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Abstract

Time series are often sampled at different frequencies, which leads to mixed-frequency
data. Mixed frequencies are often neglected in applications as high-frequency series are
aggregated to lower frequencies. In the mfbvar package, we introduce the possibility to
estimate Bayesian vector autoregressive (VAR) models when the set of included time se-
ries consists of monthly and quarterly variables. The package implements several common
prior distributions as well as stochastic volatility methods. The mixed-frequency nature
of the data is handled by assuming that quarterly variables are weighted averages of un-
observed monthly observations. We provide a user-friendly interface for model estimation
and forecasting. The capabilities of the package are illustrated in an application.
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1. Introduction

Vector autoregressive (VAR) models constitute an important tool for multivariate time series
analysis. They are, in their original form, easy to fit and to use and have hence been used for
various types of policy analyses as well as for forecasting purposes. A major obstacle in applied
VAR modeling is the curse of dimensionality: the number of parameters grows quadratically
in the number of variables, and having several hundred or even thousands of parameters is
not uncommon. Thus, VAR models estimated by maximum likelihood are usually associated
with bad precision. As a remedy, Bayesian estimation has become widely popular following
Litterman (1986) and the so-called Minnesota prior, which regularizes the estimation such
that the parameters are shrunk towards a stylized view of macroeconomic time series. In the
traditional Minnesota prior, the prior belief is that the time series are independent random
walks. The prior puts prior densities more tightly around zero for higher-order lags, thus
implying that recent lags should be relatively more important than more distant lags. The
Minnesota prior, and variations thereof, has been successful in forecasting; for examples, the
reader is referred to Bańbura, Giannone, and Reichlin (2010) and Karlsson (2013) and the
references therein. For an accessible introduction to VAR modeling in macroeconomics, see
Stock and Watson (2001).

Another prior that has shown promising results with respect to forecasting is the steady-state
prior proposed by Villani (2009). In the Minnesota prior, common practice is to put a loose
prior on the intercept in the VAR model. The steady-state prior employs an alternative
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parametrization of the model in which the unconditional mean (the steady state) is present.
Thus, one can put a prior distribution on the steady states, for which there are often beliefs,
rather than on the constant term. Numerous applications of Bayesian VARs with this prior
exist in the literature, see for instance Jarociński and Smets (2008); Österholm (2010); Clark
(2011); Ankargren, Bjellerup, and Shahnazarian (2017).

In most applications, researchers use single-frequency aggregated data in order to effortlessly
be able to estimate the models. A common situation in macroeconomics is to include both
the rate of inflation and GDP growth in a model. The inflation rate is typically published
monthly, whereas GDP growth is published quarterly. Thus, a necessary first step in order
to use traditional approaches is to aggregate the monthly inflation rate to the quarterly
frequency.

By using newer techniques, there is no need to aggregate to the lowest common frequency.
Mixed data sampling (MIDAS) methods allow for various frequencies of the data to co-
exist in the model (Ghysels, Sinko, and Valkanov 2007). Moreover, bridge methods can be
used to tackle the mixed-frequency problem (Baffigi, Golinelli, and Parigi 2004). Foroni and
Marcellino (2013) provided a survey of mixed-frequency methods.

The approach that the mfbvar package implements is a state-space based approach in which it
is assumed that low-frequency variables are observed linear combinations of underlying high-
frequency processes. This implies that there is a latent monthly process for GDP growth that
is unobserved, and what is observed is a weighted average of said latent process. By assuming
such a structure, the model can be estimated by extending the single-frequency Bayesian VAR
model estimation techniques with an auxiliary step that draws from the posterior distribution
of the latent process.

The state-space-based mixed-frequency Bayesian VAR was proposed by Schorfheide and Song
(2015) using a Minnesota-style normal inverse Wishart prior. In Ankargren, Unosson, and
Yang (2019), a similar model was presented but with a steady-state prior. The mfbvar package
implements the mixed-frequency VAR with Minnesota and steady-state priors and stochastic
volatility in a user-friendly way.

The implementation of Bayesian VARs in R is not new; the BMR package (O’Hara 2017)
presents the possibility to estimate single-frequency BVARs with either the Minnesota or
steady-state prior. The BEAR toolbox (Dieppe, Legrand, and van Roye 2016), developed
at the European Central Bank, provides the same functionality and more for MATLAB

users. Moreover, various Bayesian VARs can also be estimated in EViews. However, none
of these alternatives provide mixed-frequency estimation. The existing implementations of
mixed-frequency estimation closest to ours is the MATLAB code accompanying the paper by
Schorfheide and Song (2015) and the midasr package (Ghysels, Kvedaras, and Zemlys 2016)
implementing MIDAS regression in R.
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2. Mixed-Frequency Bayesian VAR models

Suppose that the system evolves at the monthly frequency. Let xt be an n×1 monthly process.
Decompose xt = (x⊤

m,t, x
⊤
q,t)

⊤ into nm monthly variables, and a nq-dimensional latent process
for the quarterly observations. By letting yt = (y⊤

m,t, y
⊤
q,t)

⊤ denote observations, it is implied
that ym,t = xm,t as the monthly part is always observed. For the remaining quarterly variables,
we instead observe a weighted average of xq. There are two common aggregations used in
the literature: intra-quarterly averaging and triangular aggregation. The former assumes the
relation between observed and latent variables to be

yq,t =

{

1
3(xq,t + xq,t−1 + xq,t−2), t ∈ {Mar, Jun,Sep,Dec}

∅, otherwise,

and was used by e.g. Schorfheide and Song (2015) for modeling data in log-levels. The second
alternative is the triangular weighting scheme employed by Mariano and Murasawa (2003),
where

yq,t =















1
9(xq,t + 2xq,t−1 + 3xq,t−2 + 2xq,t−3 + xq,t−4), t ∈

{

Mar, Jun

Sep, Dec

}

∅, otherwise.

Intra-quarterly averaging is recommended when the dataset consists of series in log-levels,
whereas the triangular weighting scheme is appropriate when the data enter the model as
growth rates. In practice, the difference is often negligible.

As the system is assumed to evolve at the monthly frequency, we specify a VAR(p) model for
xt:

xt = φ+ Φ1xt−1 + · · · + Φpxt−p + ǫt, ǫt ∼ N(0,Σ). (1)

The VAR(p) model can be written in companion form, where we let zt = (x⊤
t , x

⊤
t−1, . . . , x

⊤
t−p+1)⊤.

Thus, we obtain
zt = π + Πzt−1 + ut, ut ∼ N(0,Ω), (2)

where π, Π and Ω are the corresponding companion form matrices constructed from (φ,Φ1, . . . ,Φp,Σ);
see Hamilton (1994).

It is now possible to specify the observation equation as

yt = MtΛzt, (3)

where Mt is a deterministic selection matrix and Λ an aggregation matrix based on the weight-
ing scheme employed. The Mt matrix in Equation (3) yields a time-varying observation vector
by selecting rows corresponding to variables which are observed, whereas Λ aggregates the
underlying latent process. For more details, see Schorfheide and Song (2015) and Ankargren
et al. (2019).

