not run)
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# @importFrom scales ordinal

estimate.wqs Weighted Quantile Sum (WQS) Regression

Description

Performs weighted quantile sum (WQS) regression model for continuous, binary, and count out-
comes that was extended from wqs.est (author: Czarnota) in the wqs package. By default, if there
is any missing data, the missing data is assumed to be censored and placed in the first quantile.
Accessory functions (print, coefficient, plot) also accompany each WQS object.

Usage

estimate.wqs(y, X, Z = NULL, proportion.train = 1L, n.quantiles = 4L,
place.bdls.in.Q1 = if (anyNA(X)) TRUE else FALSE, B = 100L,
b1.pos = TRUE, signal.fn = c("signal.none", "signal.converge.only",
"signal.abs", "signal.test.stat"), family = c("gaussian", "binomial",
"poisson"), offset = NULL, verbose = FALSE)

Arguments

y Outcome: numeric vector or factor. Assumed to follow an exponential family
distribution given in family.

X Components/chemicals to be combined into an index; a numeric matrix or data-
frame.

Z Any covariates used. Ideally, a numeric matrix, but Z can be a factor, vector
or data-frame. Assumed to be complete; observations with missing covariate
values are ignored with a warning printed. If none, enter NULL.

proportion.train

The proportion of data between 0 and 1 used to train the model. If propor-
tion.train = 1L, all the data is used to both train and validate the model. Default:
1L.

n.quantiles An integer to specify the number of quantiles in categorizing the columns of X,
e.g. in quartiles (q = 4), deciles (q = 10), or percentiles (q = 100). Default: 4L.

place.bdls.in.Q1

Logical; if TRUE or X has any missing values, missing values in X are placed
in the first quantile of the weighted sum. Otherwise, the data is complete (no
missing data) and the data is equally split into quantiles.

B Number of bootstrap samples to be used in estimating the weights in the training
dataset. In order to use WQS without bootstrapping, set B = 1. However, Carrico
et al 2014 suggests that bootstrap some large number (like 100 or 1000) can
increase component selection. In that spirit, we set the default to 100.
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b1.pos Logical; TRUE if the mixture index is expected to be positively related to the
outcome (the default). If mixture index is expected to be inversely related to the
outcome, put FALSE.

signal.fn A character value indicating which signal function is used in calculating the
mean weight. See details.

family The distribution of outcome y. A character value: if equal to "gaussian" a linear
model is implemented; if equal to "binomial" a logistic model is implemented; if
equal to "poisson", a log-link (rate or count) model is implemented. See family
in stats package. Passed to glm2. Default: "gaussian".

offset The at-risk population used as a numeric vector of length equal to the number of
subjects when modeling rates in Poisson regression. Passed to glm2. Default: If
there is no offset, enter NULL.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Details

The solnp algorithm, or a nonlinear optimization technique using augmented Lagrange method,
is used to estimate the weights in the training set. If the log likelihood evaluated at the current
parameters is too large (NaN), the log likelihood is reset to be 1e24. A data-frame with object name
train.estimates that summarizes statistics from the nonlinear regression is returned; it consists of
these columns:

beta1 estimate using solnp

beta1_glm, SE_beta1, test_stat, pvalue estimates of WQS parameter in model using glm2.

convergence logical, if TRUE the solnp solver has converged. See solnp.

weight estimates estimates of weight for each bootstrap.

Signal functions allow the user to adjust what bootstraps are used in calculating the mean weight.
Looking at a histogram of the overall mixture effect, which is an element after plotting a WQS
object, may help you to choose a signal function. The signal.fn argument allows the user to choose
between four signal functions:

signal.none Uses all bootstrap-estimated weights in calculating average weight.

signal.converge.only Uses the estimated weights for the bootstrap samples that converged.

signal.abs Applies more weight to the absolute value of test statistic for beta1, the overall mixture
effect.

signal.test stat Applies more weight to the absolute value of test statistic for beta1, the overall
mixture effect.

This package uses the glm2 function in the glm2 package to fit the validation model.

The object is a member of the "wqs" class; accessory functions include coef(), print(), and plot().
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Value

estimate.wqs returns an object of class "wqs". A list with the following items: (** important)

call The function call, processed by rlist.
C The number of chemicals in mixture, number of columns in X.

n The sample size.

train.index Vector, The numerical indices selected to form the training dataset. Useful to do side-
by-side comparisons.

q.train Matrix of quantiles used in training data.

q.valid Matrix of quantiles used in validation data.

train.comparison Dataframe that compares the training and validation datasets to validate equiv-
alence

initial Vector: Initial values used in WQS.

train.estimates Data-frame with rows = B. Summarizes statistics from nonlinear regression in
training dataset. See details.

processed.weights ** A C x 2 matrix, mean bootstrapped weights (and their standard errors) after
filtering using a signal function. Used to calculate the WQS index.

