Package 'metaSEM'

June 14, 2020
Type Package
Title Meta-Analysis using Structural Equation Modeling
Version 1.2.4
Date 2020-06-14
Depends R (>= 3.4.0), OpenMx
Imports Matrix, MASS, ellipse, graphics, stats, utils, mvtnorm, numDeriv, lavaan

Suggests metafor, semPlot, R.rsp, testhat
VignetteBuilder R.rsp
Maintainer Mike Cheung mikewlcheung@nus.edu.sg
Description A collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the 'OpenMx' and 'lavaan' packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices.

License GPL (>=2)
LazyLoad yes
LazyData yes
ByteCompile yes
URL https://github.com/mikewlcheung/metasem
NeedsCompilation no
Author Mike Cheung [aut, cre] (https://orcid.org/0000-0003-0113-0758)
Repository CRAN
Date/Publication 2020-06-14 05:20:06 UTC

R topics documented:

```
metaSEM-package3Aloe14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
```

anova 6
as.mxAlgebra 8
as.mxMatrix 10
as.symMatrix 11
asyCov 13
BCG 14
bdiagMat 16
bdiagRep 17
Becker09 18
Becker83 21
Becker92 23
Becker94 25
Berkey98 27
Boer16 28
bootuniR1 30
bootuniR2 31
Bornmann07 32
checkRAM 34
Cheung00 35
Cheung09 37
coef 39
Cooke16 40
Cooper03 42
Cor2DataFrame 43
create.Fmatrix 45
create.mxMatrix 46
create.mxModel 47
create.Tau2 49
create. V 50
create.vechsR 51
Diag 53
Digman97 54
Gleser94 57
Gnambs 18 58
HedgesOlkin85 59
homoStat 60
Hox02 62
Hunter83 63
impliedR 65
indirectEffect 68
is.pd 69
issp05 70
issp89 72
Jaramillo05 74
Kalaian96 75
lavaan2RAM 76
list2matrix 78
Mak09 79
metaSEM-package3
matrix2bdiag 81
meta 82
meta2semPlot 85
meta3 86
Nam03 88
Nohe15 89
Norton 13 93
osmasem 94
osmasemR2 96
osmasemSRMR 96
pattern.n 97
pattern.na 98
plot 99
print 102
rCor 103
readData 104
reml 107
reml3 109
rerun 111
Roorda11 112
Scalco17 113
smdMES 114
smdMTS 116
Stadler15 118
summary 119
Tenenbaum02 121
tssem1 122
tssemParaVar 124
uniR1 125
uniR2 126
vanderPol17 128
VarCorr 129
vcov 130
vec2symMat 131
wls 132
wvs94a 137
wvs94b 139
Index 141
metaSEM-package Meta-Analysis using Structural Equation Modeling

Description

A collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the 'OpenMx' and 'lavaan' packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices.

Details

Package:	metaSEM
Type:	Package
Version:	1.2 .4
Date:	$2020-06-14$
License:	GPL (>=2)
LazyLoad:	yes

Author(s)

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>
Maintainer: Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

References

Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects metaanalyses into structural equation modeling. Psychological Methods, 13 (3), 182-202. https://doi.org/10.1037/a0013163

Cheung, M. W.-L. (2009). Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling, 16 (2), 267-294. https://doi.org/10.1080/10705510902751291
Cheung, M. W.-L. (2010). Fixed-effects meta-analyses as multiple-group structural equation models. Structural Equation Modeling, 17 (3), 481-509. https://doi.org/10.1080/10705511.2010.489367

Cheung, M. W.-L. (2013). Implementing restricted maximum likelihood estimation in structural equation models. Structural Equation Modeling, 20 (1), 157-167. https://doi.org/10.1080/10705511.2013.742404
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling, 20 (3), 429-454. https://doi.org/10.1080/10705511.2013.797827

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19 (2), 211-229. https://doi.org/10.1037/a0032968

Cheung, M. W.-L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46 (1), 29-40. https://doi.org/10.3758/s13428-013-0361-y
Cheung, M. W.-L. (2015). metaSEM: An R package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5 (1521). https://doi.org/10.3389/fpsyg.2014.01521

Cheung, M. W.-L. (2015). Meta-Analysis: A Structural Equation Modeling Approach. Chichester, West Sussex: John Wiley \& Sons, Inc.
Cheung, M. W.-L. (2018). Issues in solving the problem of effect size heterogeneity in meta-analytic structural equation modeling: A commentary and simulation study on Yu, Downes, Carter, and O’Boyle (2016). Journal of Applied Psychology, 103 (7), 787-803. https://doi.org/10.1037/apl0000284

Cheung, M. W.-L. (2018). Computing multivariate effect sizes and their sampling covariance matrices with structural equation modeling: Theory, examples, and computer simulations. Frontiers in Psychology, 9 (1387). https://doi.org/10.3389/fpsyg.2018.01387

Cheung, M. W.-L. (2019). Some reflections on combining meta-analysis and structural equation modeling. Research Synthesis Methods, 10 (1), 15-22. https://doi.org/10.1002/jrsm. 1321
Cheung, M. W.-L., \& Chan, W. (2004). Testing dependent correlation coefficients via structural equation modeling. Organizational Research Methods, 7 (2), 206-223. https://doi.org/10.1177/1094428104264024
Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10 (1), 40-64. https://doi.org/10.1037/1082-989X.10.1.40
Cheung, M. W.-L., \& Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16 (1), 28-53. https://doi.org/10.1080/10705510802561295

Cheung, M. W.-L., \& Cheung, S.-F. (2016). Random-effects models for meta-analytic structural equation modeling: Review, issues, and illustrations. Research Synthesis Methods, 7 (2), 140-155. https://doi.org/10.1002/jrsm. 1166
Jak, S., \& Cheung, M. W.-L. (2018). Testing moderator hypotheses in meta-analytic structural equation modeling using subgroup analysis. Behavior Research Methods, 50 (4), 1359-1373. https://doi.org/10.3758/s13428-018-1046-3
Jak, S., \& Cheung, M. W.-L. (2019). Meta-analytic structural equation modeling with moderating effects on SEM parameters. Psychological Methods. https://doi.org/10.1037/met0000245

Description

This study reports sixteen studies on the effect sizes (correlation coefficients) between CMSE and emotional exhaustion (EE), depersonalization (DP), and (lowered) personal accomplishment (PA) reported by Aloe et al. (2014).

Usage

data("Aloe14")

Format

A data frame with 16 observations on the following 14 variables.
Study a factor with levels Betoret Brouwers \& Tomic Bumen Chang Durr Evers et al. Friedman Gold Huk Kress Kumarakulasingam Martin et al. Ozdemir Skaalvik and Skaalvik Williams
Year Year of publication
EE Emotional exhaustion
DP Depersonalization
PA (Lowered) personal accomplishment
V_EE Sampling variance of emotional exhaustion
V_DP Sampling variance of depersonalization

V_PA Sampling variance of (lowered) personal accomplishment
C_EE_DP Sampling covariance between EE and DP
C_EE_PA Sampling covariance between EE and PA
C_DP_PA Sampling covariance between DP and PA
Publication_type Either Dissertation or Journal
Percentage_females Percentage of females in the study
Years_experience Average years of experience

Source

Aloe, A. M., Amo, L. C., \& Shanahan, M. E. (2014). Classroom management self-efficacy and burnout: A multivariate meta-analysis. Educational Psychology Review, 26(1), 101-126. doi:10.1007/s10648-013-9244-0

Examples

```
    ## Not run:
    data(Aloe14)
    ## Random-effects meta-analysis
    meta1 <- meta(cbind(EE,DP,PA),
        cbind(V_EE, C_EE_DP, C_EE_PA, V_DP, C_DP_PA, V_PA),
        data=Aloe14)
    ## Remove error code
    meta1 <- rerun(meta1)
    summary(meta1)
    ## Extract the coefficients for the variance component of the random effects
    coef1 <- coef(meta1, select="random")
    ## Convert it into a symmetric matrix by row major
    my.cov <- vec2symMat(coef1, byrow=TRUE)
    ## Convert it into a correlation matrix
    cov2cor(my.cov)
    ## Plot the multivariate effect sizes
    plot(meta1)
    ## End(Not run)
```

 anova
 Compare Nested Models with Likelihood Ratio Statistic

Description

It compares nested models with the likelihood ratio statistic from various objects. It is a wrapper of mxCompare.

Usage

```
## S3 method for class 'wls'
anova(object, ..., all=FALSE)
## S3 method for class 'meta'
anova(object, ..., all=FALSE)
## S3 method for class 'meta3X'
anova(object, ..., all=FALSE)
## S3 method for class 'reml'
anova(object, ..., all=FALSE)
## S3 method for class 'osmasem'
anova(object, ..., all=FALSE)
```


Arguments

object An object or a list of objects of various classes. It will be passed to the base argument in mxCompare.
... An object or a list of objects of various classes. It will be passed to the comparison argument in mxCompare.
all A boolean value on whether to compare all bases with all comparisons. It will be passed to the all argument in mxCompare.

Value

A table of comparisons between the models in base and comparison.

Note

When the objects are class wls, the degrees of freedom in the base and comparison models are incorrect, while the degrees of freedom of the difference between them is correct. If users want to obtain the correct degrees of freedom in the base and comparison models, they may individually apply the summary function on the base and comparison models.

Author(s)

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

Examples

```
## Test the significance of a predictor with likelihood ratio test
## Model0: No predictor
model0 <- meta(y=yi, v=vi, data=Hox02, model.name="No predictor")
## Model1: With a predictor
model1 <- meta(y=yi, v=vi, x=weeks, data=Hox02, model.name="One predictor")
## Compare these two models
anova(model1, model0)
```


Description

It converts a character matrix into MxAlgebra object.

Usage

as.mxAlgebra(x, name="X")

Arguments

x
name

A character or numeric matrix, which consists of valid operators in mxAlgebra.
A character string of the names of the objects based on.

Details

Suppose the name argument is " X ", the output is a list of the following elements.

Value

X	The mxAlgebra object.
names	The names of all the matrices.
Avars	A column vector mxMatrix of the parameters.
Alist	A list of mxMatrix to form the mxAlgebra object.

Author(s)

Mike W.-L. Cheung mikewlcheung@nus.edu.sg

See Also

```
as.mxMatrix, mxAlgebra
```


Examples

```
## a, b, and c are free parameters
(A1 <- matrix(c(1, "a*b", "a^b", "exp(c)"), ncol=2, nrow=2))
## [,1] [,2]
## [1,] "1" "a^b"
## [2,] "a*b" "exp(c)"
A <- as.mxAlgebra(A1, name="A")
## Names of all matrices
A$names
## [1] "A" "Avars" "A1_1" "A2_1" "A1_2" "A2_2"
```

```
## An object of mxAlgebra
A$A
## mxAlgebra 'A'
## $formula: rbind(cbind(A1_1, A1_2), cbind(A2_1, A2_2))
## $result: (not yet computed) <0 x 0 matrix>
## dimnames: NULL
## A matrix of parameters
A$Avars
## FullMatrix 'Avars'
## $labels
## [,1]
## [1,] "a"
## [2,] "b"
## [3,] "c"
## $values
## [,1]
## [1,] 0
## [2,] 0
## [3,] 0
## $free
## [,1]
## [1,] TRUE
## [2,] TRUE
## [3,] TRUE
## $lbound: No lower bounds assigned.
## $ubound: No upper bounds assigned.
## A list of matrices of elements for the mxAlgebra
A$Alist
## $A1_1
## mxAlgebra 'A1_1'
## $formula: 1
## $result: (not yet computed) <0 x 0 matrix>
## dimnames: NULL
## $A2_1
## mxAlgebra 'A2_1'
## $formula: a * b
## $result: (not yet computed) <0 x 0 matrix>
## dimnames: NULL
## $A1_2
## mxAlgebra 'A1_2'
## $formula: a^b
## $result: (not yet computed) <0 x 0 matrix>
```

```
## dimnames: NULL
## $A2_2
## mxAlgebra 'A2_2'
## $formula: exp(c)
## $result: (not yet computed) <0 x 0 matrix>
## dimnames: NULL
```

as.mxMatrix

Convert a Matrix into MxMatrix-class

Description

It converts a matrix into MxMatrix-class via mxMatrix.

Usage

as.mxMatrix(x, name, ...)

Arguments

x
name An optional character string as the name of the MxMatrix object created by $m x M o d e l$ function. If the name is missing, the name of x will be used.
.. Further arguments to be passed to mxMatrix. It should be noted that type, nrow, ncol, values, free, name and labels will be created automatically. Thus, these arguments except labels should be avoided in ...

Details

If there are non-numeric values in x, they are treated as the labels of the parameters. If a "*" is present, the numeric value on the left-hand side will be treated as the starting value for a free parameter. If an "@" is present, the numeric value on the left-hand side will be considered as the value for a fixed parameter. If it is a matrix of numeric values, there are no free parameters in the output matrix.

Value

A MxMatrix-class object with the same dimensions as x

Author(s)

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

See Also

mxMatrix, create.mxMatrix, create.Fmatrix, checkRAM, lavaan2RAM, as.symMatrix

Examples

```
## a and b are free parameters with starting values and labels
(a1 <- matrix(c(1:4, "5*a", 6, "7*b", 8, 9), ncol=3, nrow=3))
# [,1] [,2] [,3]
# [1,] "1" "4" "7*b"
# [2,] "2" "5*a" "8"
# [3,] "3" "6" "9"
a1 <- as.mxMatrix(a1)
## a and b are fixed parameters without any labels, name="new2"
(a2 <- matrix(1:9, ncol=3, nrow=3))
# [,1] [,2] [,3]
# [1,] 1 4 7
# [2,] 2 5 8
# [3,] 3 6 9
new2 <- as.mxMatrix(a2, name="new2")
## Free parameters without starting values
(a3 <- matrix(c(1:4, "*a", 6, "*b", 8, 9), ncol=3, nrow=3))
# [,1] [,2] [,3]
# [1,] "1" "4" "*b"
# [2,] "2" "*a" "8"
# [3,] "3" "6" "9"
a3 <- as.mxMatrix(a3, lbound=0)
## A free parameter without label
(a4 <- matrix(c(1:4, "5*", 6, "7*b", 8, 9), ncol=3, nrow=3))
# [,1] [,2] [,3]
# [1,] "1" "4" "7*b"
# [2,] "2" "5*" "8"
# [3,] "3" "6" "9"
a4 <- as.mxMatrix(a4)
## Convert a scalar into mxMatrix object
## "name" is required as "3*a" is not a valid name.
(a5 <- as.mxMatrix("3*a", name="a5"))
## Free and fixed parameters
(a6 <- matrix(c(1, "2*a", "3@b", 4), ncol=2, nrow=2))
as.mxMatrix(a6)
```

as.symMatrix

Description

It converts a character matrix with starting values to a character matrix without the starting values.

Usage

as.symMatrix(x)

Arguments

x

A character or numeric matrix or a list of character or numeric matrices.

Details

If there are non-numeric values in x, they are treated as the labels of the free parameters. If a "*" is present, the numeric value on the left-hand side will be treated as the starting value for a free parameter or a fixed value for a fixed parameter. If it is a matrix of numeric values, there are no free parameters in the output matrix. This function removes the starting values and "*" in the matrices.

Value

A character matrix.

Author(s)

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

See Also

```
as.mxMatrix
```


Examples

```
## a and b are free parameters with starting values and labels
(a1 <- matrix(c(1:4, "5*a", 6, "7*b", 8, 9), ncol=3, nrow=3))
# [,1] [,2] [,3]
# [1,] "1" "4" "7*b"
# [2,] "2" "5*a" "8"
# [3,] "3" "6" "9"
(as.symMatrix(a1))
# [,1] [,2] [,3]
# [1,] "1" "4" "b"
# [2,] "2" "a" "8"
# [3,] "3" "6" "9"
```


Description

It computes the asymptotic sampling covariance matrix of a correlation/covariance matrix under the assumption of multivariate normality.

Usage

```
asyCov(x, n, cor.analysis = TRUE, dropNA = FALSE, as.matrix = TRUE,
    acov=c("individual", "unweighted", "weighted"),
    suppressWarnings = TRUE, silent = TRUE, run = TRUE, ...)
```


Arguments

A correlation/covariance matrix or a list of correlation/covariance matrices. NA on the variables or other values defined in na.strings will be removed before the analysis. Note that it only checks the diagonal elements of the matrices. If there are missing values, make sure that the diagonals are coded with NA or values defined in na.strings.
n
Sample size or a vector of sample sizes
cor.analysis Logical. The output is either a correlation or covariance matrix.
dropNA Logical. If it is TRUE, the resultant dimensions will be reduced by dropping the missing variables. If it is FALSE, the resultant dimensions are the same as the input by keeping the missing variables.
as.matrix Logical. If it is TRUE and x is a list of correlation/covariance matrices with the same dimensions, the asymptotic covariance matrices will be column vectorized and stacked together. If it is FALSE, the output will be a list of asymptotic covariance matrices. Note that if it is TRUE, dropNA will be FALSE automatically. This option is useful when passing the asymptotic covariance matrices to meta
acov If it is individual (the default), the sampling variance-covariance matrices are calculated based on the individual correlation/covariance matrix. If it is either unweighted or weighted, the average correlation/covariance matrix is calculated based on the unweighted or weighted mean with the sample sizes. The average correlation/covariance matrix is used to calculate the sampling variancecovariance matrices.
suppressWarnings
Logical. If TRUE, warnings are suppressed. It is passed to mxRun.
silent Logical. An argument to be passed to mxRun
run Logical. If FALSE, only return the mx model without running the analysis.
... Further arguments to be passed to mxRun

Value

An asymptotic covariance matrix of the vectorized correlation/covariance matrix or a list of these matrices. If as .matrix=TRUE and x is a list of matrices, the output is a stacked matrix.