The posterior distribution of interest is p(X,Θ|Y ), whereX = (x1, . . . , xT )⊤, Y = (y1, . . . , yT )⊤

and Θ collects the parameters of the model. This posterior distribution is intractable, but
a Gibbs sampler can be employed in order to numerically approximate the posterior. Thus,
estimation can be carried out by Markov Chain Monte Carlo (MCMC) and Gibbs sampling.
We alternate between drawing from the conditional posterior of X given the parameters and
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from the conditional posterior of the parameters given X. That is, we alternate between
drawing from the conditional distributions

p(X|Θ, Y ) and p(Θ|X).

The two equations (2) and (3) constitute the transition and measurement equations of a state-
space model. By conditioning on the parameters and the data, one can make a draw from
the conditional posterior p(X|Θ, Y ) by use of a simulation smoother (Durbin and Koopman
2002). Given X, the parameters are conditionally independent of Y and a draw from p(Θ|X)
can be made as in the familiar single-frequency case with the data being X.

The preceding description of the VAR model assumes a constant error covariance matrix.
In recent years, there has been a growing interest in relaxing this assumption and modeling
heteroskedasticity by use of stochastic volatility models. Seminal work include Primiceri
(2005) and Cogley and Sargent (2005), who used VARs with time-varying parameters and
stochastic volatilities and have had large influence ever since. For forecasting, allowing for
stochastic volatility often improves the predictive ability, in particular when the forecasting
performance is evaluated with respect to density forecasts. Important work in this regard
include Clark (2011); D’Agostino, Gambetti, and Giannone (2013); Clark and Ravazzolo
(2015), whose results demonstrate the usefulness of stochastic volatilities. In the mfbvar

package, a time-varying error covariance matrix can be modeled using either the common
stochastic volatility model by Carriero, Clark, and Marcellino (2016) or using the factor
stochastic volatility model based on the work by Kastner, Frühwirth-Schnatter, and Freitas
Lopes (2017).

In the remainder of this section, we describe the prior distributions available in mfbvar and
discuss some aspects of the implementations for sampling from the posterior distribution.

2.1. Priors for Regression Parameters

Minnesota-style priors

The model can be written on matrix form as

X = WΓ + E,

where W = (W1, . . . ,WT )⊤ with Wt = (x⊤
t−1, . . . , x

⊤
t−p, 1)⊤, E = (ǫ1, . . . , ǫT )⊤, and Γ =

(Φ⊤, φ)⊤. The Minnesota prior for Γ takes one of two forms depending on the specification of
the error covariance component. We will use the term “Minnesota prior” to refer to the prior
for the model with intercept in order to more easily contrast it with an alternative specification
discussed in a later section. It does not, however, refer to the original Minnesota prior with
a fixed diagonal error covariance matrix as used by Litterman (1986); rather, it should be
interpreted as a normal prior for the regression parameters—including intercept—based on
the Minnesota prior beliefs.

Conditional normal prior A common prior for VAR models is a joint normal inverse
Wishart prior for (Γ,Σ) in which the prior Γ is constructed conditionally on the error co-
variance Σ. The conditional prior distribution for Γ is in this case a multivariate normal
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distribution of the form

vec(Γ)|Σ ∼ N(vec(Γ),Σ ⊗ Ξ), (4)

where Γ,Ξ are prior parameters specified by the researcher. The mfbvar package follows
common practice and specifies the structure of the moments of the prior distribution along
the lines of the Minnesota prior beliefs, yielding

Γ(γ) =
(

diag(γ) 0n×[(p−1)+1]

)⊤

(5)

ξi =







λ2

1

(lλ3sr)2
, lag l of variable r, i = (l − 1)n+ r

λ2
4, i = np+ 1

, (6)

where ξi are the diagonal elements of Ξ, and s2
j for j = 1, . . . , p are obtained as the resid-

ual variances from AR(4) regressions. As is customary, the prior means of all regression
parameters are set to zero, except the AR(1) parameters (γ).

Independent normal prior The conditional normal prior imposes a symmetry in the
prior for Γ through the Kronecker structure. An alternative specification is to assume Γ to
be independent of the error covariance a priori. The prior is

vec(Γ) ∼ N(vec(Γ),Ω) (7)

where Ω is the n(np+ 1) × n(np+ 1) diagonal matrix containing the prior variances of Φ(i,j)
l ,

i.e., element (i, j) of Φl that relates lag l of variable j to variable i, and the vector of intercepts
φ.

The prior variances are given by

VAR(Φ(i,j)
l ) =











λ2

1

(lλ3 )2
, if i = j

λ2

1
λ2

2

(lλ3 )2

s2

i

s2

j

, otherwise.
(8)

The main difference between (6) and (8) is that the conditional normal prior in (6) enforces
the restriction of symmetrical shrinkage of parameters in all equations. This restriction is
not imposed in (8). The implication is that in (6) λ2 is implicitly set to λ2 = 1 (i.e., no
penalization of terms corresponding to lags of other variables in a given equation), whereas
(8) allows cross-variable shrinkage to be enforced. The prior variance of the intercept is as
before VAR(φ) = 104In.

Steady-state prior

The steady-state prior proposed by Villani (2009) reformulates (1) to be on the mean-adjusted
form

Φ(L)(xt − Ψdt) = ǫt, (9)

where Φ(L) = (In − Φ1L − · · · − ΦpL
p) is an invertible lag polynomial. The intercept φ in

(1) can be replaced by the more general deterministic term Φ0dt, where Φ0 is n × m and dt
is m × 1. The steady-state parameters Ψ in (9) relate to Φ0 through Ψ = [Φ(L)]−1Φ0. By
the reformulation, we obtain parameters Ψ that immediately yield the unconditional mean
of xt—the steady state. The rationale is that while it is potentially difficult to express prior
beliefs about Φ0, eliciting prior beliefs about Ψ is often easier.
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Original steady-state prior In the original steady-state prior proposed by Villani (2009),
the prior for ψ = vec(Ψ) is given by ψ ∼ N(ψ,Ωψ). The prior distribution for Φ in mfbvar is
either of the conditional or independent normal priors in (4) and (7), respectively. The only
modification is that the constant column of Γ is excluded.

Hierarchical steady-state prior Louzis (2019) suggested an extension of the steady-
state prior that utilizes a hierarchical specification based on the hierarchical normal-gamma
shrinkage prior proposed by Griffin and Brown (2010); see also Huber and Feldkircher (2019)
for an application of the normal-gamma prior to VAR models. There are two main reasons
that justify the hierarchical steady-state prior. First, the normal-gamma prior induces a
heavy-tailed unconditional prior for the steady-state parameters, which means that the prior
generally pulls the posterior distribution towards the prior means, but with the possibility
of larger deviations due to the excess kurtosis of the prior. Second, Louzis (2019) relied on
default values for the hyperpriors following the suggestion by Huber and Feldkircher (2019).
The consequence is that only prior means must be specified. It is oftentimes easier to have
a reasonable prior belief for the means of the steady-state parameters than for the variances,
and the issue of specifying the prior is therefore simplified. The structure of the prior is

ψj |ωψ,j ∼ N(ψ
j
, ωψ,j)

ωψ,j |φψ, λψ ∼ G(φψ, 0.5φψλψ)

φψ ∼ Exp(1)

λψ ∼ G(c0, c1)

j = 1, . . . , nm

(10)

where G(a, b) denotes the gamma distribution with shape-rate parametrization, and Exp(c)
denotes the exponential distribution. Ankargren et al. (2019) employed both types of steady-
state priors in mixed-frequency BVARs and found that the hierarchical prior performed well.