WQS Vector of the weighted quantile sum estimate based on the processed weights.

fit ** glm2 object of the WQS model fit to validation data. See glm2{glm2}.

boot.index Matrix of bootstrap indices used in training dataset to estimate the weights. Its dimen-
sion is the length of training dataset with number of columns = B.

Rate WQS Regression

Rates can be modelled using the offset. The offset argument of estimate.wqs() function is on the
normal scale, so please do not take a logarithm. The objective function used to model the mean rate
of the ith individual λi with the offset is:

λi = offset ∗ exp(η)

, where η is the linear term of a regression.

Note

No seed is set in this function. Because bootstraps and splitting is random, a seed should be set
before every use.

References

Carrico, C., Gennings, C., Wheeler, D. C., & Factor-Litvak, P. (2014). Characterization of Weighted
Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. Journal of Agri-
cultural, Biological, and Environmental Statistics, 20(1), 100–120. https://doi.org/10.1007/s13253-
014-0180-3

Czarnota, J., Gennings, C., Colt, J. S., De Roos, A. J., Cerhan, J. R., Severson, R. K., . . . Wheeler,
D. C. (2015). Analysis of Environmental Chemical Mixtures and Non-Hodgkin Lymphoma Risk in
the NCI-SEER NHL Study. Environmental Health Perspectives, 123(10), 965–970. https://doi.org/10.1289/ehp.1408630
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Czarnota, J., Gennings, C., & Wheeler, D. C. (2015). Assessment of Weighted Quantile Sum
Regression for Modeling Chemical Mixtures and Cancer Risk. Cancer Informatics, 14, 159–171.
https://doi.org/10.4137/CIN.S17295

See Also

Other wqs: analyze.individually, coef.wqs, do.many.wqs, estimate.wqs.formula, make.quantile.matrix,
plot.wqs, print.wqs

Examples

# Example 1: Binary outcome using the example simulated dataset in this package.
data(simdata87)
set.seed(23456)
W.bin4 <- estimate.wqs(

y = simdata87$y.scenario, X = simdata87$X.true[, 1:3],
B = 10, family = "binomial",
verbose = TRUE
)

W.bin4

# Example 2: Continuous outcome. Use WQSdata example from wqs package.
## Not run:
if (requireNamespace("wqs", quietly = TRUE)) {
library(wqs)
data(WQSdata)
set.seed(23456)
W <- wqs::wqs.est(WQSdata$y, WQSdata[,1:4], B = 10)
Wa <- estimate.wqs (y = WQSdata$y, X = WQSdata[, 1:4], B = 10)
Wa
} else {
message("You need to install the package wqs for this example.")
}

## End(Not run)

estimate.wqs.formula Formula for WQS Regression

Description

A wrapper function for estimate.wqs so that a formula can be used instead.

Usage

estimate.wqs.formula(formula, data, chem_mix, ..., verbose = FALSE)
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Arguments

formula An object of class "formula" that consists of an outcome, chemical mixture, and
if any, covariates. See formula.

data The data in a data-frame format

chem_mix Indices or column names of variables to be combined into an index.

... Additional WQS parameters passed to estimate.wqs. Note: data arguments (y,
X, and Z) have no effect.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

See Also

Other wqs: analyze.individually, coef.wqs, do.many.wqs, estimate.wqs, make.quantile.matrix,
plot.wqs, print.wqs

Examples

#Example 1
set.seed(232)
test.data <- data.frame(x1 = rlnorm(100, 3, 1), x2 = rlnorm(100, 5, 1),

z1 = rlnorm(100, 10, 3), z2 = rbinom(100, 1, 0.7),
y = rnorm(100, 100, 15)

)
estimate.wqs.formula(y ~., data = test.data, chem_mix = c("x1", "x2"))

## Not run:
#Example 2: No covariates
estimate.wqs.formula(y~ x1 + x2, data = test.data, chem_mix = 1:2)

#Example 3: NA in Z
test.data$z1[10] <- NA
estimate.wqs.formula( y ~., data = test.data, chem_mix = c("x1", "x2"))

#Example 4: NA in Z and y
test.data$y[1] <- NA
estimate.wqs.formula( y ~., data = test.data, chem_mix = c("x1", "x2"))

#Example 5: NA in Z, X, and y
test.data$x1[2] <- NA
estimate.wqs.formula( y ~., data = test.data, chem_mix = c("x1", "x2"),

place.bdls.in.Q1 = TRUE
)

## End(Not run) #due to time constraints
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impute.boot Bootstrapping Imputation for Many Chemicals

Description

If many chemicals have values below the detection limit, this function creates an imputed dataset us-
ing a bootstrap procedure as described in Lubin et al. 2004. It repeatedly invokes impute.Lubin().