Author(s)

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

References

Cheung, M. W.-L., \& Chan, W. (2004). Testing dependent correlation coefficients via structural equation modeling. Organizational Research Methods, 7, 206-223.

Examples

```
## Not run:
C1 <- matrix(c(1,0.5,0.4,0.5,1,0.2,0.4,0.2,1), ncol=3)
asyCov(C1, n=100)
## Data with missing values
C2 <- matrix(c(1,0.4,NA,0.4,1,NA,NA,NA,NA), ncol=3)
C3 <- matrix(c(1,0.2,0.2,1), ncol=2)
## Output is a list of asymptotic covariance matrices
asyCov(list(C1,C2,C3), n=c(100,50,50), dropNA=TRUE, as.matrix=FALSE)
## Output is a stacked matrix of asymptotic covariance matrices
asyCov(list(C1,C2), n=c(100,50), as.matrix=TRUE)
## Output is a stacked matrix of asymptotic covariance matrices
asyCov(list(C3,C3), n=c(100,50), as.matrix=TRUE)
## End(Not run)
``` culosis

\section*{Description}

This dataset includes 13 studies on the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine for preventing tuberculosis (see van Houwelingen, Arends, \& Stijnen (2002) for details).

\section*{Usage}
data(BCG)

\section*{Details}

A list of data with the following structure:
Trial Number of the trials
Author Authors of the original studies
Year Year of publication
VD Vaccinated group with disease
VWD Vaccinated group without the disease
NVD Not vaccinated group with disease
NVWD Not vaccinated group without the disease
Latitude Geographic latitude of the place where the study was done
Allocation Method of treatment allocation
ln_OR Natural logarithm of the odds ratio: \(\log ((\mathrm{VD} / \mathrm{VWD}) /(\mathrm{NVD} / \mathrm{NVWD}))\)
v_ln_OR Sampling variance of \(\ln _O R: 1 / V D+1 / V W D+1 / N V D+1 / N V W D\)
ln_Odd_V Natural logarithm of the odds of the vaccinated group: \(\log\) (VD/VWD)
ln_Odd_NV Natural logarithm of the odds of the not vaccinated group: \(\log\) (NVD/NVWD)
v_ln_Odd_V Sampling variance of ln_Odd_V: 1/VD+1/VWD
cov_V_NV Sampling covariance between \(\ln _O d d _V\) and \(\ln _O d d _N V\) : It is always 0 v_ln_Odd_NV Sampling variance of \(\ln _O d d _N V: 1 / N V D+1 / N V W D\)

\section*{Source}

Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. V., \& Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. Journal of the American Medical Association, 271, 698-702.

\section*{References}

Berkey, C. S., Hoaglin, D. C., Mosteller, F., \& Colditz, G. A. (1995). A random-effects regression model for meta-analysis. Statistics in Medicine, 14, 395-411.
van Houwelingen, H. C., Arends, L. R., \& Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. Statistics in Medicine, 21, 589-624.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. http: //www. jstatsoft. org/v36/i03/.

\section*{Examples}
```

data(BCG)

## Univariate meta-analysis on the log of the odds ratio

summary( meta(y=ln_OR, v=v_ln_OR, data=BCG,
x=cbind(scale(Latitude,scale=FALSE),
scale(Year,scale=FALSE))) )

```
```

    ## Multivariate meta-analysis on the log of the odds
    ## The conditional sampling covariance is 0
    bcg <- meta(y=cbind(ln_Odd_V, ln_Odd_NV), data=BCG,
        v=cbind(v_ln_Odd_V, cov_V_NV, v_ln_Odd_NV))
    summary(bcg)
    plot(bcg)
    ```
 bdiagMat \(\quad\) Create a Block Diagonal Matrix

\section*{Description}

It creates a block diagonal matrix from a list of numeric or character matrices.

\section*{Usage}
bdiagMat(x)

\section*{Arguments}
\(x \quad\) A list of numeric or character matrices (or values)

Value
A numeric or character block diagonal matrix

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{References}

It was based on a function posted by Scott Chasalow at http://www.math. yorku.ca/Who/Faculty/ Monette/pub/stmp/0827.html.

\section*{See Also}
bdiagRep, matrix2bdiag

\section*{Examples}
```


## Block diagonal matrix of numerics

bdiagMat( list(matrix(1:4,nrow=2,ncol=2),
matrix(5:6,nrow=1,ncol=2)) )

# [,1] [,2] [,3] [,4]

# [1,] 1 1 3 0 0

\#[2,] 2 [ 4 0
\#[3,] 0 0 5 6

```
```


## Block diagonal matrix of characters

bdiagMat( list(matrix(letters[1:4],nrow=2,ncol=2),
matrix(letters[5:6],nrow=1,ncol=2)) )

# [,1] [,2] [,3] [,4]

# [1,] "a" "c" "0" "0"

# [2,] "b" "d" "0" "0"

# [3,] "0" "0" "e" "f"

```
bdiagRep

Create a Block Diagonal Matrix by Repeating the Input

\section*{Description}

It creates a block diagonal matrix by repeating the input matrix several times.

\section*{Usage}
bdiagRep(x, times)

\section*{Arguments}
\(x \quad\) A numeric or character matrix (or values)
times \(\quad\) Number of times of \(x\) to be repeated

\section*{Value}

A numeric or character block diagonal matrix

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{See Also}
bdiagMat, matrix2bdiag

\section*{Examples}
```


## Block diagonal matrix of numerics

bdiagRep( matrix(1:4,nrow=2,ncol=2), 2 )

# [,1] [,2] [,3] [,4]

\#[1,] 1 1 3 0 0
\#[2,] 2 [ 4 0 0

# [3,] 0

\#[4,] 0 0 2 4

## Block diagonal matrix of characters

bdiagRep( matrix(letters[1:4],nrow=2,ncol=2), 2 )

```
```


# [,1] [,2] [,3] [,4]

```
\# [1,] "a" "c" "0" "0"
\# [2,] "b" "d" "0" "0"
\# [3,] "0" "0" "a" "c"
\# [4,] "0" "0" "b" "d"
Becker09 Ten Studies of Correlation Matrices used by Becker (2009)

\section*{Description}

This dataset includes ten studies on the relationships between CSAI subscales and sports behavior. The original data were used in Craft et al. (2003), whereas a subset of them was illustrated in Becker (2009).

\section*{Usage}
data("Becker09")

\section*{Details}

A list of data with the following structure:
data A list of \(4 \times 4\) correlation matrices. The variables are Performance, Cognitive, Somatic, and Self_confidence
n A vector of sample sizes
Type_of_sport Samples based on Individual or Team

\section*{Source}

Craft, L. L., Magyar, T. M., Becker, B. J., \& Feltz, D. L. (2003). The relationship between the Competitive State Anxiety Inventory-2 and sport performance: a meta-analysis. Journal of Sport and Exercise Psychology, 25(1), 44-65.

\section*{References}

Becker, B. J. (2009). Model-based meta-analysis. In H. Cooper, L. V. Hedges, \& J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 377-395). New York: Russell Sage Foundation.

\section*{Examples}
```


## Not run:

data(Becker09)

#### Fixed-effects model

## First stage analysis

fixed1 <- tssem1(Becker09$data, Becker09$n, method="FEM")

```
```

summary(fixed1)

## Prepare a regression model using create.mxMatrix()

A1 <- create.mxMatrix(c(0, "0.1*Cog2Per", "0.1*S02Per", "0.1*SC2Per",
0, 0, 0, 0,
0, 0, 0, 0,
0, "0.1*Cog2SC", "0.1*S02SC",0),
type="Full", byrow=TRUE, ncol=4, nrow=4,
as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Performance", "Cognitive",
"Somatic", "Self_confidence")

## Display A1

A1
S1 <- create.mxMatrix(c("0.1*var_Per",
0, 1,
0, "0.1*cor", 1,
0, 0, 0, "0.1*var_SC"), byrow=TRUE, type="Symm",
as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Performance", "Cognitive",
"Somatic", "Self_confidence")

## Display S1

S1
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## Alternative model specification in lavaan model syntax

model <- "\#\# Regression paths
Performance ~ Cog2Per*Cognitive + SO2Per*Somatic + SC2Per*Self_confidence
Self_confidence ~ Cog2SC*Cognitive + SO2SC*Somatic
\#\# Fix the variances of Cog and SO at 1
Cognitive ~~ 1*Cognitive
Somatic ~~ 1*Somatic
\#\# Label the correlation between Cog and SO
Cognitive ~~ cor*Somatic
\#\# Label the error variances of Per and SC
Performance ~~ var_Per*Performance
Self_confidence ~~ var_SC*Self_confidence"

## Display the model

plot(model, layout="spring")
RAM <- lavaan2RAM(model, obs.variables=c("Performance", "Cognitive",
"Somatic", "Self_confidence"))
RAM
A1 <- RAM$A
S1 <- RAM$S

```
```


## Second stage analysis

fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,
intervals.type="LB", model.name="TSSEM2 Becker09",
mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),
S0=mxAlgebra(SO2SC*SC2Per, name="SO"),
Cog_S0=mxAlgebra(Cog2SC*SC2Per+S02SC*SC2Per,
name="Cog_SO")) )
summary(fixed2)

## Display the model with the parameter estimates

plot(fixed2, layout="spring")

#### Fixed-effects model: with type of sport as cluster

## First stage analysis

cluster1 <- tssem1(Becker09$data, Becker09$n, method="FEM",
cluster=Becker09\$Type_of_sport)
summary(cluster1)

## Second stage analysis

cluster2 <- tssem2(cluster1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,
intervals.type="LB", model.name="TSSEM2 Becker09",
mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),
S0=mxAlgebra(SO2SC*SC2Per, name="SO"),
Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per,
name="Cog_SO")) )
summary(cluster2)

## Convert the model to semPlotModel object with 2 plots

## Use the short forms of the variable names

my.plots <- lapply(X=cluster2, FUN=meta2semPlot, manNames=c("Per","Cog","SO","SC") )

## Load the library

library("semPlot")

## Setup two plots

layout(t(1:2))

## The labels are overlapped. We may modify it by using layout="spring"

semPaths(my.plots[[1]], whatLabels="est", nCharNodes=10, color="orange",
layout="spring", edge.label.cex=0.8)
title("Individual sport")
semPaths(my.plots[[2]], whatLabels="est", nCharNodes=10, color="skyblue",
layout="spring", edge.label.cex=0.8)
title("Team sport")

#### Random-effects model

## First stage analysis

random1 <- tssem1(Becker09$data, Becker09$n, method="REM", RE.type="Diag")
summary(random1)

## Second stage analysis

```
```

random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,
intervals.type="LB", model.name="TSSEM2 Becker09",
mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),
SO=mxAlgebra(S02SC*SC2Per, name="SO"),
Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per,
name="Cog_SO")) )
summary(random2)

## Display the model

plot(random2, what="path", layout="spring")

## Display the model with the parameter estimates

plot(random2, layout="spring", color="yellow")

#### Univariate r approach

#### First stage of the analysis

uni1 <- uniR1(Becker09$data, Becker09$n)
uni1

#### Second stage of analysis using OpenMx

model2 <- "\#\# Regression paths
Performance ~ Cog2Per*Cognitive + S02Per*Somatic + SC2Per*Self_confidence
Self_confidence ~ Cog2SC*Cognitive + SO2SC*Somatic
\#\# Provide starting values for Cog and SO
Cognitive ~~ start(1)*Cognitive
Somatic ~~ start(1)*Somatic
\#\# Label the correlation between Cog and SO
Cognitive ~~ cor*Somatic
\#\# Label the error variances of Per and SC
Performance ~~ var_Per*Performance
Self_confidence ~~ var_SC*Self_confidence"
RAM2 <- lavaan2RAM(model2, obs.variables=c("Performance", "Cognitive",
"Somatic", "Self_confidence"))
RAM2
uni2mx <- uniR2mx(uni1, RAM=RAM2)
summary(uni2mx)

#### Second stage of analysis Using lavaan

model3 <- "\#\# Regression paths
Performance ~ Cognitive + Somatic + Self_confidence
Self_confidence ~ Cognitive + Somatic"
uni2lavaan <- uniR2lavaan(uni1, model3)
lavaan::summary(uni2lavaan)

## End(Not run)

```

\section*{Description}

The data set includes studies on sex differences in conformity using the fictitious norm group paradigm reported by Becker (1983).

\section*{Usage}
data(Becker83)

\section*{Details}

The variables are:
study study number
di Standardized mean difference
vi Sampling variance of the effect size
percentage Percentage of male authors
items Number of items

\section*{Source}

Becker, B. J. (1983, April). Influence again: A comparison of methods for meta-analysis. Paper presented at the annual meeting of the American Educational Research Association, Montreal.
Hedges, L. V., \& Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.

\section*{References}

Cheung, M. W.-L. (2010). Fixed-effects meta-analyses as multiple-group structural equation models. Structural Equation Modeling, 17, 481-509.

\section*{Examples}
```

data(Becker83)

## Random-effects meta-analysis

summary( meta(y=di, v=vi, data=Becker83) )

## Mixed-effects meta-analysis with log(items) as the predictor

summary( meta(y=di, v=vi, x=log(items), data=Becker83) )

```

\section*{Description}

This data set includes six studies of correlation matrices reported by Becker (1992; 1995).

\section*{Usage}
data(Becker92)

\section*{Details}

A list of data with the following structure:
data A list of 6 studies of correlation matrices. The variables are Math (math aptitude), Spatial (spatial ability), and Verbal (verbal ability)
n A vector of sample sizes

\section*{Source}

Becker, B. J. (1992). Using results from replicated studies to estimate linear models. Journal of Educational Statistics, 17(4), 341-362. doi:10.3102/10769986017004341
Becker, B. J. (1995). Corrections to "Using Results from Replicated Studies to Estimate Linear Models." Journal of Educational and Behavioral Statistics, 20(1), 100-102. doi:10.2307/1165390

\section*{Examples}
```


## Not run:

data(Becker92)

#### Fixed-effects model

## First stage analysis

## Replicate Becker's (1992) analysis using 4 studies only

fixed1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="FEM")
summary(fixed1)

## \#\# Prepare a regression model using create.mxMatrix()

## A1 <- create.mxMatrix(c(0,0,0,"0.2*Spatial2Math",

## 0,0,"0.2*Verbal2Math",0,0), type="Full",

## ncol=3, nrow=3, as.mxMatrix=FALSE)

## var.names <- c("Math_aptitude","Spatial","Verbal")

## \#\# This step is not necessary but it is useful for inspecting the model.

## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- var.names

## \#\# Display A1

```
```


## A1

## S1 <- create.mxMatrix(c("0.2*ErrorVarMath",0,0,1,"0.2*CorSpatialVerbal",1),

## type="Symm", as.mxMatrix=FALSE)

## \#\# This step is not necessary but it is useful for inspecting the model.

## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- var.names

## \#\# Display S1

## S1

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## Alternative model specification in lavaan model syntax

model <- "\#\# Regression paths
Math ~ Spatial2Math*Spatial + Verbal2Math*Verbal
Spatial ~~ CorSpatialVerbal*Verbal
\#\# Fix the variances of Spatial and Verbal at 1
Spatial ~~ 1*Spatial
Verbal ~~ 1*Verbal
\#\# Label the error variance of Math
Math ~~ ErrorVarMath*Math + start(0.2)*Math"

## Display the model

plot(model)
RAM <- lavaan2RAM(model, obs.variables=c("Math", "Spatial", "Verbal"))
RAM
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## Fixed-effects model: Second stage analysis

## Two equivalent versions to calculate the R2 and its 95% LBCI

fixed2 <- tssem2(fixed1, RAM=RAM, intervals.type="LB",
mx.algebras=list(R1=mxAlgebra(Spatial2Math^2+Verbal2Math^2
+2*CorSpatialVerbal*Spatial2Math*Verbal2Math, name="R1"),
R2=mxAlgebra(One-Smatrix[1,1], name="R2"),
One=mxMatrix("Iden", ncol=1, nrow=1, name="One")))
summary(fixed2)

## Display the model with the parameter estimates

plot(fixed2)

#### Random-effects model

## First stage analysis

## No random effects for off-diagonal elements

random1 <- tssem1(Becker92$data, Becker92$n, method="REM", RE.type="Diag")
summary(random1)

## Random-effects model: Second stage analysis

random2 <- tssem2(random1, RAM=RAM)
summary(random2)

## Display the model with the parameter estimates

```
```

plot(random2, color="yellow")

#### Similar to conventional fixed-effects GLS approach

## First stage analysis

## No random effects

## Replicate Becker's (1992) analysis using 4 studies only

gls1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="REM", RE.type="Zero",
model.name="Fixed effects GLS Stage 1")
summary(gls1)

## Fixed-effects GLS model: Second stage analysis

gls2 <- tssem2(gls1, RAM=RAM, model.name="Fixed effects GLS Stage 2")
summary(gls2)

## End(Not run)

```

Five Studies of Ten Correlation Matrices reported by Becker and Schram (1994)

\section*{Description}

This data set includes five studies of ten correlation matrices reported by Becker and Schram (1994).

\section*{Usage}
data(Becker94)

\section*{Details}

A list of data with the following structure:
data A list of 10 correlation matrices. The variables are Math (math aptitude), Spatial (spatial ability), and Verbal (verbal ability)
n A vector of sample sizes
gender Females or Males samples

\section*{Source}

Becker, B. J., \& Schram, C. M. (1994). Examining explanatory models through research synthesis. In H. Cooper \& L. V. Hedges (Eds.), The handbook of research synthesis (pp. 357-381). New York: Russell Sage Foundation.

\section*{Examples}
```


## Not run:

data(Becker94)