2.2. Error Covariance Priors

The mfbvar package includes both homoskedastic and heteroskedastic specifications, which
are described next.

Constant volatility

Two of the more common priors for (Γ,Σ) that are used for homoskedastic VAR models are
the normal inverse Wishart and normal-diffuse priors. The former combines the conditional
normal prior for Γ with an inverse Wishart prior for Σ, and the latter uses the independent
normal prior for Γ in conjunction with a diffuse Jeffreys’ prior for Σ. For this reason, the two
alternatives for a homoskedastic Σ in mfbvar are the inverse Wishart and diffuse priors.

Inverse Wishart prior The inverse Wishart prior is specified as

Σ ∼ iW(S, ν)

S = (ν − n− 1) diag(s2
1, . . . , s

2
n)

ν = n+ 2

(11)
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where s2
i are n residual variances from auxiliary AR(4) regressions. The degrees of freedom

is fixed to n + 2 to ensure that the prior variance exists. The inverse Wishart prior for Σ is
in mfbvar always used with a conditional normal prior for the regression parameters—with
or without a separate steady-state prior—to yield a standard normal inverse Wishart prior.

Diffuse prior The diffuse prior for Σ is the Jeffreys’ prior given by

p(Σ) ∝ |Σ|−(n+1)/2.

The mfbvar package uses the diffuse prior only in combination with the independent normal
prior for the regression parameters—possibly with an additional prior for the steady-state
parameters—so that the standard normal-diffuse prior is obtained.

Stochastic volatility

The mfbvar package also includes two methods that relax the usual assumption of the er-
ror covariance matrix being constant over time. These two methods are common stochastic
volatility, proposed by Carriero et al. (2016), and factor stochastic volatility using the method-
ology developed by Kastner et al. (2017).

Common stochastic volatility The common stochastic volatility specification presented
by Carriero et al. (2016) assumes that the covariance structure in the model is constant over
time, but adds a factor that enables time-dependent scaling of the error covariance matrix.
More specifically, it is assumed that

VAR(ǫt|ft,Σ) = ftΣ,

where ft is a scalar, Σ is inverse Wishart as in (11), and

log ft = ρ log ft−1 + vt

vt ∼ N(0, σ2)

ρ ∼ N(µ
ρ
,Ωρ; |ρ| < 1)

σ2 ∼ IG(d · σ2, d),

(12)

where N(a, b; |x| < c) denotes the truncated normal distribution with support (−c, c), and
IG(a, b) is the inverse gamma distribution with parameters (a, b).

The common stochastic volatility model for the error covariance matrix further requires the
conditional normal prior in (4) for Γ. The computational benefits associated with the normal
inverse Wishart prior, which are due to its symmetry and Kronecker factorization, still apply
under the common stochastic volatility framework, and the method therefore offers a simple
and parsimonious way of coping with changing volatility with relatively little effort. This
form of volatility was used by Götz and Hauzenberger (2018); Ankargren et al. (2019) who
documented improved forecasts compared to the standard prior with constant volatility.

Factor stochastic volatility The mfbvar package also allows for relaxing the assumption
of a constant error covariance matrix by modeling the time-varying error covariance matrix
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using a factor stochastic volatility model. This line of modeling VAR models has previously
been pursued by Kastner and Huber (2018) for single-frequency VAR models, and Ankargren
and Jonéus (2019b) have discussed its advantages for estimating large-scale mixed-frequency
VARs. The factor stochastic volatility model in mfbvar is based on the approach taken by
Kastner et al. (2017), see also Aguilar and West (2000), which decomposes the error term in
(1) as

ǫt = Λfft + νt

ft ∼ N(0,Ωf
t )

νt ∼ N(0,Ων
t )

where Λf (n × r) is a matrix of factor loadings, ft (r × 1) a vector of latent factors and νt
(n × 1) is a vector of idiosyncratic error terms. Both Ωf

t and Ων
t are diagonal with elements

ωft,i and ωνt,j for i = 1, . . . , r and j = 1, . . . , n. The diagonal elements, in turn, evolve as
geometric AR(1) processes given by

logωft,i = φfi logωft−1,i + σfi ǫ
f
t,i, ǫft,i ∼ N(0, 1)

logωνt,j = µνj + φνi (logωνt−1,j − µνj ) + σνj ǫ
ν
t,j , ǫνt,j ∼ N(0, 1)

where the factor-related volatility processes, logωft,i, is assumed to have zero mean for iden-
tification purposes (see Kastner et al. 2017 for more information).

The time-varying error covariance matrix is under the factor stochastic volatility model

Σt = VAR(ǫt|Λ
f ,Ων

t ,Ω
f
t ) = ΛfΩf

t Λf
⊤

+ Ων
t .

The non-diagonal terms are therefore governed by the factor component, whereas the variances
are driven by both the common component and the idiosyncratic term.

The prior distributions for the parameters relating to the factor stochastic volatility model,
as well as the procedure for sampling from the posterior, follow Kastner and Frühwirth-
Schnatter (2014); Kastner et al. (2017). The factor loadings are given independent normal
priors Λfij ∼ N(0, BΛ). The unconditional mean for the idiosyncratic volatility processes are
equipped with normal priors µνj ∼ N(bµ, Bµ). The autoregressive parameters are given the

prior distribution (φfi + 1)/2 ∼ Beta(a0, b0) and (φνj + 1)/2 ∼ Beta(a0, b0), which ensures
that the log volatility processes are stationary. Finally, the prior distribution for the vari-
ance parameters is (σfi )2, (σνj )2 ∼ G(0.5, 0.5B−1

σ ). While the common stochastic volatility
approach hinges on the use of the symmetric normal inverse Wishart prior, a VAR with a
factor stochastic volatility model instead uses the less restrictive independent normal prior in
(7).

2.3. Implementation of Posterior Sampling

Gibbs sampling is employed to obtain draws from the posterior distribution of the latent
processes and the parameters. Estimation of mixed-frequency Bayesian VARs can be time-
consuming and computationally intensive. For this reason, all of the MCMC algorithms
employed are fully implemented in C++ using the Armadillo library (Sanderson and Curtin
2016) through the use of Rcpp and RcppArmadillo (Eddelbuettel and Francois 2011; Eddel-
buettel and Sanderson 2014). We describe the main blocks of the MCMC algorithms used in
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some more detail in what follows. Because the outstanding feature of mixed-frequency VARs,
as opposed to standard single-frequency VARs, is the simulation smoothing step conducted to
sample from the posterior of the high-frequency latent processes, we describe this step more
carefully.

Simulation smoother

The state-space model in (2)–(3) is simple to implement in existing software as it fits into
the standard framework for state-space models with no correlation between equations. Tusell
(2011) provides an overview of available packages in R for Kalman filtering and smoothing,
which could be used for this purpose. However, this naive implementation does not constitute
a viable option as dimensions grow—it will involve a large number of operations on matrices
of size np× np which will be infeasibly time consuming even for moderate n and p.