Usage

impute.boot(X, DL, Z = NULL, K = 5L, verbose = FALSE)

Arguments

X A numeric vector, matrix, or data-frame of chemical concentration levels with n
subjects and C chemicals to be imputed. Missing values are indicated by NA’s.
Ideally, a numeric matrix.

DL The detection limit for each chemical as a numeric vector with length equal to C
chemicals. Vector must be complete (no NA’s); any chemical that has a missing
detection limit is not imputed. If DL is a data-frame or matrix with 1 row or 1
column, it is forced as a numeric vector.

Z Any covariates used in imputing the chemical concentrations. Ideally, a nu-
meric matrix; however, Z can be a factor, vector, or data-frame. Assumed to
be complete; observations with missing covariate variables are ignored in the
imputation, with a warning printed. If none, enter NULL.

K A natural number of imputed datasets to generate. Defaults: 5L.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Details

Lubin et al. (2004) evaluate several imputation approaches and show that a multiple imputation
procedure using bootstrapping creates unbiased estimates and nominal confidence intervals unless
the proportion of missing data is extreme. The authors coded the multiple imputation procedure in
a SAS macro that is currently available. We converted the SAS macro into R code.

The impute.Lubin() function imputes a single chemical with missing values. The distribution for
the interval-censored data chemcol is assumed to be lognormal and censored between 0 and DL.
After bootstrapping, the values BDL are imputed using the inverse transform method. In other
words, generate ui ∼ Unif(0.0001, dlcol) and assign value F−1(u) to xi for i = 1, ...n0 subjects
with chemical values BDL.

In order to impute a single chemical:

1. Input arguments.

2. Obtain bootstrap samples.

3. Generate weights vector.
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4. Use Surv function from Survival package to obtain survival object.

5. Use survreg function from Survival package to obtain survival model.

6. Sample from lognormal distribution with beta and variance from survival model as the param-
eters to obtain upper and lower bounds.

7. Randomly generate value from uniform distribution between the previously obtained upper
and lower bounds.

8. Sample from the lognormal distribution to obtain the imputed data value associated with the
above uniform value.

impute.boot() repeatedly performs this procedure for all chemicals.

Value

A list of:

X.imputed A number of subjects (n) x number of chemicals (c) x K array of imputed X values.

bootstrap_index A n x K matrix of bootstrap indices selected for the imputation.

indicator.miss A check; the sum of imputed missing values above detection limit, which should
be 0.

Note

Note #1: Code was adapted from Erin E. Donahue’s original translation of the SAS macro devel-
oped from the paper.

Note #2: No seed is set. Please set seed so the same bootstraps are selected.

Note #3: If the length of the DL parameter is greater than the number of components, the smallest
value is assumed to be a detection limit. A warning is printed to screen.

References

Lubin, J. H., Colt, J. S., Camann, D., Davis, S., Cerhan, J. R., Severson, R. K., . . . Hartge, P. (2004).
Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environmen-
tal Health Perspectives, 112(17), 1691–1696. https://doi.org/10.1289/ehp.7199

See Also

Other imputation: impute.Lubin, impute.sub

Examples

data("simdata87")
# Impute using one covariate.
l <- impute.boot(X = simdata87$X.bdl, DL = simdata87$DL, Z = simdata87$Z.sim[, 1],

K = 2, verbose = TRUE
)

apply(l$X.imputed, 2:3, summary)
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impute.Lubin Lubin et al. 2004: Bootstrapping Imputation for One Chemical

Description

Softly DEPRECATED. Use impute.boot instead.

For one chemical, this function creates an imputed dataset using a bootstrap procedure as described
in Lubin et al. 2004.

Usage

impute.Lubin(chemcol, dlcol, Z = NULL, K = 5L, verbose = FALSE)

Arguments

chemcol A numeric vector, the chemical concentration levels of length C. Censored val-
ues are indicated by NA. On original scale.

dlcol The detection limit of the chemical. A value or a numeric vector of length C.
Must be complete; a missing detection limit is ignored.