#### Fixed-effects model

## First stage analysis

fixed1 <- tssem1(Becker94$data, Becker94$n, method="FEM")
summary(fixed1)

## Prepare a regression model using create.mxMatrix()

## A1 <- create.mxMatrix(c(0,0,0,"0.2*Spatial2Math",

## 0,0,"0.2*Verbal2Math",0,0), type="Full",

## ncol=3, nrow=3, name="A1")

## S1 <- create.mxMatrix(c("0.2*ErrorVarMath",0,0,1,

## "0.2*CorBetweenSpatialVerbal",1),

## type="Symm", name="S1")

## An alternative method to create a regression model with the lavaan syntax

model <- "\#\# Regression model
Math ~ Spatial2Math*Spatial + Verbal2Math*Verbal
\#\# Error variance of Math
Math ~~ ErrorVarMath*Math
\#\# Variances of Spatial and Verbal fixed at 1.0
Spatial ~~ 1*Spatial
Verbal ~~ 1*Verbal
\#\# Correlation between Spatial and Verbal
Spatial ~~ CorBetweenSpatialVerbal*Verbal"

## Display the model

plot(model)
RAM <- lavaan2RAM(model, obs.variables=c("Math", "Spatial", "Verbal"))
RAM

## Second stage analysis

## A1 <- RAM\$A

## S1 <- RAM\$S

## fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB")

fixed2 <- tssem2(fixed1, RAM=RAM, intervals.type="LB")
summary(fixed2)

## Display the model with the parameter estimates

plot(fixed2)

#### Fixed-effects model: with gender as cluster

## First stage analysis

cluster1 <- tssem1(Becker94$data, Becker94$n, method="FEM", cluster=Becker94\$gender)
summary(cluster1)

## Second stage analysis

cluster2 <- tssem2(cluster1, RAM=RAM, intervals.type="LB")

```
```

summary(cluster2)

#### Conventional fixed-effects GLS approach

## First stage analysis

## No random effects

## Replicate Becker's (1992) analysis using 4 studies only

gls1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="REM", RE.type="Zero",
model.name="Fixed effects GLS Stage 1")
summary(gls1)

## Fixed-effects GLS model: Second stage analysis

gls2 <- tssem2(gls1, RAM=RAM, intervals.type="LB",
model.name="Fixed effects GLS Stage 2")
summary(gls2)

## End(Not run)

```
Berkey98
Five Published Trails from Berkey et al. (1998)

\section*{Description}

The data set includes five published trials, reported by Berkey et al. (1998), comparing surgical and non-surgical treatments for medium-severity periodontal disease, one year after treatment.

\section*{Usage}
data(Berkey98)

\section*{Details}

The variables are:
trial Trial number
pub_year Publication year
no_of_patients Number of patients
PD Patient improvements (mm) in probing depth
AL Patient improvements (mm) in attachment level
var_PD Sampling variance of PD
cov_PD_AL Sampling covariance between PD and AD
var_AL Sampling variance of AL

\section*{Source}

Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F, \& Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17, 2537-2550.

\section*{Examples}
```

data(Berkey98)

#### ML estimation method

## Multivariate meta-analysis

x <- meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL), data=Berkey98)
x <- rerun(x)
summary(x)
plot(x)

## Plot individual studies proportional to the weights

plot(x, study.weight.plot=TRUE)

## Include forest plot from the metafor package

library(metafor)
plot(x, diag.panel=TRUE, main="Multivariate meta-analysis",
axis.label=c("PD", "AL"))
forest( rma(yi=PD, vi=var_PD, data=Berkey98) )
title("Forest plot of PD")
forest( rma(yi=AL, vi=var_AL, data=Berkey98) )
title("Forest plot of AL")

## Multivariate meta-analysis with "publication year-1979" as the predictor

summary( meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
x=scale(pub_year, center=1979), data=Berkey98,
RE.lbound=NA) )

## Multivariate meta-analysis with equality constraint on the regression coefficients

summary( meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
x=scale(pub_year, center=1979), data=Berkey98,
coef.constraints=matrix(c("0.3*Eq_slope", "0.3*Eq_slope"),
nrow=2)) )

#### REML estimation method

## Multivariate meta-analysis

summary( reml(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
data=Berkey98,
model.name="Multivariate meta analysis with REML") )

## Multivariate meta-analysis with "publication year-1979" as the predictor

## Diagonal structure for the variance component

summary( reml(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
RE.constraints=Diag(c("1e-5*Tau2_1_1", "1e-5*Tau2_2_2")),
x=scale(pub_year, center=1979), data=Berkey98) )

```

\section*{Description}

The data set includes correlation matrices of leader-member exchange in transformational leadership reported by Boer et al. (2016).

\section*{Usage}
data(Boer16)

\section*{Details}

A list of data with the following structure:
data A list of correlation matrices. The variables are \(L M X\) (leader-member exchange), TFL (transformational leadership), \(J S\) (job satisfaction), \(O C\) (organizational commitment), and \(L E\) (leader effectiveness)
n A vector of sample sizes
ReILMX The reliability of \(L M X\)
RelTFL The reliability of \(T F L\)

\section*{Source}

Boer, D., Deinert, A., Homan, A. C., \& Voelpel, S. C. (2016). Revisiting the mediating role of leader-member exchange in transformational leadership: the differential impact model. European Journal of Work and Organizational Psychology, 25(6), 883-899.

\section*{Examples}
```


## Not run:

## Stage 1 analysis

rand1 <- tssem1(Boer16$data, Boer16$n, method="REM", RE.type="Diag", acov="individual")
summary(rand1)

## Stage 2 analysis

model2a <- 'JS+OC+LE ~ LMX+TFL
LMX ~ TFL
\#\# Variance of TFL is fixed at 1
TFL ~~ 1*TFL
\#\# Correlated residuals
JS ~~ OC
JS ~~ LE
OC ~~ LE'

## Display the model

plot(model2a)
RAM2a <- lavaan2RAM(model2a, obs.variables = c("LMX", "TFL", "JS", "OC", "LE"),
A.notation="on", S.notation="with")
rand2a <- tssem2(rand1, Amatrix=RAM2a$A, Smatrix=RAM2a$S)
summary(rand2a)

```
```


## Display the model with the parameter estimates

plot(rand2a, layout="spring")

## End(Not run)

```
bootuniR1 Parametric bootstrap on the univariate \(R\) (uniR) object

\section*{Description}

It generates correlation matrices with the parametric bootstrap on the univariate R (uniR) object.

\section*{Usage}
bootuniR1(x, Rep, nonPD.pop=c("replace", "nearPD", "accept"))

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & An object of class 'uniR1' \\
Rep & Number of replications of the parametric bootstrap \\
nonPD. pop & \begin{tabular}{l}
If it is replace, generated non-positive definite matrices are replaced by gener- \\
ated new ones which are positive definite. If it is nearPD, they are replaced by \\
nearly positive definite matrices by calling Matrix: \(:\) nearPD(). If it is accept, \\
they are accepted.
\end{tabular}
\end{tabular}

\section*{Details}

This function implements the parametric bootstrap approach suggested by Yu et al. (2016). It is included in this package for research interests. Please refer to Cheung (2018) for the issues associated with this parametric bootstrap approach.

\section*{Value}

An object of the generated correlation matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2018). Issues in solving the problem of effect size heterogeneity in metaanalytic structural equation modeling: A commentary and simulation study on Yu, Downes, Carter, and O'Boyle (2016). Journal of Applied Psychology, 103, 787-803.
Yu, J. (Joya), Downes, P. E., Carter, K. M., \& O’Boyle, E. H. (2016). The problem of effect size heterogeneity in meta-analytic structural equation modeling. Journal of Applied Psychology, 101, 1457-1473.

\section*{See Also}
rCor, bootuniR2, Nohe15
bootuniR2 Fit Models on the bootstrapped correlation matrices

\section*{Description}

It fits structural equation models on the bootstrapped correlation matrices.

\section*{Usage}
bootuniR2(model, data, n, ...)

\section*{Arguments}
model A model in sem syntax.
data A list of correlation matrices.
\(\mathrm{n} \quad\) Sample size in fitting the structural equation models
... Further arguments to be passed to sem.

\section*{Details}

This function fits the lavaan model with the bootstrapped correlation matrices. It implements the parametric bootstrap approach suggested by Yu et al. (2016). It is included in this package for research interests. Please refer to Cheung (2018) for the issues associated with this parametric bootstrap approach.

\section*{Value}

A list of the fitted object from sem.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2018). Issues in solving the problem of effect size heterogeneity in metaanalytic structural equation modeling: A commentary and simulation study on Yu, Downes, Carter, and O'Boyle (2016). Journal of Applied Psychology, 103, 787-803.
Yu, J. (Joya), Downes, P. E., Carter, K. M., \& O'Boyle, E. H. (2016). The problem of effect size heterogeneity in meta-analytic structural equation modeling. Journal of Applied Psychology, 101, 1457-1473.

\section*{See Also}
bootuniR2, tssemParaVar, Nohe15

\section*{Description}

A dataset from Bornmann et al. (2007) for three-level meta-analysis.

\section*{Usage}
data(Bornmann07)

\section*{Details}

The variables are:

ID ID of the study
Study Study name
Cluster Cluster for effect sizes
\(\log\) OR Effect size: \(\log\) odds ratio
v Sampling variance of \(\log O R\)
Year Year of publication
Type Type of proposal: either Grant or Fellowship
Discipline Discipline of the proposal: either Physical sciences, Life sciences/biology, Social sciences/humanities or Multidisciplinary)

Country Country of the proposal: either the United States, Canada, Australia, United Kingdom or Europe

\section*{Source}

Bornmann, L., Mutz, R., \& Daniel, H.-D. (2007). Gender differences in grant peer review: A meta-analysis. Journal of Informetrics, 1(3), 226-238. doi:10.1016/j.joi.2007.03.001

\section*{References}

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19, 211-229.
Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., \& O’Mara, A. (2009). Gender Effects in the Peer Reviews of Grant Proposals: A Comprehensive Meta-Analysis Comparing Traditional and Multilevel Approaches. Review of Educational Research, 79(3), 1290-1326. doi:10.3102/0034654309334143

\section*{Examples}
```


## Not run:

data(Bornmann07)

#### ML estimation method

## No predictor

summary( meta3(y=logOR, v=v, cluster=Cluster, data=Bornmann07) )

## Type as a predictor

## Grant: 0

## Fellowship: 1

summary( meta3(y=logOR, v=v, x=(as.numeric(Type)-1),
cluster=Cluster, data=Bornmann07) )

## Centered Year as a predictor

summary( meta3(y=logOR, v=v, x=scale(Year, scale=FALSE),
cluster=Cluster, data=Bornmann07) )

#### REML estimation method

## No predictor

summary( reml3(y=logOR, v=v, cluster=Cluster, data=Bornmann07) )

## Type as a predictor

## Grants: 0

## Fellowship: 1

summary( reml3(y=log0R, v=v, x=(as.numeric(Type)-1),
cluster=Cluster, data=Bornmann07) )

## Centered Year as a predictor

summary( reml3(y=logOR, v=v, x=scale(Year, scale=FALSE),
cluster=Cluster, data=Bornmann07) )

## Handling missing covariates with FIML

## MCAR

## Set seed for replication

set.seed(1000000)

## Copy Bornmann07 to my.df

my.df <- Bornmann07

## "Fellowship": 1; "Grant": 0

my.df$Type_MCAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0)

## Create 17 out of 66 missingness with MCAR

my.df\$Type_MCAR[sample(1:66, 17)] <- NA
summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MCAR, data=my.df))

## MAR

Type_MAR <- ifelse(Bornmann07\$Type=="Fellowship", yes=1, no=0)

## Create 27 out of 66 missingness with MAR for cases Year<1996

index_MAR <- ifelse(Bornmann07\$Year<1996, yes=TRUE, no=FALSE)
Type_MAR[index_MAR] <- NA

```
```


## Include auxiliary variable

summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MAR, av2=Year, data=my.df))

## End(Not run)

```
checkRAM

Check the correctness of the RAM formulation

\section*{Description}

It provides simple checks on the correctness of the RAM formulation.

\section*{Usage}
checkRAM(Amatrix, Smatrix, cor.analysis=TRUE)

\section*{Arguments}

Amatrix An asymmetric matrix in the RAM specification with MxMatrix-class. If it is a matrix, it will be converted into MxMatrix-class by the as.mxMatrix function.

Smatrix A symmetric matrix in the RAM specification with MxMatrix-class. If it is a matrix, it will be converted into MxMatrix-class by the as.mxMatrix function.
cor.analysis Logical. Analysis of correlation or covariance structure. There are additional checks for cor.analysis=TRUE.

\section*{Value}

It returns silently if no error has been detected; otherwise, it returns a warning message.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
as.mxMatrix, lavaan2RAM

\section*{Examples}
```


## Not run:

## Digman97 example

model1 <- "\#\# Factor loadings
Alpha=~A+C+ES
Beta=~E+I
\#\# Factor correlation
Alpha~~Beta"

```
```

RAM1 <- lavaan2RAM(model1, obs.variables=c("A","C","ES","E","I"),
A.notation="on", S.notation="with")
RAM1

## The model is okay.

checkRAM(Amatrix=RAM1$A, Smatrix=RAM1$S)

## Hunter83 example

model2 <- "\#\# Regression paths
Job_knowledge ~ A2J*Ability
Work_sample ~ A2W*Ability + J2W*Job_knowledge
Supervisor ~ J2S*Job_knowledge + W2S*Work_sample
\#\# Fix the variance of Ability at 1
Ability ~~ 1*Ability
\#\# Label the error variances of the dependent variables
Job_knowledge ~~ VarE_J*Job_knowledge
Work_sample ~~ VarE_W*Work_sample
Supervisor ~~ VarE_S*Supervisor"
RAM2 <- lavaan2RAM(model2, obs.variables=c("Ability","Job_knowledge",
"Work_sample","Supervisor"))

## The model is okay.

checkRAM(Amatrix=RAM2$A, Smatrix=RAM2$S)

## End(Not run)

```

\section*{Description}

This data set includes fifty studies of correlation matrices on the theory of planned theory reported by Cheung and Chan (2000).

\section*{Usage}
data(Cheung00)

\section*{Details}

A list of data with the following structure:
data A list of 50 studies of correlation matrices. The variables are the attitude toward behavior att, subjective norm \(s n\), behavioral intention \(b i\), and behavior beh
n A vector of sample sizes

Note
These studies were extracted from the original data set for illustration purpose. Some samples contained two or more correlation matrices, and only one of them was arbitrarily selected to avoid the problem of dependence. Moreover, studies with less than 3 correlation coefficients were also excluded.

\section*{Source}

Cheung, S.-F., \& Chan, D. K.-S. (2000). The role of perceived behavioral control in predicting human behavior: A meta-analytic review of studies on the theory of planned behavior. Unpublished manuscript, Chinese University of Hong Kong.

\section*{References}

Cheung, M.W.-L., \& Cheung, S.-F. (2016). Random-effects models for meta-analytic structural equation modeling: Review, issues, and illustrations. Research Synthesis Methods, 7, 140-155.

\section*{Examples}
```


## Not run:

data(Cheung00)

## Variable labels

labels <- colnames(Cheung00\$data[[1]])

## Full mediation model

S <- create.mxMatrix(c("1",
".2*cov_att_sn", "1",
0, 0, ".2*e_bi",
0, 0, 0, ".2*e_beh"),
type="Symm", as.mxMatrix=FALSE, byrow=TRUE)
dimnames(S) <- list(labels, labels)
S
A <- matrix(c("0","0","0","0",
"0","0","0","0",
".2*att2bi", ".2*sn2bi", "0", "0",
"0", "0", ".2*bi2beh", "0"),
byrow=TRUE, 4, 4)
dimnames(A) <- list(labels, labels)
A

#### Random-effects model

## Stage 1 analysis

random_1 <- tssem1(Cheung00$data, Cheung00$n, method="REM", RE.type="Symm",
acov="individual")
summary(random_1)

## Stage 2 analysis

random_2 <- tssem2(random_1, Amatrix=A, Smatrix=S, intervals.type="LB",

```
```

    diag.constraints=TRUE)
    summary(random_2)

## Display the model

plot(random_2, what="path")

## Display the model with the parameter estimates

plot(random_2, color="yellow")

## Load the library

library("semPlot")

## End(Not run)

```

Cheung09 A Dataset from TSSEM User's Guide Version 1.11 by Cheung (2009)

\section*{Description}

Four studies were selected from the data set used by Cheung and Chan (2005; 2009). Some variables were randomly deleted to illustrate the analysis with missing data.

\section*{Usage}
data(Cheung09)

\section*{Details}

A list of data with the following structure:
data \(A\) list of 4 studies of correlation matrices
n A vector of sample sizes

\section*{Source}

Cheung, M. W.-L. (2009). TSSEM: A LISREL syntax generator for two-stage structural equation modeling (Version 1.11) [Computer software]. Retrieved from http://courses.nus.edu.sg/ course/psycwlm/internet/tssem.zip.

\section*{References}

Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.

Cheung, M. W.-L., \& Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.

\section*{Examples}
```


## Not run:

data(Cheung09)

#### Fixed-effects model: Stage 1 analysis

fixed1 <- tssem1(Cheung09$data, Cheung09$n, method="FEM")
summary(fixed1)

## Prepare a model implied matrix

## Factor correlation matrix

Phi <- create.mxMatrix( c("0.3*corf2f1","0.3*corf3f1","0.3*corf3f2"),
type="Stand", as.mxMatrix=FALSE )

## Error variances

Psi <- create.mxMatrix( paste("0.2*e", 1:9, sep=""), type="Diag",
as.mxMatrix=FALSE )

## Create Smatrix

S1 <- bdiagMat(list(Psi, Phi))

## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c(paste("x",1:9,sep=""),

## 

## S1

S1 <- as.mxMatrix(S1)

## Factor loadings

Lambda <- create.mxMatrix( c(".3*f1\times1",".3*f1\times2",".3*f1\times3",rep(0,9),
".3*f2x4",".3*f2x5",".3*f2x6",".3*f2x7",
rep(0,9),".3*f3x8",".3*f3\times9"), type="Full",
ncol=3, nrow=9, as.mxMatrix=FALSE )
Zero1 <- matrix(0, nrow=9, ncol=9)
Zero2 <- matrix(0, nrow=3, ncol=12)

## Create Amatrix

A1 <- rbind( cbind(Zero1, Lambda),
Zero2 )

## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c(paste("x",1:9,sep=""),

## paste("f",1:3,sep=""))

## A1

A1 <- as.mxMatrix(A1)

## Create Fmatrix

F1 <- create.Fmatrix(c(rep (1,9), rep (0,3)))

#### Fixed-effects model: Stage 2 analysis

fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,
intervals.type="LB")
summary(fixed2)

## Display the model

plot(fixed2, what="path")

## Display the model with the parameter estimates

plot(fixed2, latNames=c("f1", "f2", "f3"), edge.label.cex=0.8,

```
coef
```

    color="yellow")
    ```
\#\# End(Not run)
coef Extract Parameter Estimates from various classes.