The simulation smoother implemented in mfbvar is based on the suggestions by Schorfheide
and Song (2015) and Ankargren and Jonéus (2019a) that employ a compact form to reduce
the computational burden. To see how this can alleviate the problem, first decompose

φ =

(

φm,
φq

)

, Φi =

(

Φi,mm Φi,mq

Φi,qm Φi,qq

)

and let Φj = (Φ1,j , . . . ,Φp,j) where j ∈ {mm,mq, qm, qq}. The idea is now to exploit the
fact that for some T0 ≤ T , all monthly variables are observed for all t = 1, . . . , T0. This fact
suggests that the monthly variables can be omitted from the state equation and instead enter
the system through the exogenous terms in a state-space model. The reformulation, however,
implies that the state and measurement errors will be correlated, which thus requires the use
of an algorithm based on a state-space model with between-equation correlation.

Let now ǫt = Let with et ∼ N(0, In) and L being the lower triangular Cholesky factor
of Σ, and let the exogenous terms be given by cm,t = φm +

∑

i=1 Φi,mmym,t−i and dq,t =
φq +

∑

i=1 Φi,qmym,t−i. The compact state-space model is then specified as
(

ym,t
yq,t

)

=

(

cm,t
Mq,t0nq

)

+

(

0nm Φmq

Mq,tΛ 0nq

)(

xq,t
zq,t−1

)

+

(

Inm 0nm×nq

Mq,t0nq×n

)

Let

(

xq,t
zq,t−1

)

=

(

dq,t
0pnq

)

+

(

Φqq 0nq
Ipnq 0nq

)(

xq,t−1

zq,t−2

)

+

(

0nq×nm Inq
0pnq×n

)

Let,

(13)

where Mq,t refers to the quarterly rows of Mt. From (13), one can deduce the system matrices
for a state-space model with between-equation correlation. See Schorfheide and Song (2015)
for more information.

The dimension of the state vector in (13) is nq(p + 1) compared to np in (2) and thus
offers a substantial reduction when nq is relatively small. The drawback of the compact
representation is that it is only applicable for t = 1, . . . , T0; for t = T0, . . . , T , when only a
subset of the monthly variables is observed, it is no longer an alternative. The typical pattern
in many macroeconomic datasets constructed in real time is that some variables, usually
interest rates and stock market variables, are available immediately when a month has ended.
Macroeconomic variables are, on the other hand, often available with a lag of one or two
months. The speed of the simulation smoother can be notably improved by exploiting that
not all of the monthly variables are missing at the end of the sample. To handle the final
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part of the sample, the mfbvar package uses the adaptive algorithm proposed by Ankargren
and Jonéus (2019a). The algorithm is adaptive in the sense that it augments the state vector
in (13) with variables that are missing at the end; this feature is in contrast to the procedure
used by Schorfheide and Song (2015), which instead moves to the full companion form defined
in (2).

Equation (13) can be generalized into

(

ym,t
yq,t

)

= Zt

















xUt,t

xq,t
...

xUt,t−p

xq,t−p

















+ Ct

(

yOt−1,t−1:t−p

1

)

+Gtet

















xUt,t

xq,t
...

xUt,t−p

xq,t−p

















= Tt

















xUt−1,t−1

xq,t
...

xUt−1,t−p−1

xq,t−p−1

















+Dt

(

yOt−1,t−1:t−p

1

)

+Htet.

(14)

where Ut denotes the indexes relating to the set of monthly variables that are unobserved at
time t, Ot denotes the set of indexes for the monthly variables that are observed at time t,
and

yOt−1,t−1:t−p = (y⊤
Ot−1,t−1, . . . , y

⊤
Ot−1,t−p)

⊤

with yOt−1,t−j denoting the value at time t − j of the set of monthly variables observed
at time t − 1. The above formulation generalizes (13) in that it allows for any number of
monthly variables to be missing at time t, but only those that are missing data are included
in the state vector. As demonstrated by Ankargren and Jonéus (2019a), this approach can
lead to large gains when the simulation smoother is used for real-time data featuring an
unbalanced dataset. For more details and explicit descriptions of the system matrices in (14),
see Ankargren and Jonéus (2019a).

To generate a draw from the posterior distribution p(X|Θ, Y ), we employ Algorithm 2 in
Durbin and Koopman (2002):

1. Generate an artifical sample {x+
t , y

+
t }Tt=1 using the recursions in (1) and (3)

2. Create y∗
t = yt − y+

t and smooth to obtain x̂∗
t = E(x∗

t |Θ, Y
∗)

3. Take {x+
t + x̂∗

t }
T
t=1 as the draw from p(X|Θ, Y )

To initialize, we condition on the first p observations indexed by t = −p + 1, . . . , 0. For the
quarterly observations, missing observations in the pre-sample are replaced by the preceding
observation. In addition, as is discussed by Jarociński (2015), when smoothing based on y∗

t

we set constant terms to zero.

Constant error covariance matrix

If the error covariance matrix is assumed to be constant, then by standard results the error
covariance matrix can easily be sampled from an inverse Wishart posterior distribution, see
Karlsson (2013) for these results described in detail.
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Common stochastic volatility

Under the common stochastic volatility specification, the VAR can be transformed into a
homoskedastic model given the volatility factor. The matrix Σ can therefore be sampled from
its conditional posterior distribution using standard results with parameters based on the
transformed model, see Carriero et al. (2016); Ankargren et al. (2019).

The posterior distributions of the volatility parameters (ρ, σ2) are truncated normal and in-
verse gamma, respectively. Sampling of the latent volatility is conducted using the auxiliary
mixture approach developed by Kim, Shephard, and Chib (1998), where we use the sam-
pler presented by McCausland, Miller, and Pelletier (2011) based on an extension of the
implementation used in the stochvol package (Kastner 2016; ?).

Factor stochastic volatility

If, instead, the factor stochastic volatility model is used to capture time-varying variances in
the model, then we use an implementation adapted from the factorstochvol package (Kastner
2019; ?) for obtaining a draw from the posterior of the volatilities, factors and the related pa-
rameters. The interested reader is referred to Kastner et al. (2017) for a thorough description
of the methodology used by the factorstochvol package.

Regression parameters

The conditional posterior distribution of the regression parameters is multivariate normal.
Under the normal inverse Wishart prior, the covariance matrix of the vector of regression
parameters features a Kronecker structure. A procedure that is more efficient than computing
the posterior covariance and then sampling from the multivariate normal distribution is to
use the matrix-normal form of the matrix of regression parameters directly. See the discussion
and samplers in Karlsson (2013); Carriero et al. (2016).

When factor stochastic volatility is used in the model, the computational effort required for
sampling from the conditional posterior of the regression parameters is reduced. Conditional
on Λfft, the equations in the VAR are independent. The independence enables independent
sampling of the parameters in each equation. There is, therefore, no need to compute the
Cholesky decomposition of the covariance matrix of all parameters, which would otherwise be
prohibitive even for models that are relatively moderate in size. Note that under the normal
inverse Wishart prior, Cholesky decomposing the full covariance matrix is also avoided, albeit
for a different reason.