Z Any covariates used in imputing the chemical concentrations. Ideally, a nu-
meric matrix; however, Z can be a factor, vector, or data-frame. Assumed to
be complete; observations with missing covariate variables are ignored in the
imputation, with a warning printed. If none, enter NULL.

K A natural number of imputed datasets to generate. Defaults: 5L.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Value

A list of:

X.imputed A matrix with n subjects and K imputed datasets is returned.

bootstrap_index A n x K matrix of bootstrap indices selected for the imputation. Each column is
saved as a factor.

indicator.miss A check; the sum of imputed missing values above detection limit, which should
be 0.

See Also

Other imputation: impute.boot, impute.sub
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Examples

# Apply to an example simulated dataset.
# A seed of 202 is executed before each run for reproducibility.
data(simdata87)

# No Covariates
set.seed(202)
results_Lubin <- impute.Lubin(chemcol = simdata87$X.bdl[, 1], dlcol = simdata87$DL[1],

K = 5, verbose = TRUE)
str(results_Lubin)
summary(results_Lubin$imputed_values)

# 1 Covariate
set.seed(202)
sim.z1 <- impute.Lubin(simdata87$X.bdl[, 1], simdata87$DL[1],

K = 5, Z = simdata87$Z.sim[, 1], verbose = TRUE)
summary(sim.z1$imputed_values)

# 2 Covariates
set.seed(202)
sim.z2 <- impute.Lubin(simdata87$X.bdl[, 1], simdata87$DL[1],

K = 5, Z = simdata87$Z.sim[, -2])
summary(sim.z2$imputed_values)
summary(sim.z2$bootstrap_index)

impute.multivariate.bayesian

Imputation Arguments

Description

Function is in works. Included to collect all imputation arguments in one place.

Usage

impute.multivariate.bayesian(X, DL, Z, prior.coeff.mean, prior.cov.mean,
initial, T, n.burn, K, verbose)

Arguments

X A numeric vector, matrix, or data-frame of chemical concentration levels with n
subjects and C chemicals to be imputed. Missing values are indicated by NA’s.
Ideally, a numeric matrix.

DL The detection limit for each chemical as a numeric vector with length equal to C
chemicals. Vector must be complete (no NA’s); any chemical that has a missing
detection limit is not imputed. If DL is a data-frame or matrix with 1 row or 1
column, it is forced as a numeric vector.
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Z Any covariates used in imputing the chemical concentrations. Ideally, a nu-
meric matrix; however, Z can be a factor, vector, or data-frame. Assumed to
be complete; observations with missing covariate variables are ignored in the
imputation, with a warning printed. If none, enter NULL.

prior.coeff.mean

The prior mean of number of covariates (p) x C coefficient matrix. The default,
entered as NULL, will be a matrix of 1’s, given by J.

prior.cov.mean The prior mean of covariance matrix. The default, entered as NULL, is an iden-
tity matrix with size equal to the number of chemicals. Given by I.

initial An optional two-item list that consists of initial values for the log imputed BDL
values vectorized by subject in the Gibbs Sampler. The list contains two ele-
ments, one for each chain in the Gibbs Sampler. Each element is a vector of
length n0C containing the log imputed BDL values vectorized by subject, (n0 is
total # of missing values). If unknown for each chain, enter NA, and the initial
values are automatically generated.

T Number of total iterations for the Gibbs Sampler. Defaults: 1000L.

n.burn The burn-in, which is the number of initial iterations to be discarded. Generally,
the burn-in can be quite large as the imputed chemical matrices, X.imputed, are
formed from the end of the chain – the lowest state used is T − 10 ∗K. Default
is 1L (no burn-in).

K A natural number of imputed datasets to generate. Defaults: 5L.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Value

nothing – currently there is no function here.

impute.sub Imputing by Substitution

Description

The values below the detection limit for each chemical are substituted by its detection limit/sqrt(2).

Usage

impute.sub(X, DL, verbose = FALSE)

Arguments

X A numeric vector, matrix, or data-frame of chemical concentration levels with n
subjects and C chemicals to be imputed. Missing values are indicated by NA’s.
Ideally, a numeric matrix.
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DL The detection limit for each chemical as a numeric vector with length equal to C
chemicals. Vector must be complete (no NA’s); any chemical that has a missing
detection limit is not imputed. If DL is a data-frame or matrix with 1 row or 1
column, it is forced as a numeric vector.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Details

A n x C matrix of components X are interval-censored between zero and different detection limits
DL. Although X may refer to a variable with no obvious DL, we consider chemical concentrations
X with each being partially observed.