\section*{Description}

It extracts the parameter estimates from objects of various classes.

\section*{Usage}
\#\# S3 method for class 'tssem1FEM'
coef(object, ...)
\#\# S3 method for class 'tssem1FEM.cluster'
coef(object, ...)
\#\# S3 method for class 'tssem1REM'
coef(object, select = c("all", "fixed", "random"), ...)
\#\# S3 method for class 'wls'
coef(object, ...)
\#\# S3 method for class 'wls.cluster'
coef(object, ...)
\#\# S3 method for class 'meta'
coef(object, select = c("all", "fixed", "random"), ...)
\#\# S3 method for class 'meta3X'
coef(object, select = c("all", "fixed", "random", "allX"), ...)
\#\# S3 method for class 'reml'
coef(object, ...)
\#\# S3 method for class 'MxRAMModel'
coef(object, ...)
\#\# S3 method for class 'osmasem'
coef(object, select=c("fixed", "all", "random"), ...)

\section*{Arguments}
object An object returned from either class tssem1FEM, class tssem1FEM.cluster, class tssem1REM, class wls, class wls.cluster, class meta, class reml or class MxRAMModel
select Select all for both fixed- and random-effects parameters, fixed for the fixedeffects parameters or random for the random-effects parameters. For meta3X objects, allX is used to extract all parameters including the predictors and auxiliary variables.
... Further arguments; currently none is used

\section*{Value}

Parameter estimates for both fixed-effects (if any) and random-effects (if any)

\section*{Note}
coef.MxRAMModel is simply a wraper of omxGetParameters. Extra arguments will be passed to it

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{See Also}
tssem1, wls, meta, reml, omxGetParameters, osmasem

\section*{Examples}
```


## Random-effects meta-analysis

model1 <- meta(y=yi, v=vi, data=Hox02)
coef(model1)

## Fixed-effects only

coef(model1, select="fixed")

```
Cooke16

Correlation Matrices from Cooke et al. (2016)

\section*{Description}

The data set includes correlation matrices on using the theory of planned behavior to predict alcohol consumption reported by Cooke et al. (2016).

\section*{Usage}
data(Cooke16)

\section*{Details}

A list of data with the following structure:
data A list of correlation matrices. The variables are \(S N\) (subjective norm), ATT (attitude), \(P B C\) (perceived behavior control), BI (behavioral intention), and BEH (behavior)
n A vector of sample sizes

\section*{Source}

Cooke, R., Dahdah, M., Norman, P., \& French, D. P. (2016). How well does the theory of planned behaviour predict alcohol consumption? A systematic review and meta-analysis. Health Psychology Review, 10(2), 148-167.

\section*{References}

Cheung, M. W.-L., \& Hong, R. Y. (2017). Applications of meta-analytic structural equation modeling in health psychology: Examples, issues, and recommendations. Health Psychology Review, 11, 265-279.

\section*{Examples}
```


## Not run:

## Check whether the correlation matrices are valid (positive definite)

Cooke16$data[is.pd(Cooke16$data)==FALSE]

## Since the correlation matrix in Study 3 is not positive definite,

## we exclude it in the following analyses

my.data <- Cooke16$data[-3]
my.n <- Cooke16$n[-3]

## Show the no. of studies per correlation

pattern.na(my.data, show.na = FALSE)

## Show the total sample sizes per correlation

pattern.n(my.data, my.n)

## Stage 1 analysis

## Random-effects model

random1 <- tssem1(my.data, my.n, method="REM", RE.type="Diag")
summary(random1)
A1 <- create.mxMatrix(c(0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
"0.2*SN2BI","0.2*ATT2BI","0.2*PBC2BI",0,0,
0,0,"0.2*PBC2BEH","0.2*BI2BEH",0),
type="Full", ncol=5, nrow=5,
byrow=TRUE, as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- colnames(Cooke16\$data[[1]])

## Display A1

A1
S1 <- create.mxMatrix(c(1,
"0.1*ATT_SN", 1,
"0.1*PBC_SN", "0.1*PBC_ATT", 1,
0, 0, 0, "0.5*VarBI",
0, 0, 0, 0, "0.5*VarBEH"),
type = "Symm", ncol=5, nrow=5,
byrow=TRUE, as.mxMatrix=FALSE)
dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- colnames(Cooke16\$data[[1]])
S1

```
```


## Stage 2 analysis

random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, diag.constraints=FALSE,
intervals.type="LB")
summary(random2)

## Display the model

plot(random2, what="path")

## Display the model with the parameter estimates

plot(random2, color="yellow")

## End(Not run)

```

\section*{Description}

Fifty-six effect sizes from 11 districts from Cooper et al. (2003) were reported by Konstantopoulos (2011).

\section*{Usage}
data(Cooper03)

\section*{Details}

The variables are:

\section*{District District ID}

Study Study ID
y Effect size
v Sampling variance
Year Year of publication

\section*{Source}

Cooper, H., Valentine, J. C., Charlton, K., \& Melson, A. (2003). The Effects of Modified School Calendars on Student Achievement and on School and Community Attitudes. Review of Educational Research, 73(1), 1-52. doi:10.3102/00346543073001001

\section*{References}

Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level metaanalysis. Research Synthesis Methods, 2, 61-76. doi:10.1002/jrsm. 35

\section*{Examples}
```


## Not run:

data(Cooper03)

#### ML estimation method

## No predictor

summary( model1 <- meta3(y=y, v=v, cluster=District, data=Cooper03) )

## Show all heterogeneity indices and their 95% confidence intervals

summary( meta3(y=y, v=v, cluster=District, data=Cooper03,
intervals.type="LB", I2=c("I2q", "I2hm", "I2am", "ICC")) )

## Year as a predictor

summary( meta3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),
data=Cooper03, model.name="Year as a predictor") )

## Equality of level-2 and level-3 heterogeneity

summary( model2 <- meta3(y=y, v=v, cluster=District, data=Cooper03,
RE2.constraints="0.2*EqTau2",
RE3.constraints="0.2*EqTau2",
model.name="Equal Tau2") )

## Compare model2 vs. model1

anova(model1, model2)

#### REML estimation method

## No predictor

summary( reml3(y=y, v=v, cluster=District, data=Cooper03) )

## Level-2 and level-3 variances are constrained equally

summary( reml3(y=y, v=v, cluster=District, data=Cooper03,
RE.equal=TRUE, model.name="Equal Tau2") )

## Year as a predictor

summary( reml3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),
data=Cooper03, intervals.type="LB") )

## Handling missing covariates with FIML

## Create 20/56 MCAR data in Year

set.seed(10000)
Year_MCAR <- Cooper03\$Year
Year_MCAR[sample(56, 20)] <- NA
summary( meta3X(y=y, v=v, cluster=District, x2=scale(Year_MCAR, scale=FALSE),
data=Cooper03, model.name="NA in Year_MCAR") )

## End(Not run)

```
Cor2DataFrame

\section*{Description}

It converts the correlation or covariance matrices into a dataframe of correlations or covariances with their asymptotic sampling covariance matrices. It uses the asyCov at the backend.

\section*{Usage}
```

Cor2DataFrame(x, n, v.na.replace = TRUE, row.names.unique = FALSE,
cor.analysis = TRUE, acov="weighted", ...)

```

\section*{Arguments}
\(x\) A correlation/covariance matrix or a list of correlation/covariance matrices.
\(\mathrm{n} \quad\) Sample size or a vector of sample sizes
v.na.replace Logical. Missing value is not allowed in definition variables. If it is TRUE (the default), missing value is replaced by a large value (1e10). These values are not used in the analysis.
row.names.unique
Logical, If it is FALSE (the default), unique row names are not created.
cor.analysis Logical. The output is either a correlation or covariance matrix.
acov If it is weighted, the average correlation/covariance matrix is calculated based on the weighted mean with the sample sizes. The average correlation/covariance matrix is used to calculate the sampling variance-covariance matrices.
... Further arguments to be passed to asyCov.

\section*{Value}

A list of components: (1) a data frame of correlations or covariances with their sampling covariance matrices; (2) a vector of sample sizes; (3) labels of the correlations; and (3) labels of their sampling covariance matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{See Also}
```

asyCov, osmasem, create.vechsR, create.Tau2, create.V

```

\section*{Examples}
```


## Not run:

my.df <- Cor2DataFrame(Nohe15A1$data, Nohe15A1$n)

## Data

my.df\$data

## Sample sizes

my.df\$n

```
```

    ## ylabels
    my.df$ylabels
    ## vlabels
    my.df$vlabels
    ## End(Not run)
    ```
 create.Fmatrix
 Create an F matrix to select observed variables

\section*{Description}

It creates an F matrix to select observed variables for wls function.

\section*{Usage}
create.Fmatrix(x, name, as.mxMatrix=TRUE, ...)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A vector of logical type \\
name & Name of the matrix. If it is missing, "Fmatrix" will be used. \\
as.mxMatrix & \begin{tabular}{l}
Logical. If it is TRUE, the output is a matrix of MxMatrix-class. If it is FALSE, \\
it is a numeric matrix.
\end{tabular} \\
\(\ldots\) & Not used.
\end{tabular}

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{See Also}
```

as.mxMatrix, create.mxMatrix, wls

```

\section*{Examples}
```


## Select the first 3 variables while the other 2 variables are latent.

create.Fmatrix(c(1,1,1,0,0))

# FullMatrix 'Fmatrix'

# 

# @labels: No labels assigned.

# 

# @values

# [,1] [,2] [,3] [,4] [,5]

# [1,] 1 0 0 0 0 0

# [2,] 0

# [3,] 0}0

```
```


# 

# @free: No free parameters.

# 

# @lbound: No lower bounds assigned.

# 

# @ubound: No upper bounds assigned.

create.Fmatrix(c(1, 1,1,0,0), as.mxMatrix=FALSE)

# [,1] [,2] [,3] [,4] [,5]

# [1,] 1 0 0 0 0 0

# [2,] 0

\#[3,] 0}0

```
```

create.mxMatrix Create a Vector into MxMatrix-class

```

\section*{Description}

It converts a vector into MxMatrix-class via mxMatrix.

\section*{Usage}
create.mxMatrix(x, type=c("Full","Symm", "Diag", "Stand"), ncol=NA, nrow=NA, as.mxMatrix=TRUE, byrow=FALSE, ...)

\section*{Arguments}
x
type
ncol The number of columns. It is necessary when type="Full". It is ignored and determined by the length of \(x\) for the other types of matrices.
nrow The number of rows. It is necessary when type="Full". It is ignored and determined by the length of \(x\) for the other types of matrices.
as.mxMatrix Logical. If it is TRUE, the output is a matrix of MxMatrix-class. If it is FALSE, it is a numeric matrix.
byrow Logical. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is filled by rows.
... Further arguments to be passed to mxMatrix. Please note that type, nrow, ncol, values, free and labels will be created automatically. Thus, these arguments except labels should be avoided in ...

\section*{Details}

If there are non-numeric values in \(x\), they are treated as the labels of the free parameters. If an "*" is present, the numeric value on the left-hand side will be treated as the starting value for a free parameter or a fixed value for a fixed parameter. If it is a matrix of numeric values, there are no free parameters in the output matrix. nrow and ncol will be calculated from the length of \(x\) unless type="Full" is specified.

\section*{Value}

A MxMatrix-class object with the same dimensions as \(x\)

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
mxMatrix, create.mxMatrix, create.Fmatrix

\section*{Examples}
```


## a and b are free parameters with starting values and labels

(a1 <- c(1:4, "5*a", 6, "7*b", 8, 9))
(mat1 <- create.mxMatrix(a1, ncol=3, nrow=3, name="mat1"))

## Arrange the elements by row

(mat2 <- create.mxMatrix(a1, ncol=3, nrow=3, as.mxMatrix=FALSE, byrow=TRUE))
(a3 <- c(1:3, "4*f4", "5*f5", "6*f6"))
(mat3 <- create.mxMatrix(a3, type="Symm", name="mat3"))

## Create character matrix

(mat4 <- create.mxMatrix(a3, type="Symm", as.mxMatrix=FALSE))

## Arrange the elements by row

(mat5 <- create.mxMatrix(a3, type="Symm", as.mxMatrix=FALSE, byrow=TRUE))
(mat6 <- create.mxMatrix(a3, type="Diag", lbound=6:1, name="mat6"))

```
```

create.mxModel Create an mxModel

```

\section*{Description}

It creates a mxModel from a RAM object.

\section*{Usage}
create.mxModel(model.name="mxModel", RAM=NULL, Amatrix=NULL, Smatrix=NULL, Fmatrix=NULL, Mmatrix=NULL,
Vmatrix=NULL, data, intervals.type = c("z", "LB"), mx.algebras=NULL, mxModel.Args=NULL, mxRun.Args=NULL, var.names=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)

\section*{Arguments}
\begin{tabular}{ll}
model. name & A string for the model name in mxModel. \\
RAM & A RAM object including a list of matrices of the model returned from lavaan2RAM. \\
Amatrix & If RAM is not specified, an Amatrix is required. \\
Smatrix & If RAM is not specified, an Smatrix is required. \\
Fmatrix & If RAM is not specified, an Fmatrix is required. \\
Mmatrix & If RAM is not specified, an Mmatrix is required. \\
Vmatrix & A V-known matrix of the variables. If it is specified, it will be added into the \\
Smatrix.
\end{tabular}

\section*{Value}

An object of class mxModel

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Examples}
```


## Not run:

## Generate data

set.seed(100)
n <- 100
x <- rnorm(n)
y<- 0.5*x + rnorm(n, mean=0, sd=sqrt(1-0.5^2))

```
```

    my.df <- data.frame(y=y, x=x)
    ## Regression model
    model <- "y ~ x # Regress y on x
        y ~ 1 # Intercept of y
        x ~ 1 # Mean of x"
    plot(model)
RAM <- lavaan2RAM(model, obs.variables=c("y", "x"))
my.fit <- create.mxModel(RAM=RAM, data=my.df)
summary(my.fit)

## A meta-analysis

model <- "yi ~~ tau2*yi
yi ~ mu*1"
RAM <- lavaan2RAM(model, obs.variables=c("yi"))
\#\# Create a v-known matrix
Vmatrix <- as.mxMatrix("0*data.vi", name="Vmatrix")
my.fit <- create.mxModel(RAM=RAM, Vmatrix=Vmatrix, data=Hox02)
summary(my.fit)

## End(Not run)

```
create.Tau2

Create a variance component of the heterogeneity of the random effects

\section*{Description}

It creates variance component of the heterogeneity of the random effects by decomposing the variance component into matrices of correlation and standard deviations.

\section*{Usage}
create. Tau2(RAM, no.var, Tau1.labels=seq(no.var),
RE.type = c("Diag", "Symm", "Zero", "User"),
RE.User=NULL, Transform = c("expLog", "sqSD"),
RE.startvalues=0.05)

\section*{Arguments}

RAM The RAM model for testing. no. var is calculated from it.
no.var If RAM is missing, the user has to specify the no. var argument. It represents the no. var by no. var of the random effects).
Tau1.labels Parameter labels in Tau1. The default is Tau1_1, Tau1_2, etc.

RE.type Either "Diag", "Symm", "Zero" or "User". If it is"Diag" (the default if missing), a diagonal matrix is used for the random effects meaning that the random effects are independent. If it is "Symm", a symmetric matrix is used for the random effects on the covariances among the correlation (or covariance) vectors. If it is "Zero", a zero matrix is assumed on the variance component of the random effects. If it is "User", users have to specify the RE. true argument.
RE.User It represents the no.var by no. var symmetric matrix of TRUE or FALSE for the variance component. If the elements are FALSE, they are fixed at 0 .
Transform Either "expLog" or "sqSD". If it is "expLog", the variances are estimated by applying a log and exp transformation. If it is "sqSD", the variances are estimated by applying a square on the SD. The transformation may improve the estimation when the heterogeneity is small or close to zero.
RE.startvalues Starting values for the variances.

\section*{Value}

A list of MxMatrix-class. The variance component is computed in Tau2.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
osmasem, create. \(V\), create. vechsR

\section*{Examples}
```

    ## Not run:
    T0 <- create.Tau2(no.var=4, RE.type="Diag", Transform="expLog", RE.startvalues=0.05)
    T0
    T1 <- create.Tau2(no.var=4, Tau1.labels=c("a", "b", "c", "d"))
    T1
    ## End(Not run)
    ```
 create.V Create a V-known matrix

\section*{Description}

It creates a V-known matrix of the sampling covariance matrix using definition variables.