The actual sampling of regression parameters when the factor stochastic volatility model is
assumed is conducted using one of two algorithms. Both algorithms exploit that the poste-
rior is on the form N(A−1b, A−1), where there is an intimate connection between the first and
second moments. The first algorithm, described in Rue (2001), has complexity O(n3p3) for
sampling each equation’s parameters, and is used when the number of parameters in each
equation is less than the sample size T . When the sample size exceeds the number of param-
eters in each equation, the algorithm proposed by Bhattacharya, Chakraborty, and Mallick
(2016) is used. The latter algorithm has complexity O(T 2np) and is the faster alternative
when T < np. Further speed improvements can be obtained by sampling the parameters in
each equation in parallel. The package allows for doing so when the factor stochastic volatility
model is employed using the RcppParallel package (Allaire, Francois, Ushey, Vandenbrouck,
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Geelnard, and Intel 2019).

Steady-state parameters

The conditional posterior distribution of the steady-state parameters is normal and low-
dimensional and therefore easily sampled from. The conditional posterior of the hierarchical
prior’s global shrinkage parameter λψ is a gamma distribution, whereas the kurtosis param-
eter φψ has no known conditional posterior distribution. The mfbvar package implements a
Metropolis-Hastings sampler with a random walk proposal on the log-scale, where the scale
of the proposal distribution is either fixed or updated adaptively as in Roberts and Rosenthal
(2009). The conditional posterior distributions of the local shrinkage parameters ωψ,j are
generalized inverse Gaussian, which we sample from using the GIGrvg package implementing
the methods developed by Hörmann and Leydold (2014).

2.4. Marginal Data Density Estimators

The hyperparameters of the prior distributions are crucial for good perfomance of the models.
For the Minnesota and steady-state priors that use the normal inverse Wishart specification,
the priors are parametrized by the hyperparameters λ1 and λ3. In the literature, a standard
choice has become λ1 = 0.2 and λ3 = 1, but in many applications it is plausible that this
choice is subpar. One method of selecting values of the hyperparameters is to compute the
marginal data density over a range of values for λ1 and λ3 and selecting the maximizing
pair. The mfbvar package allows the marginal data density to be estimated when the normal
inverse Wishart prior is used employing the estimators suggested by Schorfheide and Song
(2015) and Ankargren, Unosson, and Yang (2018).1

Minnesota prior

In the case of a Minnesota prior, marginal data density estimation follows Schorfheide and
Song (2015). Consider a single quarterly observation under the intra-quarterly average ag-
gregation scheme, yq,3 = 1

3(xq,3 + xq,2 + xq,1), and its relation to xq,3. Given yq,3, xq,2 and
xq,1, xq,3 is known. Hence, we can write







xq,3
xq,2
xq,1






=







3 −1 −1
0 1 0
0 0 1













yq,3
xq,2
xq,1







For this reason, we partition X into (Y,Z) where Z collects the inherently missing observa-
tions, i.e., the first two missing monthly observations per quarter, and Y all observed data.
[In the example, Y1:3 = yq,3 and Z1:3 = (xq,1, xq,2)]. The marginal data density estimator
derived by Schorfheide and Song (2015) is

p̂(Y ;λ1, λ3) = c

[

1

R

R
∑

r=1

f(Z(r); µ̂Z , Σ̂Z , κ)

p(X(r))

]−1

, (15)

where c is a constant accounting for the change of variables from p(Y, Z) to p(X). If we by Tq,i
denote the number of observations of the ith quarterly variable, then log c =

∑nq
i=1 Tq,i log(3).

1The marginal data density is also known as the marginal likelihood. We use the former term so that our
terminology is in line with Schorfheide and Song (2015); Ankargren et al. (2018).
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Furthermore, the density f is a truncated normal distribution given as

f(x;µx,Σx, κ)

=
1

κ

|Σx|−1/2

2πnx/2
exp

{

−
1

2
(x− µ̂x)⊤Σ−1

x (x− µ̂x)
}

× I
{

(x− µ̂x)⊤Σ−1
x (x− µ̂x) ≤ χ2

nx(κ)
}

,

for x a vector with nx elements and κ ∈ (0, 1]. The moments in the numerator term in (15)
are

µ̂Z =
1

R

R
∑

r=1

Z(r)

Σ̂Z =
1

R

R
∑

r=1

Z(r)Z(r)⊤

− µ̂Z µ̂
⊤
Z .

The denominator term in (15) is the density of a matrix t distribution with parameters
Mt(W (r)Γ, (IT +W (r)ΞW (r)⊤

)−1, S, ν) (see Karlsson 2013 for the density and more details).

Note that the marginal data density in (15) is a function of (λ1, λ3) through the draws of
Φ(r), which in turn affect all other draws.

Steady-state prior

If the steady-state prior is used in conjunction with the normal inverse Wishart prior, the
marginal density computation follows Ankargren et al. (2018) and is

p̂(Y ;λ1, λ3) =
p(Y |Φ̄, Σ̄, ψ̄)p(Φ̄, Σ̄)

p̂(Φ̄, Σ̄|ψ̄, Y )

p(ψ̄)

p̂(ψ̄|Y )
,

where bars represent posterior means. As in the Minnesota case, (λ1, λ3) have a direct effect
on Φ(r) and, consequently, an indirect effect on the other draws.

The likelihood p(Y |Φ̄, Σ̄, ψ̄) and the priors p(Φ̄, Σ̄) and p(ψ̄) are known and can be evaluated
exactly, whereas p̂(Φ̄, Σ̄|ψ̄, Y ) is a numerical approximation from an auxiliary Gibbs sampler
and p̂(ψ̄|Y ) is a ’Rao-Blackwellized’ estimate (Gelfand, Smith, and Lee 1992). Specifically,
we compute

p̂(Φ̄, Σ̄|ψ̄, Y ) =
1

R

R
∑

r=1

p(Φ̄, Σ̄|ψ̄,X(r), Y ),

where {Φ(r),Σ(r), X(r)}Rr=1 is obtained from a reduced Gibbs step (Chib 1995; Fuentes-Albero
and Melosi 2013) where we approximate p(Φ,Σ, X|ψ̄, Y ) by drawing from the conditional
posteriors

p(Φ,Σ|ψ̄,X) and p(X|Φ,Σ, ψ̄, Y ).

The Rao-Blackwellized estimate of p(ψ̄|Y ) is

p̂(ψ̄|Y ) =
1

R

R
∑

r=1

p(ψ̄|Φ(r),Σ(r), X(r), Y )
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using draws {Φ(r),Σ(r), X(r)}Rr=1 from the full Gibbs sampler.

3. The R Package mfbvar

The workflow promoted by the mfbvar package consists of three main steps. First, an object
containing data, hyperparameters and settings is constructed. Second, the prior object is used
as input to the main estimation function. Third, the results are processed. The purpose for
disentangling the first and second steps is to separate specification from estimation, thereby
making the calls in R easier to decipher.

3.1. Specification

The main function for performing the first step is set_prior. Its arguments are listed in
Table 1. The most important arguments are described below.