Value

A n x C matrix where the BDL values of each chemical are substituted by its detection limit/sqrt(2).

See Also

Other imputation: impute.Lubin, impute.boot

Examples

data("simdata87")

X.sub <- impute.sub(X = simdata87$X.bdl, DL = simdata87$DL, verbose = TRUE)

# Compare substituted imputed data against the truth
probs <- c(0.01, 0.05, 0.09, 0.25, 0.5, 0.8, 1)
apply(X.sub, 2, quantile, probs)
round(apply(simdata87$X.true, 2, quantile, probs), 5)

impute.univariate.bayesian.mi

Univariate Bayesian Imputation

Description

Given interval-censored data between 0 and different detection limits (DL), impute.univariate.bayesian.mi
generates K complete datasets using Univariate Bayesian Imputation.

Usage

impute.univariate.bayesian.mi(X, DL, T = 1000L, n.burn = 1L, K = 5L,
verbose = FALSE)
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Arguments

X A numeric vector, matrix, or data-frame of chemical concentration levels with n
subjects and C chemicals to be imputed. Missing values are indicated by NA’s.
Ideally, a numeric matrix.

DL The detection limit for each chemical as a numeric vector with length equal to C
chemicals. Vector must be complete (no NA’s); any chemical that has a missing
detection limit is not imputed. If DL is a data-frame or matrix with 1 row or 1
column, it is forced as a numeric vector.

T Number of total iterations for the Gibbs Sampler. Defaults: 1000L.

n.burn The burn-in, which is the number of initial iterations to be discarded. Generally,
the burn-in can be quite large as the imputed chemical matrices, X.imputed, are
formed from the end of the chain – the lowest state used is T − 10 ∗K. Default
is 1L (no burn-in).

K A natural number of imputed datasets to generate. Defaults: 5L.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Details

This is the Univariate Bayesian Imputation approach. Only one chemical is imputed at a time. Both
the observed and missing data are assumed to follow

log(Xij) ∼indep Norm(µj , σ
2
j ), i = 1, ...n; j = 1, ...C

Subjects and chemicals are assumed to be independent. Jeffery’s priors are placed on mean and
variance for each chemical. Posterior simulation uses data augmentation approach. Convergence is
checked using Gelman-Rubin statistics. Given sample convergence, the K sets of posterior missing
values come from the burned Markov chains thinned by K. The imputed values are then substituted
for the missing data, forming K complete datasets.

Each of the posterior parameters from MCMC chain–mu.post, sigma.post, and log.x.miss–is saved
as a list of mcmc objects (in coda) of length # of chemicals. (A list was chosen since the number of
missing values n0 might be different among chemicals).

Value

Returns a list that contains: ** Most important.

X.imputed ** An array of n subjects x C chemicals x K imputed sets on the normal scale.

mu.post A list with length equal to the number of chemicals, where each element (or for each
chemical) is the posterior MCMC chain of the mean, saved as T x 1 mcmc object (in coda).

sigma.post A list with length equal to the number of chemicals, where each element of list (or for
each chemical) is the posterior MCMC chain of the standard deviation, sigma, saved as T x 1
coda::mcmc object.

log.x.miss A list with length equal to the number of chemicals, where each element of list is a T x
n0j matrix of the log of the imputed missing values, saved as coda::mcmc object. n0j is the
total # of missing values for the jth chemical.
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convgd.table A data-frame summarizing convergence with C rows and columns of the Gelman-
Rubin statistic and whether the point estimate is less than 1.1. A summary is also printed to
the screen.

number.no.converged A check and summary of convgd.table. Total number of parameters that
fail to indicate convergence of MCMC chains using Gelman-Rubin statistic. Should be 0.

indicator.miss A check; the sum of imputed missing values above detection limit, which should
be 0.

Note

No seed is set in this function. Because bootstraps and MCMC are random, a seed should be set
before every use.

Examples

# Example 1: 10% BDLs Example -------------------------
# Sample Dataset 87, using 10% BDL Scenario
data(simdata87)
set.seed(472195)
result.imputed <- impute.univariate.bayesian.mi(

X = simdata87$X.bdl[, 1:2], DL = simdata87$DL[1:2],
T = 1000, n.burn = 50, K = 2, verbose = TRUE)

# Did the MCMC converge? A summary of Gelman Statistics is provided.
summary(result.imputed$convg.table)
# Summary of Impouted Values
apply(result.imputed$X.imputed, 2:3, summary)

make.quantile.matrix Making Quantiles of Correlated Index

Description

Scores quantiles from a numeric matrix. If the matrix has values missing between zero and some
threshold, say the detection limit, all these missing values (indicated by NA) are placed into the first
quantile.