\section*{Usage}
create. V(x, type = c("Symm", "Diag", "Full"), as.mxMatrix = TRUE)

\section*{Arguments}
x
type
,
Either "Symm", "Diag" or "Full". Suppose the number of variables is \(p\), the numbers of variable names for "Symm", "Diag", and "Full" are \(p(p-1) / 2, p\), and \(p * p\), respectively. The elements are arranged in a column major.
as.mxMatrix Logical. Whether to convert the output into MxMatrix-class.

\section*{Value}

A list of MxMatrix-class. The V-known sampling covariance matrix is computed in V.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
osmasem, create.Tau2, create.vechsR

\section*{Examples}
```

    ## Not run:
    my.df <- Cor2DataFrame(Nohe15A1$data, Nohe15A1$n)
    ## Create known sampling variance covariance matrix
    V0 <- create.V(my.df$vlabels)
    V0
    ## End(Not run)
    ```
create.vechsR Create a model implied correlation matrix with implicit diagonal con-
 straints

\section*{Description}

It creates implicit diagonal constraints on the model implied correlation matrix by treating the error variances as functions of other parameters.

\section*{Usage}
create. vechsR(A0, S0, F0 = NULL, Ax = NULL, Sx = NULL)

\section*{Arguments}
\begin{tabular}{ll}
A0 & A Amatrix, which will be converted into MxMatrix-class via as.mxMatrix. \\
S0 & A Smatrix, which will be converted into MxMatrix-class via as.mxMatrix. \\
F0 & A Fmatrix, which will be converted into MxMatrix-class via as.mxMatrix. \\
Ax & A Amatrix of a list of Amatrix with definition variables as the moderators of the \\
Sx & \begin{tabular}{l}
Amatrix.
\end{tabular} \\
& \begin{tabular}{l}
A Smatrix of a list of Smatrix with definition variables as the moderators of the \\
Smatrix.
\end{tabular}
\end{tabular}

Value
A list of MxMatrix-class. The model implied correlation matrix is computed in impliedR and vechsR.

Note
Since A0 are the intercepts and \(A x\) are the regression coefficients. The parameters in \(A x\) must be a subset of those in A0.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{See Also}
osmasem, create. Tau2, create. \(V\)

\section*{Examples}
```


## Not run:

## Proposed model

model1 <- 'W2 ~ w2w*W1 + s2w*S1
S2 ~ w2s*W1 + s2s*S1
W1 ~~ w1WITHs1*S1
W2 ~~ w2WITHs2*S2
W1 ~~ 1*W1
S1 ~~ 1*S1
W2 ~~ Errw2*W2
S2 ~~ Errs2*S2'

## Convert into RAM

RAM1 <- lavaan2RAM(model1, obs.variables=c("W1", "S1", "W2", "S2"))

## No moderator

M0 <- create.vechsR(A0=RAM1$A, S0=RAM1$S, F0=NULL, Ax=NULL, Sx=NULL)

## Lag (definition variable) as a moderator on the paths in the Amatrix

Ax <- matrix(c(0,0,0,0,
0,0,0,0,
"0*data.Lag","0*data.Lag",0,0,

```
```

            "0*data.Lag", "0*data.Lag",0,0),
            nrow=4, ncol=4, byrow=TRUE)
    M1 <- create.vechsR(A0=RAM1$A, S0=RAM1$S,F0=NULL, Ax=Ax, Sx=NULL)
    ## Lag (definition variable) as a moderator on the correlation in the Smatrix
    Sx <- matrix(c(0, "0*data.Lag",0,0,
                        "0*data.Lag",0,0,0,
            0,0,0,"0*data.Lag",
            0,0,"0*data.Lag",0),
            nrow=4, ncol=4, byrow=TRUE)
    M2 <- create.vechsR(A0=RAM1$A, S0=RAM1$S,F0=NULL, Ax=NULL, Sx=Sx)
    ## End(Not run)
    ```
Diag Matrix Diagonals

\section*{Description}

Extract or replace the diagonal of a matrix, or construct a diagonal matrix with the same behaviors as diag prior to R-3.0.0.

\section*{Usage}

Diag (x, ...)
Diag \((x)\) <- value

\section*{Arguments}
x
... Optional dimensions (nrow and ncol) for the result when x is not a matrix.
value Either a single value or a vector of length equal to that of the current diagonal. Should be of a mode which can be coerced to that of \(x\).

\section*{Details}

Started from R-3.0.0, diag(\(x\)) returns a numeric matrix with NA in the diagonals when \(x\) is a character vector. Although this follows what the manual says, this breaks the metaSEM. The Diag has the same functions as diag except that Diag (\(x\)) works for a character vector of \(x\) by returning a square matrix of character " 0 " with \(x\) as the diagonals.

\section*{Note}

See http://r.789695.n4.nabble.com/Behaviors-of-diag-with-character-vector-in-R-3-0-0-td4663735.html for the discussion.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}

\section*{diag}

\section*{Examples}
```

v <- c("a", "b")
Diag(v)

```

\section*{Description}

The data set includes fourteen studies of the factor correlation matrices of the Five-Factor Model of personality reported by Digman (1997).

\section*{Usage}
data(Digman97)

\section*{Details}

A list of data with the following structure:
data A list of 14 studies of correlation matrices. The variables are Agreeableness (A), Conscientiousness (C), Emotional Stability (ES), Extraversion (E) and Intellect (I)
n A vector of sample sizes
cluster Types of participants of the studies

\section*{Source}

Digman, J.M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 1246-1256.

\section*{References}

Cheung, M. W.-L., \& Chan, W. (2005). Classifying correlation matrices into relatively homogeneous subgroups: A cluster analytic approach. Educational and Psychological Measurement, 65, 954-979.

\section*{Examples}
```


## Not run:

Digman97

##### Fixed-effects TSSEM

fixed1 <- tssem1(Digman97$data, Digman97$n, method="FEM")
summary(fixed1)

## Factor covariance among latent factors

Phi <- matrix(c(1,"0.3*cor","0.3*cor",1), ncol=2, nrow=2)

## Error covariance matrix

Psi <- Diag(c("0.2*e1","0.2*e2","0.2*e3","0.2*e4","0.2*e5"))

## S matrix

S1 <- bdiagMat(list(Psi, Phi))

## This step is not necessary but it is useful for inspecting the model.

dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("A","C","ES","E","I","Alpha","Beta")

## Display S1

S1

## A matrix

Lambda <-
matrix(c(".3*Alpha_A",".3*Alpha_C",".3*Alpha_ES",rep(0,5),".3*Beta_E",".3*Beta_I"),
ncol=2, nrow=5)
A1 <- rbind( cbind(matrix(0,ncol=5,nrow=5), Lambda),
matrix(0, ncol=7, nrow=2) )

## This step is not necessary but it is useful for inspecting the model.

dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("A","C","ES","E","I","Alpha","Beta")

## Display A1

A1

## F matrix to select the observed variables

F1 <- create.Fmatrix(c(1, 1,1,1,1,0,0), as.mxMatrix=FALSE)

## Display F1

F1
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## Alternative model specification in lavaan model syntax

model <- "\#\# Factor loadings
Alpha=~A+C+ES
Beta=~E+I
\#\# Factor correlation
Alpha~~Beta"

## Display the model

plot(model)

```
```

RAM <- lavaan2RAM(model, obs.variables=c("A", "C", "ES", "E", "I"),
A.notation="on", S.notation="with")
RAM
A1 <- RAM$A
S1 <- RAM$S
F1 <- RAM\$F
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,
model.name="TSSEM2 Digman97")
summary(fixed2)

## Display the model with the parameter estimates

plot(fixed2)

#### Fixed-effects TSSEM with several clusters

#### Create a variable for different samples

#### Younger participants: Children and Adolescents

#### Older participants: others

cluster <- ifelse(Digman97\$cluster %in% c("Children","Adolescents"),
yes="Younger participants", no="Older participants")

#### Show the cluster

cluster

## Example of Fixed-effects TSSEM with several clusters

fixed1.cluster <- tssem1(Digman97$data, Digman97$n, method="FEM",
cluster=cluster)
summary(fixed1.cluster)
fixed2.cluster <- tssem2(fixed1.cluster, Amatrix=A1, Smatrix=S1, Fmatrix=F1)

#### Please note that the estimates for the younger participants are problematic.

summary(fixed2.cluster)

## Setup two plots

layout(t(1:2))

## Plot the first group

plot(fixed2.cluster[[1]])
title("Younger participants")

## Plot the second group

plot(fixed2.cluster[[2]])
title("Older participants")

#### Random-effects TSSEM with random effects on the diagonals

random1 <- tssem1(Digman97$data, Digman97$n, method="REM",
RE.type="Diag")
summary(random1)
random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, Fmatrix=F1)

```
```

summary(random2)

## Display the model with the parameter estimates

plot(random2, color="green")

## End(Not run)

```
Gleser94 Two Datasets from Gleser and Olkin (1994)

\section*{Description}

It includes two datasets in multiple-treatment studies and multiple-endpoint studies reported by Gleser and Olkin (1994).

\section*{Usage}
data("Gleser94")

\section*{Format}

A list of two data frames.
MTS A data frame of multiple-treatment studies.
MES A data frame of multiple-endpoint studies.

\section*{Source}

Gleser, L. J., \& Olkin, I. (1994). Stochastically dependent effect sizes. In H. Cooper \& L. V. Hedges (Eds.), The handbook of research synthesis. (pp. 339-355). New York: Russell Sage Foundation.

\section*{See Also}
smdMTS, smdMES

\section*{Examples}
```


## Not run:

data(Gleser94)

#### Multiple-treatment studies

Gleser94\$MTS

## Assuming homogeneity of variances

my.MTS <- t(apply(Gleser94\$MTS, MARGIN=1,
function(x)
smdMTS(m=x[c("Mean.C", "Mean.E1", "Mean.E2", "Mean.E3", "Mean.E4", "Mean.E5")],
v=x[c("SD.C", "SD.E1", "SD.E2", "SD.E3", "SD.E4", "SD.E5")]^2,
n=x[c("N.C", "N.E1", "N.E2", "N.E3", "N.E4", "N.E5")],

```
```

            homogeneity="variance", list.output=FALSE)))
    
## Fixed-effects multivariate meta-analysis

fit.MTS <- meta(y=my.MTS[, 1:5],
v=my.MTS[, 6:20],
RE.constraints = diag(0, ncol=5, nrow=5),
model.name="MTS")
summary(fit.MTS)

#### Multiple-endpoint studies

Gleser94\$MES

## Calculate the sampling variances and covariance and amend into the data set

Gleser94$MES$Uncoached.V11 <- with(Gleser94$MES, SD.Uncoached.Math^2)
Gleser94$MES$Uncoached.V21 <- with(Gleser94$MES,
SD.Uncoached.Math*Cor.Math.Verbal*SD.Uncoached.Verbal)
Gleser94$MES$Uncoached.V22 <- with(Gleser94$MES, SD.Uncoached.Verbal^2)
Gleser94$MES$Coached.V11 <- with(Gleser94$MES, SD.Coached.Math^2)
Gleser94$MES$Coached.V21 <- with(Gleser94$MES,
    SD.Coached.Math*Cor.Math.Verbal*SD.Coached.Verbal)
Gleser94$MES$Coached.V22 <- with(Gleser94$MES, SD.Coached.Verbal^2)

## Assuming homogeneity of covariance matrices

my.MES <- t(apply(Gleser94\$MES, MARGIN=1,
function(x)
smdMES(m1=x[c("Mean.Uncoached.Math", "Mean.Uncoached.Verbal")],
m2=x[c("Mean.Coached.Math", "Mean.Coached.Verbal")],
V1=vec2symMat(x[c("Uncoached.V11", "Uncoached.V21", "Uncoached.V22")]),
V2=vec2symMat(x[c("Coached.V11", "Coached.V21", "Coached.V22")]),
n1=x["N.Uncoached"],
n2=x["N.Coached"],
homogeneity="covariance", list.output=FALSE)))

## Fixed-effects multivariate meta-analysis

fit.MES <- meta(y=my.MES[, 1:2],
v=my.MES[, 3:5],
RE.constraints = diag(0, ncol=2, nrow=2),
model.name="MES")
summary(fit.MES)

## End(Not run)

```

\section*{Description}

The data set includes 113 correlation matrices on the Rosenberg Self-Esteem Scale reported by Gnambs, Scharl, and Schroeders (2018). Thirty-six studies were based on the reported correlation
matrices (CorMat=1) whereas the correlation matrices of the other 77 studies were calculated from the reported factor loadings.

\section*{Usage}
data(Gnambs18)

\section*{Details}

A list of data with the following structure:
data A list of 113 correlation matrices. The variable names are from Il to IIO.
n A vector of sample sizes.
Year The year of publications.
Country The country of studies conducted.
Language The language used in the studies.
Publication Whether the studies were published (1) or unpublished (0).
MeanAge Mean age of the participants.
FemaleProp Proportion of the female participants.
Individualism Individualism score of the country.
CorMat Whether the correlation matrices are obtained from the original studies (1) or reproduced from the factor loadings (0).

\section*{Source}

Gnambs, T., Scharl, A., \& Schroeders, U. (2018). The structure of the Rosenberg Self-Esteem Scale. Zeitschrift Fur Psychologie, 226(1), 14-29. https://doi.org/10.1027/2151-2604/a000317

\section*{Description}

Effects of open education on attitude toward school and on reading achievement reported by Hedges and Olkin (1985).

Usage
data(HedgesOlkin85)

\section*{Details}

The variables are:
study Study number
d_att Standardized mean difference on attitude
d_ach Standardized mean difference on achievement
var_att Sampling variance of the effect size of attitude
cov_att_ach Sampling covariance between the effect sizes
var_ach Sampling variance of the effect size of achievement

\section*{Source}

Hedges, L. V., \& Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.

\section*{References}

Cheung, M. W.-L. (2010). Fixed-effects meta-analyses as multiple-group structural equation models. Structural Equation Modeling, 17, 481-509.

\section*{Examples}
```

data(HedgesOlkin85)

## Fixed-effects meta-analysis

summary( meta(y=cbind(d_att, d_ach),
v=cbind(var_att, cov_att_ach, var_ach),
data=HedgesOlkin85,
RE.constraints=matrix(0, nrow=2, ncol=2)) )

```
homoStat
Test the Homogeneity of Effect Sizes

\section*{Description}

It tests the homogeneity of univariate and multivariate effect sizes.

\section*{Usage}
homoStat(y, v)

\section*{Arguments}
y
A vector of effect size for univariate meta-analysis or a \(k \times p\) matrix of effect sizes for multivariate meta-analysis where \(k\) is the number of studies and \(p\) is the number of effect sizes.
v
A vector of the sampling variance of the effect size for univariate meta-analysis or a \(k \times p *\) matrix of the sampling covariance matrix of the effect sizes for multivariate meta-analysis where \(p *=p(p+1) / 2\). It is arranged by column major as used by vech. It is assumed that there is no missing value in \(v\) if \(y\) is complete. If there are missing values in \(v\) due to the missingness on \(y\), the missing values in \(v\) will be removed automatically.

\section*{Value}

A list of
Q
Q statistic on the null hypothesis of homogeneity of effect sizes. It has an approximate chi-square distribution under the null hypothesis.
Q.df Degrees of freedom of the Q statistic
pval p-value on the test of homogeneity of effect sizes

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Becker, B. J. (1992). Using results from replicated studies to estimate linear models. Journal of Educational Statistics, 17, 341-362.
Cheung, M. W.-L. (2010). Fixed-effects meta-analyses as multiple-group structural equation models. Structural Equation Modeling, 17, 481-509.
Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10, 101-129.

\section*{See Also}
meta

\section*{Examples}
```

with( Hox02, homoStat(yi, vi) )
with( HedgesOlkin85, homoStat(y=cbind(d_att, d_ach),
v=cbind(var_att, cov_att_ach, var_ach)) )

```

\section*{Description}

Twenty stimulated studies on standardized mean difference and one continuous study characteristic reported by Hox (2002).

\section*{Usage}
data(Hox02)

\section*{Details}

The variables are:
study Study number
yi Effect size (standardized mean difference)
vi Sampling variance of the effect size
weeks Duration of the experimental intervention in terms of weeks

\section*{Source}

Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, N.J.: Lawrence Erlbaum Associates.

\section*{References}

Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects metaanalyses into structural equation modeling. Psychological Methods, 13, 182-202.

\section*{Examples}
```


## Not run:

data(Hox02)

#### ML estimation method

## Random-effects meta-analysis

summary( meta(y=yi, v=vi, data=Hox02, I2=c("I2q", "I2hm"), intervals.type="LB") )

## Fixed-effects meta-analysis

summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=0,
model.name="Fixed effects model") )

## Mixed-effects meta-analysis with "weeks" as a predictor

## Request likelihood-based CI

summary( meta(y=yi, v=vi, x=weeks, data=Hox02, intervals.type="LB",
model.name="Mixed effects meta analysis with LB CI") )

```
```


#### REML estimation method

## Random-effects meta-analysis with REML

summary( VarComp <- reml(y=yi, v=vi, data=Hox02) )

## Extract the variance component

VarComp_REML <- matrix( coef(VarComp), ncol=1, nrow=1 )

## Meta-analysis by treating the variance component as fixed

summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=VarComp_REML) )

## Mixed-effects meta-analysis with "weeks" as a predictor

## Request Wald CI

summary( reml(y=yi, v=vi, x=weeks, intervals.type="z",
data=Hox02, model.name="REML with LB CI") )

## End(Not run)

```

\section*{Description}

This dataset includes fourteen studies of Correlation Matrices reported by Hunter (1983)

\section*{Usage}
data(Hunter83)

\section*{Details}

A list of data with the following structure:
data A list of 14 studies of correlation matrices. The variables are Ability, Job knowledge, Work sample and Supervisor rating
n A vector of sample sizes

\section*{Source}

Hunter, J. E. (1983). A causal analysis of cognitive ability, job knowledge, job performance, and supervisor ratings. In F. Landy, S. Zedeck, \& J. Cleveland (Eds.), Performance Measurement and Theory (pp. 257-266). Hillsdale, NJ: Erlbaum.