• Y: data input. Should be a list with components containing regularly spaced time series
(that inherit from ts or zooreg). Names of variables are collected from the names of
components that contain single time series. If a component stores multiple time series
in a multivariate ts or zooreg object, then the names are instead collected from the
corresponding column names. Monthly variables can only contain missing values at
the end of the sample, and should precede quarterly variables in the list. Matrices
in which quarterly variables are padded with NA and observations stored at the end
of each quarter are also accepted, but then the frequency of each variable must be
given in the argument freq. Tibbles and data frames can also be given as input, but
require the same use of the freq argument. Both matrices and data frames should store
dates (YYYY-MM-DD) as row names, or, for data frames, as a separate column. If the
data input does not contain mixed frequencies, the mfbvar package provides some, but
limited, support if no observations are missing.

• aggregation: the aggregation scheme, either “average” for the intra-quarterly average,
or “triangular” for the triangular weighting used by Mariano and Murasawa (2003).
The latter is typically used for modeling growth rates, and the former for log-levels;
our experience, however, indicates that results tend to be relatively indifferent to the
choice.

• prior_Pi_AR1: a numeric vector providing the prior mean for the AR(1) parameters
(γ).

• lambda1, lambda2, lambda3, lambda4: one-dimensional numeric vectors providing
the hyperparameters for overall tightness, cross-variable tightness, lag decay and inter-
cept variance. The defaults are 0.2, 0.5, 1, and 104, respectively. Note that lambda2 is
only used in the independent normal specification for Γ, which is only employed if the
diffuse prior or a factor stochastic volatility model is used for Σ. The prior variance for
the intercept, lambda4, is only used if the steady-state prior is not used.

• prior_psi_mean, prior_psi_Omega: numeric vector and matrix giving the prior mean
and covariance of the steady-state parameters. If the deterministic component of the
model includes more terms than a constant, the prior moments are for ψ = vec(Ψ) and
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this order should be respected. The package includes a helper function, interval_to_moments,
for simplifying the specification of priors for the steady states. The function interval_to_moments

takes a matrix of prior 100 ∗ (1 − α) % intervals and returns the mean vector and co-
variance matrix needed for set_prior.

In order to encourage and enable a pipe-like process of specification, the function update_prior(prior_obj,

...) can be used to add further specifications to prior_obj, where prior_obj is the ob-
ject returned from set_prior. The class of the return from set_prior and update_prior

is mfbvar_prior for which methods for the generic functions summary, print and plot are
implemented (see Section 4).

3.2. Estimation

With an object containing the specifications in place, the second step of the mfbvar workflow
is to estimate the model. The function for doing so is estimate_mfbvar, with arguments:

• mfbvar_prior: an object of class mfbvar_prior obtained from set_prior/update_prior

• prior: a string equal to "minn", "ss" or “ssng” for estimating the model using the
Minnesota prior, the steady-state prior, or the hierarchical steady-state prior

• variance: a string equal to "iw", “diffuse”, “csv” or "fsv" for selecting the inverse
Wishart prior, the diffuse prior, the common stochastic volatility model, or the factor
stochastic volatility model for the error covariance matrix in the model

• ...: additional arguments that are passed on to update_prior for temporarily over-
riding settings in mfbvar_prior

3.3. Processing

For processing the results, mfbvar provides three functions to simplify this step:

• predict: a method for the generic predict function is implemented. The function
returns a data frame according to the concept of tidy data (Wickham 2014) with the
forecasts for the variables. The forecasts of the quarterly variables are returned either
as monthly or quarterly forecasts. The data frame includes all post-burn-in draws, or
quantiles of the posterior predictive distribution.

• plot: the generic plot function can be used on the estimated object. The plot displays
the forecasts and, if applicable, the posterior steady-state intervals.

• volplot: a plotting function for displaying the posterior standard deviation of the errors
over time. Only applicable if stochastic volatility is used.

As discussed in Section 2, the package also includes estimators for the marginal data den-
sity when the normal inverse Wishart prior is used. Given an object x obtained from
estimate_mfbvar with variance = "iw", the marginal data density is estimated by call-
ing mdd(x). If prior = "minn", the only argument that can be provided is p_trunc giving
the degree of truncation of the truncated normal distribution.
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3.4. Use by Other Packages

The computational burden can be large for mixed-frequency VARs and special care has been
paid to the implementation of, in particular, the simulation smoother and the sampling of
regression parameters. Because of the modularity of MCMC, these implementations can
be leveraged by other packages extending the mixed-frequency VAR further. The following
functions, implemented in C++ via RcppArmadillo, can therefore easily be imported by other
packages:

• simsm_adaptive, simsm_adaptive_univariate: the adaptive simulation smoother pre-
sented by Ankargren and Jonéus (2019a), and its extension with univariate filtering
suggested by Ankargren and Jonéus (2019b)

• mvn_rue, mvn_rue_int, mvn_bcm: procedures for sampling from multivariate normal
posterior distributions using the algorithm by Rue (2001), the Rue (2001) algorithm
including non-zero means for the AR(1) parameters, and the Bhattacharya et al. (2016)
algorithm

• update_csv, update_fsv, update_ng: functions for the sampling steps required for
common stochastic volatility, factor stochastic volatility, and the hierarchical steady-
state prior

The functions are available as header files in mfbvar/inst/include and can therefore easily
be imported by other packages, see e.g., Wickham (2015, chap. 10).
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4. Illustration

To illustrate the basic funcionality of the mfbvar package we here estimate mixed-frequency
Bayesian VAR models on US data. The data can be retrieved from the ALFRED database
provided by the Federal Reserve Bank of St. Louis through the alfred package (Kleen 2018).
The model we will use includes inflation and unemployment, which are published monthly,
and GDP growth, which is published quarterly.

R> library("dplyr")

R> library("ggplot2")

R> library("alfred")

R>

R> variables <- c("CPIAUCSL", "UNRATE", "GDPC1")

R> out <- lapply(variables, get_alfred_series,

+ observation_start = "1980-01-01",

+ observation_end = "2018-11-01",

+ realtime_start = "2018-12-10",

+ realtime_end = "2018-12-10")

The data start in January 1980 and we retrieve the vintage available on December 10, 2018.
For correctly identifying monthly and quarterly data, the mfbvar package expects data to be
provided in a list. Each component should contain regularly spaced time series that inherit
from class ts (R Core Team 2019) or zooreg (?), see Section 3.1. Multiple time series sampled
at the same frequency can either be stored together in a single component, or separately in
individual components.

To transform the data obtained from alfred into a form compatible with mfbvar, we create a
helper function to aid in preparing the time series:

R> alfred_to_ts <- function(x, freq) {

+ ts(x[, 3],

+ start = c(1980, 1),

+ frequency = freq)

+ }

R>

R> mf_list <- mapply(alfred_to_ts, x = out, freq = c(12, 12, 4))

R> names(mf_list) <- variables

The list mf_list is now of a form that mfbvar understands. However, the steady-state prior
requires a stable VAR model, and so we need to transform consumer price index and real
GDP into growth rates. To this end, we use the annualized log-difference of the variables.

R> log_diff <- function(x) {

+ freq <- frequency(x)

+ 100 * freq * diff(log(x))

+ }

R>

R> mf_list[c("CPIAUCSL", "GDPC1")] <-

+ lapply(mf_list[c("CPIAUCSL", "GDPC1")], log_diff)



Sebastian Ankargren, Yukai Yang 19

Finally, we trim the beginning of the sample so that the series do not start with missing
values.