Usage

make.quantile.matrix(X, n.quantiles, place.bdls.in.Q1 = if (anyNA(X))
TRUE else FALSE, ..., verbose = FALSE)

Arguments

X A numeric matrix. Any missing values are indicated by NA’s.

n.quantiles An integer to specify the number of quantiles in categorizing the columns of X,
e.g. in quartiles (q = 4), deciles (q = 10), or percentiles (q = 100). Default: 4L.
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place.bdls.in.Q1

Logical; if TRUE or X has any missing values, missing values in X are placed
in the first quantile of the weighted sum. Otherwise, the data is complete (no
missing data) and the data is equally split into quantiles.

... Further arguments passed to or from other methods. Currently has no effect.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.

Details

Produces sample quantiles for a matrix X using quantile() function. Names are kept and the 7th
quantile algorithm is used. As ties between quantiles may exist, .bincode() is used.

When there is missing data (as indicated by NA’s), make.quantile.matrix places all of the cen-
sored data into the first quantile. The remaining quantiles are evenly spread over the observed data.
A printed message is displaced what the function does.

Value

A matrix of quantiles with rows = nrow(X) and with columns = n.quantiles.

Note

Developed as an accessory function for estimate.wqs().

See Also

quantile

Other wqs: analyze.individually, coef.wqs, do.many.wqs, estimate.wqs.formula, estimate.wqs,
plot.wqs, print.wqs

Examples

# Example 1: Make quantiles for first nine chemicals using complete chemical data
data(simdata87)
q <- make.quantile.matrix(simdata87$X.true[, 1:9], 4)
q <- apply(q, 2, as.factor)
summary(q)

# Example 2: Place missing values of first nine chemicals in first quantiles
q2 <- make.quantile.matrix(simdata87$X.bdl[, 1:9], 4, verbose = TRUE)
summary(q2)
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plot.wqs Histograms of the Weights, Beta1, and WQS using ggplot2

Description

Plots a WQS object producing three histograms of the weights, the overall chemical effect, and
WQS across bootstraps. These histograms are returned as ggplot2 objects.

Usage

## S3 method for class 'wqs'
plot(x, filename = "myfile", ...)

Arguments

x An object of class "wqs", usually as a result of estimate.wqs.
filename DEFUNCT; argument not used; files are no longer saved. Suggested Name is

WQS_Plot.
... DEFUNCT. Arguments no longer passed to ggsave(). This argument currently

has no effect.

Details

Three histograms are produced using geom_histogram with ten bins.

Once a Weighted Quantile Sum (WQS) regression is run, the hist.weights is a panel of histograms.
These are distributions of the weight estimates to determine which chemicals are important in the
mixture. Each weight is between 0 and 1 and sum to 1. The individual bootstrapped weight esti-
mates were used to construct the overall chemical index, WQS.

The hist.beta1 is the distribution of the overall effect of the mixture on the outcome across boot-
straps in the training dataset. Due to the constraint in WQS regression, these estimates are either all
positive or all negative as dictated by b1.pos() argument in estimate.wqs. The patterns detected
here might be helpful in adjusting the signal function, which is controlled by signal.fn() argument
in estimate.wqs.

The third histogram, hist.wqs, shows the range of overall chemical index, or WQS, across each
bootstrap. Due to constraints, this always is between 0 and n.quantiles - 1.

Plots no longer saved automatically; please save manually using ggsave().

Value

A list of histograms

hist.weights A list of ggplot2 histogram of weights across the bootstrap. Each component consists
of a histogram with a weight estimate.

hist.beta1 A histogram of the overall chemical mixture effect. This parameter is constrained to be
all positive if the b1.pos argument in estimate.wqs() is TRUE.; otherwise, it is FALSE.

hist.WQS A histogram of the overall chemical sum, WQS. Due to constraints, it is always between
0 and n.quantiles-1.
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See Also

Other wqs: analyze.individually, coef.wqs, do.many.wqs, estimate.wqs.formula, estimate.wqs,
make.quantile.matrix, print.wqs

Examples

# Use simulated dataset and set seed for reproducibility.
data(simdata87)
set.seed(23456)
Wa <- estimate.wqs(y = simdata87$y.scenario, X = simdata87$X.true[, 1:3],

B = 10, family = "binomial")
plot(Wa)

pool.mi Pooling Multiple Imputation Results

Description

Combine multiple parameter estimates (as used in MI) across the K imputed datasets using Rubin
1996 / 1987 formulas, including: calculating a pooled mean, standard error, missing data statistics,
confidence intervals, and p-values.