\section*{Examples}
```


## Not run:

data(Hunter83)

#### Fixed-effects model

## First stage analysis

fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM",
model.name="TSSEM1 fixed effects model")
summary(fixed1)

#### Second stage analysis

## Model without direct effect from Ability to Supervisor

A1 <- create.mxMatrix(c(0,"0.1*A2J","0.1*A2W", 0, 0, 0, "0.1*J2W", "0.1*J2S",
0,0,0,"0.1*W2S",0,0,0,0),
type="Full", ncol=4, nrow=4, as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Ability","Job","Work","Supervisor")
A1
S1 <- create.mxMatrix(c(1,"0.1*Var_e_J", "0.1*Var_e_W", "0.1*Var_e_S"),
type="Diag", as.mxMatrix=FALSE)
dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Ability","Job","Work","Supervisor")
S1
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## Alternative model specification in lavaan model syntax

model <- "\#\# Regression paths
Job_knowledge ~ A2J*Ability
Work_sample ~ A2W*Ability + J2W*Job_knowledge
Supervisor ~ J2S*Job_knowledge + W2S*Work_sample
\#\# Fix the variance of Ability at 1
Ability ~~ 1*Ability
\#\# Label the error variances of the dependent variables
Job_knowledge ~~ VarE_J*Job_knowledge
Work_sample ~~ VarE_W*Work_sample
Supervisor ~~ VarE_S*Supervisor"

## Display the model

plot(model, layout="spring", sizeMan=10)
RAM <- lavaan2RAM(model, obs.variables=c("Ability","Job_knowledge",
"Work_sample","Supervisor"))
RAM
A1 <- RAM$A
S1 <- RAM$S
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB",

```
```

    diag.constraints=FALSE,
    model.name="TSSEM2 fixed effects model")
    summary(fixed2)

## Display the model with the parameter estimates

plot(fixed2, layout="spring")

## Coefficients

coef(fixed2)

## VCOV based on parametric bootstrap

vcov(fixed2)

#### Random-effects model with diagonal elements only

## First stage analysis

random1 <- tssem1 (Hunter83$data, Hunter83$n, method="REM", RE.type="Diag",
acov="individual", model.name="TSSEM1 random effects model")
summary(random1)

## Second stage analysis

## Model without direct effect from Ability to Supervisor

random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
diag.constraints=FALSE,
mx.algebras=
list( ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S, name="ind") ),
model.name="TSSEM2 random effects model")
summary(random2)

## Display the model with the parameter estimates

plot(random2, layout="spring")

## Load the library

library("semPlot")

## End(Not run)

```
impliedR Create or Generate the Model Implied Correlation or Covariance Ma-
 trices

\section*{Description}

It creates or generates the model implied correlation or covariance matrices based on the RAM model specification.

\section*{Usage}
impliedR(Amatrix, Smatrix, Fmatrix, corr=TRUE, labels, ...)
rimpliedR(Amatrix, Smatrix, Fmatrix, AmatrixSD, k=1, corr=TRUE,
nonPD.pop=c("replace", "nearPD", "accept"))

\section*{Arguments}
\begin{tabular}{ll}
Amatrix & \begin{tabular}{l}
An asymmetric matrix in the RAM specification with MxMatrix-class. If it is a \\
matrix, it will be converted into MxMatrix-class by the as.mxMatrix function.
\end{tabular} \\
Smatrix & \begin{tabular}{l}
A symmetric matrix in the RAM specification with MxMatrix-class. If it is a \\
matrix, it will be converted into MxMatrix-class by the as.mxMatrix function.
\end{tabular} \\
Fmatrix & \begin{tabular}{l}
A filter matrix in the RAM specification with MxMatrix-class. If it is missing, \\
an identity matrix with the same dimensions of Smatrix will be created, which \\
means that all variables are observed. If it is a matrix, it will be converted into \\
MxMatrix-class by the as.mxMatrix function. It is not required when there is \\
no latent variable.
\end{tabular} \\
AmatrixSD & \begin{tabular}{l}
Standard deviations (SD) of the elements in the Amatrix. If it is missing, a \\
matrix of zero is created.
\end{tabular} \\
k \begin{tabular}{l}
Number of studies.
\end{tabular} \\
corr \(\quad\)\begin{tabular}{l}
Logical. The output is either the model implied correlation matrix or the covari- \\
ance matrix.
\end{tabular} \\
nonPD. pop & \begin{tabular}{l}
A character vector of the observed and latent variables with the same dimensions \\
as that in the Amatrix and Smatrix.
\end{tabular} \\
\begin{tabular}{l}
If it is replace, generated non-positive definite matrices are replaced by gener- \\
ated new ones which are positive definite. If it is nearPD, they are replaced by \\
nearly positive definite matrices by calling Matrix: : nearPD (). If it is accept,
\end{tabular} \\
they are accepted.
\end{tabular}

\section*{Details}

This function can be used to generate the model implied correlation matrix for the standardized parameters with the corr=TRUE argument. Suppose we want to calculate the population correlation matrix for a mediation model with \(x, m\), and \(y\). We only need to specify the population path coefficients among \(\mathrm{x}, \mathrm{m}\), and y in the Amatrix. We do not need to specify the population error variances of \(m\) and \(y\). We treat the error variances as unknown parameters by giving them starting values in the Smatrix matrix. When the covariance matrix is requested by specifying corr=FALSE, it simply calculates the population model covariance matrix by treating the values in Smatrix as the population values.

\section*{Value}

A list of RAM matrices, the model implied correlation or covariance matrix of the observed variables (SigmaObs), of both observed and latent variables (SigmaAll), the minimum fit (minFit) which should be zero, and the status code of the optimization (status) which should also be zero when the optimization is fine. The last object is mx. fit which is the output after running the model. It can be used in the diagnosis.

\section*{Note}

It is important to ensure that all the population values in Amatrix must be set as fixed parameters; otherwise, these values may be altered with the corr=TRUE argument. When there is an error or
warning message about the status code, there is a high chance that some of the values in Amatrix are incorrectly set as free parameters.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{Examples}
```

set.seed(100)

## A simple mediation model

## All are population parameters in the A matrix

A1 <- matrix(c(0, 0, 0,
0.3, 0, 0,
0.2, 0.4, 0), nrow=3, ncol=3, byrow=TRUE,
dimnames=list(c("x", "m", "y"), c("x", "m", "y")))
A1

## Variance of x is fixed at 1 while the other variances are free.

S1 <- matrix(c(1, 0, 0,
0, "0.1*ErrVarM",0,
0, 0, "0.1*ErrVarY"), nrow=3, ncol=3,
dimnames=list(c("x", "m", "y"), c("x", "m", "y")))
S1
impliedR(Amatrix=A1, Smatrix=S1)

## SD of A1

A1SD <- matrix(c(0, 0, 0,
0.1, 0, 0,
0.1, 0.1, 0), nrow=3, ncol=3, byrow=TRUE,
dimnames=list(c("x", "m", "y"), c("x", "m", "y")))
A1SD
rimpliedR(Amatrix=A1, Smatrix=S1, AmatrixSD=A1SD, k=2)

## A CFA model

A2 <- matrix(c(0, 0, 0, 0.3,
0, 0, 0, 0.4,
0, 0, 0, 0.5,
0, 0, 0, 0), nrow=4, ncol=4, byrow=TRUE,
dimnames=list(c("x1", "x2", "x3", "f"),
c("x1", "x2", "x3", "f")))
A2

## Variance of f is fixed at 1 while the other variances are free.

S2 <- matrix(c("0.1*Err1", 0, 0, 0,
0, "0.1*Err2", 0, 0,
0, 0, "0.1*Err3", 0,
0, 0, 0, 1), nrow=4, ncol=4,
dimnames=list(c("x1", "x2", "x3", "f"), c("x1", "x2", "x3", "f")))
S2

```
```

F2 <- create.Fmatrix(c(1,1,1,0), as.mxMatrix=FALSE)
F2
impliedR(Amatrix=A2, Smatrix=S2, Fmatrix=F2)

## SD of A2

A2SD <- matrix(c(0, 0, 0, 0.1,
0, 0, 0, 0.1,
0, 0, 0, 0.1,
0, 0, 0, 0), nrow=4, ncol=4, byrow=TRUE,
dimnames=list(c("x1", "x2", "x3", "f"),
c("x1", "x2", "x3", "f")))
A2SD
rimpliedR(Amatrix=A2, Smatrix=S2, Fmatrix=F2, AmatrixSD=A2SD, k=2)

```
indirectEffect Estimate the asymptotic covariance matrix of standardized or unstandardized indirect and direct effects

\section*{Description}

It estimates the standardized or unstandardized indirect and direct effects and their asymptotic sampling covariance matrix.

\section*{Usage}
indirectEffect(x, n, standardized = TRUE, direct.effect = TRUE, run = TRUE)

\section*{Arguments}
\(x \quad\) A \(3 x 3\) correlation/covariance matrix or a list of correlation/covariance matrices. Variables are arranged as the dependent variable (y), mediator (m) and independent variable (x)
\(\mathrm{n} \quad\) Sample size or a vector of sample sizes
standardized Logical. Whether the indirect effect is standardized.
direct.effect Logical. Whether the direct effect is estimated. If it is FALSE, the direct effect is fixed at zero.
run Logical. If FALSE, only return the mx model without running the analysis.

\section*{Details}

Cheung (2009) estimated the standardized indirect effect and its standard error with non-linear constraints. Since OpenMx does not generate standard errors when there are non-linear constraints, Kwan and Chan's (2011) approach is used in this function. Delta method is used to calculate the asymptotic covariance matrix.

\section*{Value}

A vector (or a matrix if the input is a list of matrices) of (standardized) indirect effect, standardized direct effect, and their asymptotic sampling covariance matrices

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2009). Comparison of methods for constructing confidence intervals of standardized indirect effects. Behavior Research Methods, 41, 425-438.

Kwan, J., \& Chan, W. (2011). Comparing standardized coefficients in structural equation modeling: a model reparameterization approach. Behavior Research Methods, 43, 730-745.

\section*{Examples}
```


## A correlation matrix as input

x<- matrix(c(1, 0.4, 0.2, 0.4, 1, 0.3, 0.2, 0.3, 1), ncol=3)
dimnames(x) <- list( c("y", "m", "x"), c("y", "m", "x") )
indirectEffect(x, n=300)

## A list of correlation matrices

indirectEffect( list(x, x), n=c(300,500), standardized=FALSE )

```
is.pd Test Positive Definiteness of a List of Square Matrices

\section*{Description}

It tests the positive definiteness of a square matrix or a list of square matrices. It returns TRUE if the matrix is positive definite. It returns FALSE if the matrix is either non-positive definite or not symmetric. Variables with NA in the diagonals will be removed before testing. It returns NA when there are missing correlations even after deleting the missing variables.

\section*{Usage}
is.pd(x, check.aCov=FALSE, cor.analysis=TRUE, tol=1e-06)

\section*{Arguments}

X
check.aCov
cor.analysis Whether the input matrix is a correlation or a covariance matrix. It is ignored when check. aCov=FALSE.
tol Tolerance (relative to largest variance) for numerical lack of positive-definiteness in x . It is adopted from mvrnorm.

\section*{Value}

If the input is a matrix, it returns TRUE, FALSE or NA. If the input is a list of matrices, it returns a list of TRUE, FALSE or NA.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Examples}
```

    A <- diag(1,3)
    is.pd(A)
    # TRUE
    B <- matrix(c(1,2,2,1), ncol=2)
    is.pd(B)
    # FALSE
    is.pd(list(A, B))
    # TRUE FALSE
    C <- A
    C[2,1] <- C[1,2] <- NA
    is.pd(C)
    # NA
    ```
 issp05
 A Dataset from ISSP (2005)

\section*{Description}

Thirty-two covariance matrices on work-related attitudes were extracted from the International Social Survey Programme 2005: Work Orientation III (ISSP, 2005). Seven variables were selected for demonstration purposes. They were grouped into three constructs: Importance of Job Prospects measured by job security (JP1), high income (JP2), and opportunity for advancement (JP3); Importance of Job Autonomy measured by work independently (JA1) and decide time of work (JA2); and Importance of Contributions to Society measured by help other people (CS1) and a job useful to society (CS2).

\section*{Usage}
data(issp05)

\section*{Details}

A list of data with the following structure:
data \(A\) list of 32 covariance matrices
n A vector of sample sizes

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{Source}

ISSP Research Group (2007): International Social Survey Programme 2005: Work Orientation III (ISSP 2005). GESIS Data Archive, Cologne. ZA4350 Data file Version 1.0.0, doi:10.4232/1.4350

\section*{See Also}
```

issp89

```

\section*{Examples}
```


## Not run:

data(issp05)

#### Fixed-effects TSSEM

fixed1 <- tssem1(issp05$data, issp05$n, method="FEM")
summary(fixed1)

## Prepare a model implied matrix

## Factor correlation matrix

Phi <- create.mxMatrix( c("0.3*corf2f1","0.3*corf3f1","0.3*corf3f2"),
type="Stand", as.mxMatrix=FALSE )

## Error variances

Psi <- create.mxMatrix( paste("0.2*e", 1:7, sep=""), type="Diag",
as.mxMatrix=FALSE )

## Create Smatrix

S1 <- bdiagMat(list(Psi, Phi))

## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c(paste("x",1:7,sep=""),

## paste("f",1:3,sep=""))

## S1

S1 <- as.mxMatrix(S1)

## Factor loadings

Lambda <- create.mxMatrix( c(".3*f1x1",".3*f1x2",".3*f1x3",rep(0,7),
".3*f2x4",".3*f2x5",rep (0,7),".3*f3\times6",".3*f3x7"),
type="Full", ncol=3, nrow=7, as.mxMatrix=FALSE )
Zero1 <- matrix(0, nrow=7, ncol=7)
Zero2 <- matrix(0, nrow=3, ncol=10)

## Create Amatrix

A1 <- rbind( cbind(Zero1, Lambda),
Zero2 )

## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c(paste("x",1:7, sep=""),

## paste("f",1:3,sep=""))

## A1

A1 <- as.mxMatrix(A1)

```
```


## Create Fmatrix

F1 <- create.Fmatrix(c(rep(1,7), rep(0,3)))

#### Fixed-effects model: Stage 2 analysis

fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,
intervals.type="LB")
summary(fixed2)
plot(fixed2, nDigits=1)

## End(Not run)

```

\section*{Description}

Eleven covariance matrices on work-related attitudes were extracted from the Inter-University Consortium for Political and Social Research (1989). Nine variables were selected by Cheung and Chan (2005; 2009) for demonstration purposes. They were grouped into three constructs: Job Prospects measured by job security (JP1), income (JP2), and advancement opportunity (JP3); Job Nature measured by interesting job (JN1), independent work (JN2), help other people (JN3), and useful to society (JN4); and Time Demand measured by flexible working hours (TD1) and lots of leisure time (TD2).

\section*{Usage}
data(issp89)

\section*{Details}

A list of data with the following structure:
data A list of 11 studies of covariance matrices
n A vector of sample sizes

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Source}

Inter-University Consortium for Political and Social Research. (1989). International Social Survey Program: Work orientation. Ann Arbor, MI: Author.

\section*{References}

Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.

Cheung, M. W.-L., \& Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.

\section*{See Also}
issp05

\section*{Examples}
```


## Not run:

data(issp89)

#### Analysis of correlation structure in Cheung and Chan (2005)

#### Fixed-effects model: Stage 1 analysis

cor1 <- tssem1(issp89$data, issp89$n, method="FEM", cor.analysis=TRUE)
summary(cor1)

## Prepare a model implied matrix

## Factor correlation matrix

Phi <- create.mxMatrix( c("0.3*corf2f1","0.3*corf3f1","0.3*corf3f2"),
type="Stand", as.mxMatrix=FALSE )

## Error variances

Psi <- create.mxMatrix( paste("0.2*e", 1:9, sep=""), type="Diag",
as.mxMatrix=FALSE )

## Create Smatrix

S1 <- bdiagMat(list(Psi, Phi))

## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c(paste("x",1:9, sep=""),

## paste("f",1:3,sep=""))

## S1

S1 <- as.mxMatrix(S1)

## Factor loadings

Lambda <- create.mxMatrix( c(".3*f1x1",".3*f1x2",".3*f1x3",rep(0,9),
".3*f2x4",".3*f2x5",".3*f2x6",".3*f2x7",
rep(0,9),".3*f3\times8",".3*f3x9"), type="Full",
ncol=3, nrow=9, as.mxMatrix=FALSE )
Zero1 <- matrix(0, nrow=9, ncol=9)
Zero2 <- matrix(0, nrow=3, ncol=12)

## Create Amatrix

A1 <- rbind( cbind(Zero1, Lambda),
Zero2 )

## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c(paste("x",1:9,sep=""),

## 

    paste("f",1:3,sep=""))
    
## A1

A1 <- as.mxMatrix(A1)

```
```


## Create Fmatrix

F1 <- create.Fmatrix(c(rep(1,9), rep (0,3)))

#### Fixed-effects model: Stage 2 analysis

cor2 <- tssem2(cor1, Amatrix=A1, Smatrix=S1, Fmatrix=F1, intervals.type="LB")
summary(cor2)

## Display the model with the parameter estimates

plot(cor2, nDigits=1)

#### Analysis of covariance structure in Cheung and Chan (2009)

#### Fixed-effects model: Stage 1 analysis

cov1 <- tssem1(issp89$data, issp89$n, method="FEM", cor.analysis=FALSE)
summary(cov1)