R> mf_list <- mapply(window, x = mf_list,

+ start = list(c(1980, 4), c(1980, 4), c(1980, 2)))

The data object provided to mfbvar is thus a list of three ts time series of different frequencies
and lengths.

R> str(mf_list, vec.len = 2)

List of 3

$ CPIAUCSL: Time-Series [1:463] from 1980 to 2019: 11.9 11.8 ...

$ UNRATE : Time-Series [1:464] from 1980 to 2019: 6.9 7.5 7.6 7.8 7.7 ...

$ GDPC1 : Time-Series [1:154] from 1980 to 2018: -8.328 -0.476 ...

With the data in place, the workflow of the package next requires the user to first specify an
object containing all the prior information, and then calling the main function to estimate
the model.

4.1. Setting the Prior

To create an initial, minimal prior we call set_prior() with the following arguments:

R> library("mfbvar")

R> prior <- set_prior(Y = mf_list, n_lags = 4, n_reps = 1000)

The print method for the prior displays what model specifications can be used with the
provided information.

R> prior

The following elements of the prior object have not been set:

block_exo d d_fcst prior_psi_mean prior_psi_Omega n_fac

Checking if the steady-state prior can be used... FALSE

Missing elements: d prior_psi_mean

Checking if a Minnesota-style prior can be used... TRUE

Checking if common stochastic volatility can be used... TRUE

Checking if factor stochastic volatility can be used... FALSE

Missing element: n_fac

As is indicated, we need to provide the deterministic term dt as well as the prior mean for the
parameters in ψ to also enable the possibility of estimating the model using the (hierarchical)
steady-state prior. In many applications, dt = 1 and so the only deterministic term is the
unconditional mean. The prior is commonly specified as independent 95 % prior probability
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Inflation Unemployment GDP
(1, 3) (4, 8) (1, 3)

Table 2: 95 % prior probability intervals for steady states (unconditional means)
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Figure 1: Prior steady-state intervals

intervals. The prior intervals used here are given in Table 2 and mirror those used by Louzis
(2019); Ankargren et al. (2019).

A helper function interval_to_moments() is included in mfbvar to convert intervals to prior
moments ψ and Ωψ. Having obtainted the moments, the prior is updated to include also
specifications that enable estimation of the model using the steady-state prior.

R> prior_intervals <- matrix(c(1, 3,

+ 4, 8,

+ 1, 3), ncol = 2, byrow = TRUE)

R> moments <- interval_to_moments(prior_intervals)

R> prior <- update_prior(prior,

+ d = "intercept",

+ prior_psi_mean = moments$prior_psi_mean,

+ prior_psi_Omega = moments$prior_psi_Omega)

The argument d should generally be a matrix, but because intercept-only applications are
common passing only the string "intercept" is allowed. The prior steady-state intervals can
be visualized by calling plot on the prior object. The intervals used here are displayed in
Figure 1.

R> plot(prior)

We will next make forecasts 24 months ahead and must therefore update the prior to acco-
modate this request. The argument n_fcst takes the number of forecasts desired in terms of
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months, i.e., n_fcst = 24 corresponds to two years.

R> prior <- update_prior(prior, n_fcst = 24)

The prior is now fully specified also for the steady-state prior. A summary of the specification
can be obtained from the summary method implemented for the prior object:

R> summary(prior)

PRIOR SUMMARY

----------------------------

General specification:

Y: 3 variables, 464 time points

aggregation: average

freq: 2 monthly and 1 quarterly variable

prior_Pi_AR1: 0 0 0

lambda1: 0.2

lambda2: 0.5

lambda3: 1

lambda4: 10000

block_exo: 0 block exogenous variables

n_lags: 4

n_fcst: 24

n_burnin: 1000

n_reps: 1000

----------------------------

Steady-state prior:

d: intercept

d_fcst: intercept

prior_psi_mean: prior mean vector of steady states

prior_psi_Omega: prior covariance matrix of steady states

check_roots: FALSE

----------------------------

Hierarchical steady-state prior:

s: -1000

c0: 0.01

c1: 0.01

----------------------------

Common stochastic volatility:

prior_phi: mean = 0.9, var = 0.1

prior_sigma2: mean = 0.01, df = 4

----------------------------

Factor stochastic volatility:

n_fac: <missing>

n_cores: 1

----------------------------

Other:

verbose: FALSE
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4.2. Estimating the Model

The prior is prepared and its necessary components have been provided and so estimation
is possible by calling the estimate_mfbvar function. In calling the function, either prior =

"minn", prior = "ss" or prior = "ssng" should be provided to indicate which regression
prior to use. The argument variance determines the form of the error covariance matrix.
We first consider the steady-state prior with and without hierachical shrinkage, and with an
inverse Wishart prior for the error covariance matrix.

R> mod_ss_iw <- estimate_mfbvar(prior, prior = "ss", variance = "iw")

R> mod_ssng_iw <- estimate_mfbvar(prior, prior = "ssng", variance = "iw")

To estimate models with stochastic volatility, only the variance argument needs to be
changed. For the factor stochastic volatility model, the number of factors must also be
provided.

R> mod_ss_csv <- estimate_mfbvar(prior, prior = "ss", variance = "csv")

R> mod_ss_fsv <- estimate_mfbvar(prior, prior = "ss", variance = "fsv",

+ n_fac = 1)

Temporary arguments can be added to the call to estimate_mfbvar, like n_fac = 1 above.
The purpose of first creating a prior object and then estimating the model is illustrated in
the preceding code snippet. For two models with different priors but similar settings, we can
leverage the same object (i.e., prior). Estimation of multiple models is thereby simplified as
we can reuse the previous settings.

4.3. Processing the Results

The principle of tidy data (Wickham 2014) has been preserved in creating a method for the
predict function.

R> predict(mod_ss_iw, pred_bands = 0.8)

# A tibble: 60 x 6

variable time fcst_date lower median upper

<chr> <dbl> <date> <dbl> <dbl> <dbl>

1 CPIAUCSL 463 2018-10-01 3.96 3.96 3.96

2 CPIAUCSL 464 2018-11-01 0.0232 3.42 6.85

3 CPIAUCSL 465 2018-12-01 -1.29 2.92 6.67

4 CPIAUCSL 466 2019-01-01 -1.60 2.40 6.38

5 CPIAUCSL 467 2019-02-01 -1.98 2.50 6.55

6 CPIAUCSL 468 2019-03-01 -1.78 2.54 6.80

7 CPIAUCSL 469 2019-04-01 -1.87 2.51 6.58

8 CPIAUCSL 470 2019-05-01 -1.87 2.47 6.54

9 CPIAUCSL 471 2019-06-01 -2.01 2.25 6.67

10 CPIAUCSL 472 2019-07-01 -1.70 2.51 6.76

# ... with 50 more rows
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The forecasts produced by a mixed-frequency VAR are at the monthly frequency. Because the
frequency of interest for quarterly variables is the quarterly frequency, forecasts are aggregated
by default in the predict method. To visualize forecasts and posterior intervals for the steady
states (if available), plot can be called directly on the output of estimate_mfbvar.