Usage

pool.mi(to.pool, n = 999999, method = c("smallsample", "rubin"),
alpha = 0.05, prt = TRUE, verbose = FALSE)

Arguments

to.pool An array of p x 2 x K, where p is the number of parameters to be pooled, 2 refers
to the parameters of mean and standard deviation, and K imputation draws. The
rownames of to.pool are kept in the results.

n A number providing the sample size, which is used in calculating the degrees of
freedom. If nothing is specified, a large sample is assumed. Has no effect if K =
1.

method A string to indicate the method to calculate the degrees of freedom, df.t. If
method = "smallsample" (the default) then the Barnard-Rubin adjustment for
small degrees of freedom is used. Otherwise, the method from Rubin (1987) is
used.

alpha Type I error used to form the confidence interval. Default: 0.05.

prt Boolean variable for printing out the standard output. If TRUE, selective parts
of a pool.mi object are printed in an understandable fashion.

verbose Logical; if TRUE, prints more information. Useful to check for any errors in the
code. Default: FALSE.
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Details

Stage 3 of Multiple Imputation. Assumes that each complete-data estimate is normally distributed.
The input is an array with p rows referring to the number of parameters to be combined. An estimate
and within standard error forms the two columns of the array, which can be easily be taken as the
first two columns of the coefficients element of the summary of a glm/lm object. The last dimension
is the number of imputations, K. See dataset wqs.pool.test as an example.

Uses Rubin’s rules to calculate the statistics of an imputed dataset including: the pooled mean, total
standard error, a relative increase in variance, fraction of missing information, and 95% confidence
interval and p-value based on the t-distribution approximation.

Value

A data-frame is returned with the following columns:

pooled.mean The pooled univariate estimate, Qbar, formula (3.1.2) Rubin (1987).

pooled.total.se The total standard error of the pooled estimate, formula (3.1.5) Rubin (1987).

pooled.total.var The total variance of the pooled estimate, formula (3.1.5) Rubin (1987).

se.within The standard error of mean of the variances (i.e. the pooled within-imputation variance),
formula (3.1.3) Rubin (1987).

se.between The between-imputation standard error, square root of formula (3.1.4) Rubin (1987).

relative.inc.var(r) The relative increase in variance due to nonresponse, formula (3.1.7) Rubin
(1987).

proportion.var.missing(lambda) The proportion of variation due to nonresponse, formula (2.24)
Van Buuren (2012).

frac.miss.info The fraction missing information due to nonresponse, formula (3.1.10) Rubin (1987).

df.t The degrees of freedom for t reference distribution, formula (3.1.6) Rubin (1987) or method of
Barnard-Rubin (1999) (if method = "smallsample" (default)).

CI The (1-alpha)% confidence interval (CI) for each pooled estimate.

p.value The p-value used to test significance.

Note

Modified the pool.scalar (version R 3.4) in the mice package to handle multiple parameters at
once in an array and combine them. Similar to mi.inference in the norm package, but the small-
sample adjustment is missing.

References

Rubin, D. B. (1987). Multiple Imputation for nonresponse in surveys. New York: Wiley. Rubin, D.
B. (1996). Multiple Imputation After 18+ Years. Journal of the American Statistical Association,
91(434), 473–489. https://doi.org/10.2307/2291635. Barnard, J., & Rubin, D. B. (1999). Small-
Sample Degrees of Freedom with Multiple Imputation. Biometrika, 86(4), 948–955.
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Examples

#### Example 1: Sample Dataset 87, using 10% BDL Scenario
data(wqs.pool.test)
# Example of the `to.pool` argument
head(wqs.pool.test)

# Pool WQS results and decrease in order of weights.
wqs.results.pooled <- pool.mi(wqs.pool.test, n = 1000)
weight.dec <- c(order(wqs.results.pooled$pooled.mean[1:14], decreasing = TRUE), 15:16)
wqs.results.pooled <- wqs.results.pooled[weight.dec, ]
wqs.results.pooled

# When there is 1 estimate (p = 1)
a <- pool.mi(wqs.pool.test[1, , , drop = FALSE], n = 1000)
a
# wqs.results.pooled["dieldrin", ]

# For single imputation (K = 1):
b <- pool.mi(wqs.pool.test[, , 1, drop = FALSE], n = 1000)
b

# Odds ratio and 95% CI using the CLT.
odds.ratio <- exp(wqs.results.pooled[15:16, c("pooled.mean", "CI.1", "CI.2")])
odds.ratio

# The mice package is suggested for the examples, but not needed for the function.

print.wqs Prints the fitted WQS model along with the mean weights.