#### Fixed-effects model: Stage 2 analysis

cov2 <- tssem2(cov1, Amatrix=A1, Smatrix=S1, Fmatrix=F1)
summary(cov2)

## Display the model with the parameter estimates

plot(cov2, nDigits=1)

## End(Not run)

```

\section*{Description}

A dataset of the relationship between organizational commitment (OC) and salesperson job performance (JP) from Jaramillo, Mulki \& Marshall (2005).

\section*{Usage}
data(Jaramillo05)

\section*{Format}

A data frame with 61 observations on the following 10 variables.
Author a character vector of study
Sample_size sample size of the study
Sales sample type; either "mixed", "nonsales" or "sales"
Country a character vector of country of study
IDV Hofstede's (1997) individualism index
OC_scale scale of OC; either "Porter or Mowday", "Meyer" or "other"
OC_alpha Coefficient alpha of organizational commitment

JP_alpha Coefficient alpha of job performance
\(r\) correlation between organizational commitment and job performance
\(r _v\) sampling variance of \(r\)

\section*{Source}

Jaramillo, F., Mulki, J. P., \& Marshall, G. W. (2005). A meta-analysis of the relationship between organizational commitment and salesperson job performance: 25 years of research. Journal of Business Research, 58(6), 705-714. doi:10.1016/j.jbusres.2003.10.004

\section*{Examples}
```


## Not run:

## Research question 4.4.1

summary(meta(r, r_v, data=Jaramillo05))

## Research question 4.4.2

## Select cases with either "sales" or "nonsales"

Sales.df <- subset(Jaramillo05, Sales %in% c("sales", "nonsales"))

## Create a predictor with 1 and 0 when they are "sales" or "nonsales", respectively

predictor <- ifelse(Jaramillo05\$Sales=="sales", yes=1, no=0)

## Mixed-effects meta-analysis

summary( meta(y = r, v = r_v, x = predictor, data = Jaramillo05) )

## Research question 4.4.3

summary(meta(r, r_v, x=IDV, data=Jaramillo05))

## End(Not run)

```

Kalaian96
Multivariate effect sizes reported by Kalaian and Raudenbush (1996)

\section*{Description}

This data set includes 47 multivariate effect sizes reported by Kalaian and Raudenbush (1996, Table 1).

\section*{Usage}
data(Kalaian96)

\section*{Details}

A list of data with the following structure:
Study Study name

Year Year of publication
n_e Sample size of the experimental group
n_c Sample size of the control group
dSAT_V Standardized mean difference of the Scholastic Aptitude Test (SAT) on verbal
dSAT_M Standardized mean difference of SAT on math
var_V Sampling variance of dSAT_V
\(\operatorname{cov}_{-} V M\) Sampling covariance of dSAT_V and dSAT_M with a common correlation of 0.66
var_M Sampling variance of dSAT_M
Hr Hours of training
ETS Educational Testing Service
Study_type Either Randomized, Matched or Nonequivalent comparison
Home_work Home work

\section*{Source}

Kalaian, H. A., \& Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1(3), 227-235. https://doi.org/10.1037/1082-989X.1.3.227

\section*{Examples}
\#\# Not run:
data(Kalaian96)
\#\# End(Not run)

\section*{Description}

It converts models specified in lavaan model syntax to RAM models.

\section*{Usage}
```

lavaan2RAM(model, obs.variables = NULL, A.notation = "ON",
S.notation = "WITH", M.notation = "mean", auto.var = TRUE,
std.lv = TRUE, ngroups = 1, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline mo & A character string of model using the lavaan model syntax. \\
\hline obs.variables & A character vector of the observed variables. The observed variables in the RAM specification will follow the order specified in obs.variables. It is important to check whether the order of the observed variables matches the order in the dataset. \\
\hline A. notation & A character string to be used in the A matrix if the labels are not included in the lavaan model. For example, the label will be "yONx" for regressing " \(y\) " on "x". \\
\hline S.notation & A character string to be used in the \(S\) matrix if the labels are not included in the lavaan model. For example, the label will be "yWITHx" for the covariance between "y" with "x" and "yWITHy" for the (error) variance of "y". \\
\hline M. notation & A character string to be used in the M matrix if the labels are not included in the lavaan model. For example, the label will be "ymean" for the mean of "y" if M. notation="mean". \\
\hline auto. var & Logical. If TRUE, the residual variances and the variances of exogenous latent variables are included in the model and set free. See model. syntax. \\
\hline std.lv & Logical. If TRUE, the metric of each latent variable is determined by fixing their variances to 1.0 . If FALSE, the metric of each latent variable is determined by fixing the factor loading of the first indicator to 1.0 . See model. syntax. \\
\hline ngroups & Number. The number of groups in the model. See model. syntax. \\
\hline & Further arguments to be passed to model.syntax. Please note that fixed. \(x\) is set at FALSE. Thus it cannot be passed to \\
\hline
\end{tabular}

\section*{Details}

It uses the model. syntax to do the conversion.

\section*{Value}

A list of RAM specification with \(A, S, F\), and \(M\) matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{See Also}
ramModel, Becker92, Becker09, Digman97, Hunter83, as.mxMatrix, checkRAM

\section*{Examples}
```


## Regression model on correlation matrix

model1 <- "\#\# y is modelled by x1, x2, and x3
y ~ x1 + x2 + x3
\#\# Fix the independent variables at 1
x1 ~~ 1*x1
x2 ~~ 1*x2

```
```

    x3 ~~ 1*x3
    ## Declare the correlations among the independent variables
    x1 ~~ x2
    x1 ~~ x3
    x2 ~~ x3"
    
## Compare the arrangements of variables with and without

## specifying the obs.variables arguments.

lavaan2RAM(model1, obs.variables=c("y", "x1", "x2", "x3"))

## Two-factor CFA model

model2 <- "f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
\#\# Declare the correlation between f1 and f2
\#\# and label it with cor_f1f2
f1 ~~ cor_f1f2*f2"
lavaan2RAM(model2)

## Regression model with the mean structure

model3 <- "y ~ x
\#\# Intercept of y
y ~ 1
\#\# Mean of x
x ~ 1'
lavaan2RAM(model3)

## Multiple group regression model

## Different intercepts with a common slope

model4 <- "y ~ c(a1, a2)*1 + c(b, b)*x"
lavaan2RAM(model4, ngroups=2)

```
list2matrix \(\quad\) Convert a List of Symmetric Matrices into a Stacked Matrix

\section*{Description}

It converts a list of symmetric matrices into a stacked matrix. Dimensions of the symmetric matrices have to be the same. It tries to preserve the dimension names if possible. Dimension names will be created if there are no dimension names in the first symmetric matrix.

\section*{Usage}
list2matrix(x, diag = FALSE)

\section*{Arguments}
x
diag

A list of \(k p \mathrm{x} p\) symmetric matrices.
Logical. If it is TRUE, vech is used to vectorize the (covariance) matrices. If it is FALSE, vechs is used to vectorize the (correlation) matrices.

\section*{Value}

A \(k \mathrm{x} p *\) stacked matrix where \(p *=p(p-1) / 2\) for diag=FALSE or \(p *=p(p+1) / 2\) for diag=TRUE.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{Examples}
```

C1 <- matrix(c(1,0.5,0.4,0.5,1,0.2,0.4,0.2,1), ncol=3)
C2 <- matrix(c(1,0.4,NA,0.4,1,NA,NA,NA,NA), ncol=3)

## A list without dimension names

list2matrix(list(C1, C2))

# x2_x1 x3_x1 x3_x2

# [1,] 0.5 0.4 0.2

\#[2,] 0.4 NA NA
dimnames(C1) <- list( c("x","y","z"), c("x","y","z") )
dimnames(C2) <- list( c("x","y","z"), c("x","y","z") )

## A list with dimension names

list2matrix(list(C1, C2))

# y_x z_x z_y

# [1,] 0.5 0.4 0.2

# [2,] 0.4 NA NA

```

\section*{Description}

Eight studies from Mak et al. (2009) were reported by Cheung et al. (2012).

\section*{Usage}
data(Mak09)

\section*{Format}

A data frame with 8 observations on the following 10 variables.

Study a character vector of study
type a character vector
AF.BP a numeric vector
Tot.BP a numeric vector
AF.non. BP a numeric vector
Tot.non.BP a numeric vector
yi a numeric vector
vi a numeric vector
age.mean a numeric vector
study.duration a numeric vector

\section*{Source}

Mak, A., Cheung, M. W.-L., Ho, R. C. M., Cheak, A. A. C., \& Lau, C. S. (2009). Bisphosphonate and atrial fibrillation: Bayesian meta-analyses of randomized controlled trials and observational studies. BMC Musculoskeletal Disorders, 10(113). doi:10.1186/1471-2474-10-113 Available at http://www.biomedcentral.com/1471-2474/10/113.

\section*{References}

Cheung, M. W.-L., Ho, R. C. M., Lim, Y., \& Mak, A. (2012). Conducting a meta-analysis: Basics and good practices. International Journal of Rheumatic Diseases, 15(2), 129-135. doi: 10.1111/j.1756-185X.2012.01712.x

\section*{Examples}
```


## Random-effects meta-analysis

( meta1 <- summary(meta(y=yi, v=vi, data=Mak09, I2=c("I2q", "I2hm"))) )

## Convert the estimates back into odds ratio

OR <- with(coef(meta1), exp(c(Estimate[1], lbound[1], ubound[1])))
names(OR) <- c("Estimate in OR", "lbound in OR", "ubound in OR")
OR

## Mixed-effects meta-analysis with mean age as a predictor

summary( meta(y=yi, v=vi, x=age.mean, data=Mak09) )

```

\section*{Description}

It converts a matrix into a block diagonal matrix.

\section*{Usage}
matrix2bdiag(x, ...)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{x} & \text { A } k \times p \text { matrix of numerics or characters. } \\ \ldots & \text { Further arguments to be passed to vec2symMat }\end{array}\)

\section*{Details}

Each row of \(x\) is converted into a symmetric matrix via vec 2 symMat. Then the list of the symmetric matrices is converted into a block diagonal matrix via a function written by Scott Chasalow posted at http://www.math. yorku.ca/Who/Faculty/Monette/pub/stmp/0827.html.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{See Also}
vec2symMat

\section*{Examples}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{(m1 <- matrix (1:12, ncol=6, byrow=TRU}} \\
\hline & & & & & & \\
\hline \# [1,] & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \# [2,] & 7 & 8 & 9 & 10 & 11 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
matrix2bdiag \((\mathrm{m} 1)\) \\
\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} \\
\# [1,] & 1 & 2 & 3 & 0 & 0 & 0 \\
\# [2,] & 2 & 4 & 5 & 0 & 0 & 0 \\
\# [3,] & 3 & 5 & 6 & 0 & 0 & 0 \\
\# [4,] & 0 & 0 & 0 & 7 & 8 & 9 \\
\# [5,] & 0 & 0 & 0 & 8 & 10 & 11 \\
\# [6,] & 0 & 0 & 0 & 9 & 11 & 12
\end{tabular}

\section*{Description}

It conducts univariate and multivariate meta-analysis with maximum likelihood estimation method. Mixed-effects meta-analysis can be conducted by including study characteristics as predictors. Equality constraints on intercepts, regression coefficients, and variance components can be easily imposed by setting the same labels on the parameter estimates.

\section*{Usage}
```

    meta(y, v, x, data, intercept.constraints = NULL, coef.constraints = NULL,
        RE.constraints = NULL, RE.startvalues=0.1, RE.lbound = 1e-10,
        intervals.type = c("z", "LB"), I2="I2q", R2=TRUE,
        model.name="Meta analysis with ML", suppressWarnings = TRUE,
        silent = TRUE, run = TRUE, ...)
    metaFIML(y, v, x, av, data, intercept.constraints=NULL,
            coef.constraints=NULL, RE.constraints=NULL,
            RE.startvalues=0.1, RE.lbound=1e-10,
            intervals.type=c("z", "LB"), R2=TRUE,
            model.name="Meta analysis with FIML",
            suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)
    ```

\section*{Arguments}
\(\mathrm{y} \quad\) A vector of effect size for univariate meta-analysis or a \(k \times p\) matrix of effect sizes for multivariate meta-analysis where \(k\) is the number of studies and \(p\) is the number of effect sizes.
v
A vector of the sampling variance of the effect size for univariate meta-analysis or a \(k \times p *\) matrix of the sampling covariance matrix of the effect sizes for multivariate meta-analysis where \(p *=p(p+1) / 2\). It is arranged by column major as used by vech.
\(\mathrm{x} \quad\) A predictor or a \(k \mathrm{x} m\) matrix of predictors where \(m\) is the number of predictors.
av An auxiliary variable or a \(k \times m\) matrix of auxiliary variables where \(m\) is the number of auxiliary variables.
data An optional data frame containing the variables in the model.
intercept.constraints
A \(1 \times p\) matrix specifying whether the intercepts of the effect sizes are fixed or free. If the input is not a matrix, the input is converted into a \(1 \times p\) matrix with \(t\) (as.matrix(intercept.constraints)). The default is that the intercepts are free. When there is no predictor, these intercepts are the same as the pooled effect sizes. The format of this matrix follows as.mxMatrix. The intercepts can be constrained equally by using the same labels.
coef.constraints
A \(p \times m\) matrix specifying how the predictors predict the effect sizes. If the input is not a matrix, it is converted into a matrix by as .matrix(). The default is that all \(m\) predictors predict all \(p\) effect sizes. The format of this matrix follows as.mxMatrix. The regression coefficients can be constrained equally by using the same labels.

RE.constraints A \(p \mathrm{x} p\) matrix specifying the variance components of the random effects. If the input is not a matrix, it is converted into a matrix by as.matrix(). The default is that all covariance/variance components are free. The format of this matrix follows as.mxMatrix. Elements of the variance components can be constrained equally by using the same labels. If a zero matrix is specified, it becomes a fixed-effects meta-analysis.

RE.startvalues A vector of \(p\) starting values on the diagonals of the variance component of the random effects. If only one scalar is given, it will be duplicated across the diagonals. Starting values for the off-diagonals of the variance component are all 0 . A \(p \times p\) symmetric matrix of starting values is also accepted.
RE.lbound \(\quad\) A vector of \(p\) lower bounds on the diagonals of the variance component of the random effects. If only one scalar is given, it will be duplicated across the diagonals. Lower bounds for the off-diagonals of the variance component are set at NA. A \(p \times p\) symmetric matrix of the lower bounds is also accepted.
intervals. type Either z (default if missing) or LB. If it is \(z\), it calculates the \(95 \%\) Wald confidence intervals (CIs) based on the \(z\) statistic. If it is LB, it calculates the \(95 \%\) likelihood-based CIs on the parameter estimates. Note that the \(z\) values and their associated \(p\) values are based on the \(z\) statistic. They are not related to the likelihood-based CIs.

I2 Possible options are "I2q", "I2hm" and "I2am". They represent the I2 calculated by using a typical within-study sampling variance from the Q statistic, the harmonic mean and the arithmetic mean of the within-study sampling variances (Xiong, Miller, \& Morris, 2010). More than one options are possible. If intervals.type="LB", \(95 \%\) confidence intervals on the heterogeneity indices will be constructed.
R2 Logical. If TRUE and there are predictors, R2 is calculated (Raudenbush, 2009).
model. name A string for the model name in mxModel.
suppressWarnings
Logical. If TRUE, warnings are suppressed. The argument to be passed to mxRun.
silent Logical. An argument to be passed to mxRun
run Logical. If FALSE, only return the \(m x\) model without running the analysis.
Further arguments to be passed to \(m x R u n\)

\section*{Value}

An object of class meta with a list of
\begin{tabular}{ll}
call & Object returned by match. call \\
data & A data matrix of \(y, v\) and \(x\)
\end{tabular}
\begin{tabular}{ll}
no.y & No. of effect sizes \\
no.x & No. of predictors \\
miss.x & \begin{tabular}{l}
A vector indicating whether the predictors are missing. Studies will be removed \\
before the analysis if they are TRUE
\end{tabular} \\
I2 & Types of I2 calculated \\
R2 & Logical \\
\(m x . f i t\) & A fitted object returned from mxRun \\
\(m x 0 . f i t\) & A fitted object without any predictor returned from mxRun
\end{tabular}

\section*{Note}

Missing values (NA) in \(y\) and their related elements in \(v\) will be removed automatically. When there are missing values in v but not in \(y\), missing values will be replaced by 1e5. Effectively, these effect sizes will have little impact on the analysis. metaFIML () uses FIML to handle missing covariates in X. It is experimental. It may not be stable.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects metaanalyses into structural equation modeling. Psychological Methods, 13, 182-202.
Cheung, M. W.-L. (2009). Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling, 16, 267-294.
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling, 20, 429-454.
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley \& Sons, Inc.
Hardy, R. J., \& Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. Statistics in Medicine, 15, 619-629.

Neale, M. C., \& Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior Genetics, 27, 113-120.

Raudenbush, S. W. (2009). Analyzing effect sizes: random effects models. In H. M. Cooper, L. V. Hedges, \& J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 295-315). New York: Russell Sage Foundation.

Xiong, C., Miller, J. P., \& Morris, J. C. (2010). Measuring study-specific heterogeneity in metaanalysis: application to an antecedent biomarker study of Alzheimer's disease. Statistics in Biopharmaceutical Research, 2(3), 300-309. doi:10.1198/sbr.2009.0067

\section*{See Also}
reml, Hox02, Berkey98, wvs94a
```