R> plot(mod_ss_iw, plot_start = "2010-01-01", nrow_facet = 3)

R> plot(mod_ssng_iw, plot_start = "2010-01-01", nrow_facet = 3)
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(b) Hierarchical steady-state prior

Figure 2: Forecasts and posterior steady-state intervals

Figure 2 displays the forecasts and posterior steady-state intervals obtained using the steady-
state prior with and without hierarchical shrinkage. The posterior intervals are similar, with
a narrower interval for unemployment using the hierarchical specification, and with almost
indistinguishable differences for inflation and GDP. Because of the similarity between the
models, the forecasts from both models in Figure 2 show that the assessment made by the
model is that the economy is in a relatively steady state with a stable rate of growth in the
future. Unemployment is expected to rise slowly and return to the steady state in the long
run. By default, the plotting method displays the forecasts for the quarterly variables on the
quarterly scale, as in the output from predict.
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In order to see the difference between constant and time-varying error covariance matrices,
we next compare the distributions of the GDP forecasts. By letting pred_bands = NULL be
an argument to predict, we obtain the entire set of forecasts from the model. Combining
them and plotting the distributions using the ggridges package (Wilke 2018) allows us to
easily compare the distributions.

R> pred_iw <- predict(mod_ss_iw, pred_bands = NULL)

R> pred_csv <- predict(mod_ss_csv, pred_bands = NULL)

R> pred_fsv <- predict(mod_ss_fsv, pred_bands = NULL)

R> pred_df <- bind_rows("Inverse Wishart" = pred_iw,

+ "Common stochastic volatility" = pred_csv,

+ "Factor stochastic volatility" = pred_fsv,

+ .id = "Variance") %>%

+ filter(variable == "GDPC1")

R> ggplot(pred_df, aes(y = factor(fcst_date), x = fcst, fill = Variance)) +

+ ggridges::stat_density_ridges(quantile_lines = TRUE,

+ quantiles = 2, alpha = 0.5) +

+ labs(x = "US GDP Growth",

+ y = "Date of Forecast") +

+ coord_cartesian(xlim = c(-5, 10)) +

+ theme_minimal() +

+ scale_fill_brewer(palette = "YlGnBu")

Figure 3 shows that stochastic volatility leads to narrower predictive distributions for the
current forecast. In terms of the central tendencies, however, the differences are negligible.
The resemblance is greater between the predictive distributions obtained from the two models
using stochastic volatility than between any of the models with stochastic volatility and the
model with constant volatility. Thus, the choice of stochastic volatility may be less important
than whether to include it at all.

The reason for the somewhat wider distribution obtained using constant volatility is that the
error covariance matrix that is obtained is a compromise between regimes of high and low
volatility. Using stochastic volatility, there is no need to make this compromise. To see this
point more clearly, the error standard deviations implied by the stochastic volatility models
can be plotted using the varplot function.

R> const_vol <- median(sqrt(mod_ss_iw$Sigma[3, 3, ]))

R>

R> varplot(mod_ss_fsv, variables = "GDPC1") +

+ geom_hline(yintercept = const_vol ,

+ color = "red", linetype = "dashed") +

+ coord_cartesian(ylim = c(0, 20))

R>

R> varplot(mod_ss_csv, variables = "GDPC1") +

+ geom_hline(yintercept = const_vol,

+ color = "red", linetype = "dashed") +

+ coord_cartesian(ylim = c(0, 20))
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Figure 3: Distributions of forecasts produced using the steady-state prior with constant or
time-varying error covariance. The vertical lines represent the medians.

Figure 4 shows that the standard deviation of the GDP error term has varied substantially.
Periods of particularly high volatility are evident in the early 1980s, 1990s and 2000s as well as
during the recent financial crisis at the end of the 2000s. The estimated volatilities are similar
between the two models. They both capture the same peaks with the sole difference being
that the model with common stochastic volatility estimated a peak in volatility around 2005
that the model with factor stochastic volatility did not. Volatility has in recent years been
lower than usual. The line displaying the standard deviation from the model with constant
volatility appears to capture a baseline, which the time-varying volatility is currently deviating
somewhat from. For this reason, we see that the distribution of the forecasts in Figure 3 is
narrower under a stochastic volatility specification.

4.4. Marginal Data Density

A generic function mdd() is provided that facilitates estimation of the marginal data density
if the inverse Wishart prior is used for Σ. The marginal data density for the model using the
steady-state prior with constant volatility is

R> mdd(mod_ss_iw)

[1] -1302.976

The marginal data density in itself is not particularly informative. One of its roles, however,
is that it can be used as a way of selecting hyperparameters. By searching over a grid of
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Figure 4: Standard deviation of the error term in the equation for GDP growth. The black
solid and red dashed lines are the medians from the models with factor stochastic and constant
volatility, respectively. The bands are obtained from the 95 % posterior point-wise intervals.

values, the pair (λ1, λ3) that maximizes the marginal data density can be used. Such a grid
search is embarrassingly parallel and can be computed using the parallel package (R Core
Team 2019).

R> library("parallel")

R> par_fun <- function(lambda1, prior) {

+ set.seed(2019)

+ mod_par <- estimate_mfbvar(prior, prior = "ss", variance = "iw",

+ lambda1 = lambda1, lambda3 = 1)

+ mdd(mod_par)

+ }

R>

R> cl <- makeCluster(4)

R> clusterEvalQ(cl, library("mfbvar"))

R> lambda1_seq <- seq(0.05, 1, by = 0.05)

R> result <- parSapply(cl, lambda1_seq,

+ par_fun, prior = prior)

R> stopCluster(cl)

We are here fixing the lag decay to λ3 = 1 and consider the grid of values {0.05, 0.1, . . . , 0.95, 1.00}
for λ1. Figure 5 displays the results.

R> plot_df <- tibble(lambda1 = lambda1_seq,

+ mdd = result)

R> ggplot(plot_df, aes(x = lambda1, y = mdd)) +

+ geom_line() +

+ geom_point(data = filter(plot_df, mdd == max(mdd))) +

+ labs(y = "Marginal data density (log)",

+ x = bquote(lambda[1])) +

+ theme_minimal()

The highest value of the marginal data density is obtained for λ1 = 0.4, indicating a lower
degree of shrinkage in the model than what has been used in the previous estimations. How-
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Figure 5: Logarithm of the marginal data density as a function of λ1 with λ3 = 1. The point
shows the maximum point at λ1 = 0.4.

ever, the marginal data density is relatively flat as a function of λ1 around 0.2–0.5, thereby
demonstrating a certain degree of indifference with respect to λ1 in this neighborhood.
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5. Conclusion

The mfbvar package introduces a user-friendly interface for estimating mixed-frequency vector
autoregressions using Bayesian techniques. As such, it fills a void and provides additional
functionality compared to existing packages such as midasr (Ghysels et al. 2016) and BMR

(O’Hara 2017).

We have discussed the models that can be estimated in the mfbvar and the workflow of
the package. An application to a small mixed-frequency VAR using monthly inflation and
unemployment, and quarterly GDP growth was used to illustrate the functionality of the
package. Aside from the features directly visible to the user, the package also provides
header files for the key steps of the MCMC algorithm used for estimating the models. These
can easily be imported and used by other packages, and thus we hope to make also the use
of other, more customized mixed-frequency VARs more frequent.
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