Description

Prints the fitted WQS model along with the mean weights. Adjusted from print.lm.

Usage

## S3 method for class 'wqs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x An object of class WQS, from estimate.wqs.
digits minimal number of significant digits, see print.default.
... further arguments passed to or from other methods.

See Also

Other wqs: analyze.individually, coef.wqs, do.many.wqs, estimate.wqs.formula, estimate.wqs,
make.quantile.matrix, plot.wqs
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Examples

# See estimate.wqs().

# As base package is always available, there is no need to ever import base

simdata87 Simulated Dataset 87

Description

The 87th dataset from the simulation study with 10 percent of observations were below the detec-
tion limit (BDL) based of a real epidemiological dataset. Out of 1000 subjects, fourteen correlated
chemicals are completely observed (in X.true). In this simulation design, each chemical was simu-
lated from independent normal distributions.

BDLs were created using the bottom 10th percentile of the true data. Three covariates are consid-
ered: the child’s age, the child’s sex (Male/Female), and the child’s ethnicity/race (White, Non-
Hispanic White, and Other). After creating a model matrix, male white newborns (age = 0) serves
as the reference. The age is simulated from a normal with mean of 3.78 and standard deviation of
1.85 truncated between 0 and 8. The categorical variables are simulated from independent binomial
distributions. The outcome will be simulated using a logistic WQS model with complete data:

logit(µi) = −1.25+log(1.75)∗WQSi+0.032∗zage+−0.0285∗zsex+0.540∗zHis+0.120∗zother

where
WQSi = Σc

j=1(wj ∗ qij)

with four of the 14 weights wj’s being 0.25 and the rest 0. The qij refers to the quantile score of
the jth chemical in the ith subject.

Usage

data(simdata87)

Format

A list that contains:

• y.scenario: A binary outcome (1 = case, 0 = control)

• X.true: 14 chemicals; complete data.

• X.bdl: 14 chemicals with NA’s subbed for the bottom 10th percentile of the true values.

• DL: The detection limit. Here, found to be the 10th percentile of X.true

• n0: A vector of length 14 indicating the number of non-detects.

• delta: A vector of length 14 indicating whether the chemical is observed (1) or not (0)

• Z.sim: A data-frame of covariates consisting of:

– Age: A continuous covariate of child’s age , simulated using normal with mean of 3.78
and sd of 1.85, truncated between 0 and 8, the maximum age of leukemia.
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– Female: Binary variable child’s sex, simulated using the proportion of females (0.42) by
binomial distribution.

– Hispanic, Non-Hispanic_Others: Two indicator variables of child’s race/ethnicity, sam-
pled from independent binomial distributions (proportion of Hispanic: 0.33; proportion
of Other: 0.23).

• time: The time required to simulate the data.

References

Ward, M. H., Colt, J. S., Metayer, C., Gunier, R. B., Lubin, J., Crouse, V., . . . Buffler, P. A. (2009).
Residential Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides and Risk of
Childhood Leukemia. Environmental Health Perspectives, 117(6), 1007–1013. https://doi.org/10.1289/ehp.0900583

Examples

simdata87 <- data(simdata87)

wqs.pool.test Combining WQS Regression Estimates

Description

wqs.pool.test was produced to demonstrate pool.mi(). First, the univariate Bayesian imputation
approach (using impute.univariate.bayesian.mi) imputed the X.bdl element of simdata87
multiple times to form an imputed X array. Multiple WQS regressions were run on the imputed X
array to produce an array of WQS parameter estimates, wqs.pool.test.

Usage

data(wqs.pool.test)

Format

An array of 16 x 2 x 3, with

• 16 parameters as the rows (The 14 weights, intercept, and WQS estimate of a WQS model),

• 2 refers to the parameters of mean and standard deviation

• K=3 complete imputed datasets.

See Also

pool.mi

Examples

wqs.pool.test <- data(wqs.pool.test)

# stage_3_pool_mi_example
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