meta2semPlot Convert metaSEM objects into semPlotModel objects for plotting

```

\section*{Description}

It converts objects in class wls into objects of class semPlotModel.

\section*{Usage}
meta2semPlot (object, manNames = NULL, latNames = NULL, labels = c("labels", "RAM"), ...)

\section*{Arguments}
object
manNames
latNames A character vector of the latent names. The program will create it by using "L1", "L2", etc if it is not given.
labels Either labels (default if missing) or RAM. If labels, the labels of the parameters are used in plotting. If RAM, the RAM notations are used in plotting.
... Further arguments to be passed to ramModel

\section*{Details}

It uses the ramModel() to do the conversion.

\section*{Value}

A "semPlotModel" object.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
ramModel, Becker92, Becker09, Digman97, Hunter83
```

meta3

```

Three-Level Univariate Meta-Analysis with Maximum Likelihood Estimation

\section*{Description}

It conducts three-level univariate meta-analysis with maximum likelihood estimation method. Mixedeffects meta-analysis can be conducted by including study characteristics as predictors. Equality constraints on the intercepts, regression coefficients and variance components on the level-2 and on the level- 3 can be easily imposed by setting the same labels on the parameter estimates.

\section*{Usage}
```

meta3(y, v, cluster, x, data, intercept.constraints = NULL,
coef.constraints = NULL , RE2.constraints = NULL,
RE2.lbound = 1e-10, RE3.constraints = NULL, RE3.lbound = 1e-10,
intervals.type = c("z", "LB"), I2="I2q",
R2=TRUE, model.name = "Meta analysis with ML",
suppressWarnings = TRUE, silent = TRUE, run = TRUE, ...)
meta3X(y, v, cluster, x2, x3, av2, av3, data, intercept.constraints=NULL,
coef.constraints=NULL, RE2.constraints=NULL, RE2.lbound=1e-10,
RE3.constraints=NULL, RE3.lbound=1e-10, intervals.type=c("z", "LB"),
R2=TRUE, model.name="Meta analysis with ML",
suppressWarnings=TRUE, silent = TRUE, run = TRUE, ...)

```

\section*{Arguments}
\(y \quad\) A vector of \(k\) studies of effect size.
\(v \quad\) A vector of \(k\) studies of sampling variance.
cluster A vector of \(k\) characters or numbers indicating the clusters.
\(\mathrm{x} \quad\) A predictor or a \(k \times m\) matrix of level-2 and level-3 predictors where \(m\) is the number of predictors.
\(\times 2 \quad\) A predictor or a \(k \times m\) matrix of level-2 predictors where \(m\) is the number of predictors.
x3 A predictor or a \(k \times m\) matrix of level-3 predictors where \(m\) is the number of predictors.
av2 A predictor or a \(k \times m\) matrix of level-2 auxiliary variables where \(m\) is the number of variables.
av3 A predictor or a \(k \times m\) matrix of level-3 auxiliary variables where \(m\) is the number of variables.
data An optional data frame containing the variables in the model.
intercept.constraints
A \(1 \times 1\) matrix specifying whether the intercept of the effect size is fixed or constrained. The format of this matrix follows as.mxMatrix. The intercept can be constrained with other parameters by using the same label.
coef.constraints
A \(1 \times m\) matrix specifying how the level-2 and level-3 predictors predict the effect sizes. If the input is not a matrix, it is converted into a matrix by as .matrix(). The default is that all \(m\) predictors predict the effect size. The format of this matrix follows as.mxMatrix. The regression coefficients can be constrained equally by using the same labels.
RE2. constraints
A scalar or a \(1 \times 1\) matrix specifying the variance components of the random effects. The default is that the variance components are free. The format of this matrix follows as.mxMatrix. Elements of the variance components can be constrained equally by using the same label.
RE2.lbound A scalar or a \(1 \times 1\) matrix of lower bound on the level- 2 variance component of the random effects.
RE3.constraints
A scalar of a \(1 \times 1\) matrix specifying the variance components of the random effects at level-3. The default is that the variance components are free. The format of this matrix follows as.mxMatrix. Elements of the variance components can be constrained equally by using the same label.
RE3. lbound A scalar or a \(1 \times 1\) matrix of lower bound on the level- 3 variance component of the random effects.
intervals.type Either z (default if missing) or LB. If it is z, it calculates the \(95 \%\) Wald confidence intervals (CIs) based on the \(z\) statistic. If it is LB, it calculates the \(95 \%\) likelihood-based CIs on the parameter estimates. Note that the \(z\) values and their associated \(p\) values are based on the \(z\) statistic. They are not related to the likelihood-based CIs.
I2 Possible options are "I2q", "I2hm", "I2am" and "ICC". They represent the I2 calculated by using a typical within-study sampling variance from the \(Q\) statistic, the harmonic mean, the arithmetic mean of the within-study sampling variances, and the intra-class correlation. More than one options are possible. If intervals.type="LB", \(95 \%\) confidence intervals on the heterogeneity indices will be constructed.

R2 Logical. If TRUE and there are predictors, R2 is calculated.
model. name A string for the model name in mxModel.
suppressWarnings
Logical. If TRUE, warnings are suppressed. It is passed to mxRun.
silent Logical. An argument to be passed to mxRun
run Logical. If FALSE, only return the mx model without running the analysis.
... Further arguments to be passed to mxRun

\section*{Details}
\[
y_{i j}=\beta_{0}+\beta^{\prime} * \mathbf{x}_{i j}+u_{(2) i j}+u_{(3) j}+e_{i j}
\]
where \(y_{i j}\) is the effect size for the ith study in the jth cluster, \(\beta_{0}\) is the intercept, \(\beta\) is the regression coefficients, \(\mathbf{x}_{i j}\) is a vector of predictors, \(u_{(2) i j} \sim N\left(0, \tau_{2}^{2}\right)\) and \(u_{(3) j} \sim N\left(0, \tau_{3}^{2}\right)\) are the level-2
and level-3 heterogeneity variances, respectively, and \(e_{i j} \sim N\left(0, v_{i j}\right)\) is the conditional known sampling variance.
meta3() does not differentiate between level-2 or level-3 variables in \(x\) since both variables are treated as a design matrix. When there are missing values in \(x\), the data will be deleted. meta \(3 \times\) () treats the predictors \(x 2\) and \(\times 3\) as level -2 and level -3 variables. Thus, their means and covariance matrix will be estimated. Missing values in \(\times 2\) and \(\times 3\) will be handled by (full information) maximum likelihood (FIML) in meta3X(). Moreover, auxiliary variables av2 at level-2 and av3 at level-3 may be included to improve the estimation. Although meta3X() is more flexible in handling missing covariates, it is more likely to encounter estimation problems.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19, 211-229.

Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.
Graham, J. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 10(1), 80-100.
Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level metaanalysis. Research Synthesis Methods, 2, 61-76.

\section*{See Also}
reml3, Cooper03, Bornmann07

Nam03 Dataset on the Environmental Tobacco Smoke (ETS) on children's health

\section*{Description}

This dataset includes 59 studies reported by Nam, Mengersen, and Garthwaite (2003) on the potential health effects among children exposed to environmental tobacco smoke (ETS), or passive smoking. The effect sizes are the log odds ratios of asthma and lower respiratory disease (LRD).

\section*{Usage \\ data(Nam03)}

\section*{Details}

A list of data with the following structure:
ID Study identification number.
Size Total number of valid subjects in the study.
Age Mean age of participants.
Year Year of publication.
Country Country code.
Smoke Source of ETS.
Adj Whether the reported odds ratio is adjusted for covariates.
Asthma_logOR Log odds ratio of asthma.
LRD_logOR Log odds ratio of lower respiratory disease.
Asthma_v Sampling variance of Asthma_logOR.
AsthmaLRD_cov_05 Sampling covariance between Asthma_logOR and LRD_logOR by assuming a correlation of 0.5

LRD_v Sampling variance of LRD_logOR.

\section*{Source}

Nam, I.-S., Mengersen, K., \& Garthwaite, P. (2003). Multivariate meta-analysis. Statistics in Medicine, 22(14), 2309-2333. https://doi.org/10.1002/sim. 1410

\section*{Examples}
data(Nam03)

\section*{Nohe15}

Correlation Matrices from Nohe et al. (2015)

\section*{Description}

The data sets include two lists of correlation matrices of panel studies between work-family conflict and strain reported in Table A1 (Nohe15A1) and Table A2 (Nohe15A2) by Nohe et al. (2015).

\section*{Usage}
data(Nohe15A1)
data(Nohe15A2)

\section*{Details}

A list of data with the following structure:
data A list of studies of correlation matrices. The variables are \(W 1, S 1, W 2\), and \(S 2\) in Nohe15A1 and F1, S1, F2, and S2 in Nohe15A2
n A vector of sample sizes
RelXX The reliabilities of \(W 1, S 1, W 2\) and \(S 2\) in Nohe15A1 and the reliabilities of \(F 1 S 1, F 2\), and S2 in Nohe15A2
FemalePer Percentage of female participants
Publication Whether the studies were published \((P)\) or unpublished \((U)\)
Lag Time lag between the coded measurement waves in months

\section*{Source}

Nohe, C., Meier, L. L., Sonntag, K., \& Michel, A. (2015). The chicken or the egg? A meta-analysis of panel studies of the relationship between work-family conflict and strain. Journal of Applied Psychology, 100(2), 522-536.

\section*{Examples}
```


## Not run:

#### TSSEM

## Set seed for replicability

set.seed(23891)

## Table A1

randA1a <- tssem1(Nohe15A1$data, Nohe15A1$n, method="REM", RE.type="Diag")
summary(randA1a)
model1 <- 'W2 ~ w2w*W1 + s2w*S1
S2 ~ w2s*W1 + s2s*S1
W1 ~~ w1WITHs1*S1
W2 ~~ w2WITHs2*S2
W1 ~~ 1*W1
S1 ~~ 1*S1
W2 ~~ Errw2*W2
S2 ~~ Errs2*S2'

## Display the model

plot(model1, layout="spring")
RAM1 <- lavaan2RAM(model1, obs.variables=c("W1", "S1", "W2", "S2"))
RAM1
randA1b <- tssem2(randA1a, Amatrix=RAM1$A, Smatrix=RAM1$S)
summary(randA1b)

## Display the model with the parameter estimates

plot(randA1b, layout="spring")

```
```


## Table A2

randA2a <- tssem1(Nohe15A2$data, Nohe15A2$n, method="REM", RE.type="Diag")

## Rerun to remove error code

randA2a <- rerun(randA2a)
summary(randA2a)
model2 <- 'F2 ~ f2f*F1 + s2F*S1
S2 ~ f2s*F1 + s2s*S1
F1 ~~ f1WITHs1*S1
F2 ~~ f2WITHs2*S2
F1 ~~ 1*F1
S1 ~~ 1*S1
F2 ~~ Errf2*F2
S2 ~~ Errs2*S2'

## Display the model

plot(model2, layout="spring")
RAM2 <- lavaan2RAM(model2, obs.variables=c("F1", "S1", "F2", "S2"))
RAM2
randA2b <- tssem2(randA2a, Amatrix=RAM2$A, Smatrix=RAM2$S)
summary(randA2b)

## Display the model with the parameter estimates

plot(randA2b, layout="spring")

## Estimate the heterogeneity of the parameter estimates

tssemParaVar(randA1a, randA2b)

## Parametric bootstrap based on Yu et al. (2016)

## I assume that you know what you are doing!

## Set seed for reproducibility

set.seed(39128482)

## Average the correlation coefficients with the univariate-r approach

uni1 <- uniR1(Nohe15A1$data, Nohe15A1$n)
uni1

## Generate random correlation matrices

boot.cor <- bootuniR1(uni1, Rep=50)

## Display the quality of the generated correlation matrices

summary(boot.cor)

## Proposed saturated model

model1 <- 'W2 + S2 ~ W1 + S1'

## Use the harmonic mean of the sample sizes as n in SEM

n <- uni1\$n.harmonic

```
```

boot.fit1 <- bootuniR2(model=model1, data=boot.cor, n=n)
summary(boot.fit1)

## Proposed model with equal regression coefficients

model2 <- 'W2 ~ Same*W1 + Cross*S1
S2 ~ Cross*W1 + Same*S1'
boot.fit2 <- bootuniR2(model=model2, data=boot.cor, n=n)
summary(boot.fit2)

#### OSMASEM

## Calculate the sampling variance-covariance matrix of the correlation matrices.

my.df <- Cor2DataFrame(Nohe15A1$data, Nohe15A1$n)

## Add the centered Lag as a moderator

my.df$data <- data.frame(my.df$data, Lag=scale(Nohe15A1$Lag),
            check.names=FALSE)
head(my.df$data)

## Proposed model

model1 <- 'W2 ~ w2w*W1 + s2w*S1
S2 ~ w2s*W1 + s2s*S1
W1 ~~ w1WITHs1*S1
W2 ~~ w2WITHs2*S2
W1 ~~ 1*W1
S1 ~~ 1*S1
W2 ~~ Errw2*W2
S2 ~~ Errs2*S2'
plot(model1)

## Convert it into RAM specification

RAM1 <- lavaan2RAM(model1, obs.variables=c("W1", "S1", "W2", "S2"))
RAM1

## Create vechs of the model implied correlation matrix

## with implicit diagonal constraints

## M0 <- create.vechsR(A0=RAM1$A, S0=RAM1$S)

## Create heterogeneity variances

## RE.type= either "Diag" or "Symm"

## 

## Transform= either "expLog" or "sqSD" for better estimation on variances

## T0 <- create.Tau2(RAM=RAM1, RE.type="Diag")

## 

## Fit the model

## fit0 <- osmasem(model.name="No moderator", Mmatrix=M0, Tmatrix=T0, data=my.df)

## Fit the model

fit0 <- osmasem(model.name="No moderator", RAM=RAM1, data=my.df)
summary(fit0)

## Get the SRMR

```
```

osmasemSRMR(fit0)

## Get the transformed variance component of the random effects

VarCorr(fit0)

## "lag" as a moderator on A matrix

A1 <- matrix(c(0,0,0,0,
0,0,0,0,
"0*data.Lag","0*data.Lag",0,0,
"0*data.Lag","0*data.Lag",0,0),
nrow=4, ncol=4, byrow=TRUE)

## M1 <- create.vechsR(A0=RAM1$A, S0=RAM1$S, Ax=A1)

## 

## Fit the nodel

## fit1 <- osmasem(model.name="Lag as a moderator for Amatrix", Mmatrix=M1,

## Tmatrix=T0, data= my.df)

fit1 <- osmasem(model.name="Lag as a moderator for Amatrix",
RAM=RAM1, Ax=A1, data= my.df)
summary(fit1)
VarCorr(fit1)

## Compare the models with and without the moderator "lag"

anova(fit1, fit0)

## Calculate the R2

osmasemR2(fit0, fit1)

## End(Not run)

```

Norton13 Studies on the Hospital Anxiety and Depression Scale Reported by Norton et al. (2013)

\section*{Description}

The data set includes 28 studies on 14 items measuring the Hospital Anxiety and Depression Scale (HADS) Reported by Norton et al. (2013).

\section*{Usage}
data(Norton13)

\section*{Details}

The variables are:
data A list of 28 studies of correlation matrices. The variables are 14 items (x 1 to x 14) measuring HADS.
n A vector of sample sizes
population A vector of the population of the data
group A vector of classification into patients vs. non-patients based on population

\section*{Source}

Norton, S., Cosco, T., Doyle, F., Done, J., \& Sacker, A. (2013). The Hospital Anxiety and Depression Scale: A meta confirmatory factor analysis. Journal of Psychosomatic Research, 74(1), 74-81.

\section*{References}

Jak, S., \& Cheung, M. W.-L. (2018). Addressing heterogeneity in meta-analytic structural equation modeling using subgroup analysis. Behavior Research Methods, 50, 1359-1373.

\section*{Examples}
data(Norton13)

\section*{osmasem One-stage meta-analytic structural equation modeling}

\section*{Description}

It fits MASEM with the one-stage MASEM (OSMASEM) approach.

\section*{Usage}
osmasem(model.name="osmasem", RAM=NULL, Mmatrix=NULL, Tmatrix=NULL, Jmatrix=NULL, Ax=NULL, \(S x=\) NULL, RE.type=c("Diag", "Symm"), data, subset=NULL, intervals.type = c("z", "LB"), mxModel.Args=NULL, mxRun.Args=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)

\section*{Arguments}
model. name A string for the model name in mxModel.
RAM A RAM object including a list of matrices of the model returned from lavaan2RAM. If it is given, Mmatrix and Tmatrix arguments will be ignored.
Mmatrix A list of matrices of the model implied correlation matrix created by the create. vechsR. It is only required when RAM is null.
Tmatrix A list of matrices of the heterogeneity variance-covariance matrix created by the create. Tau2. It is only required when RAM is null.
Jmatrix The Jacobian matrix of the mean structure in mxMatrix. The covariance structure is Jmatrix \(\% \& \%\) Tau \(2+\mathrm{Vi}\). If it is not givin, an identity matrix will be used.
\begin{tabular}{|c|c|}
\hline Ax & A Amatrix of a list of Amatrix with definition variables as the moderators of the Amatrix. It is used to create the Mmatrix. \\
\hline Sx & A Smatrix of a list of Smatrix with definition variables as the moderators of the Smatrix. It is used to create the Mmatrix. \\
\hline RE.type & Type of the random effects. \\
\hline data & A list of data created by the Cor2DataFrame. \\
\hline subset & A character vector of the observed variables selected for the analysis. \\
\hline intervals.type & Either \(z\) (default if missing) or LB. If it is \(z\), it calculates the \(95 \%\) confidence intervals (CIs) based on the estimated standard error. If it is LB, it calculates the 95\% likelihood-based CIs on the parameter estimates. \\
\hline mxModel.Args & A list of arguments passed to mxModel. \\
\hline mxRun.Args & A list of arguments passed to mxRun. \\
\hline \multicolumn{2}{|l|}{suppressWarnings} \\
\hline & Logical. If it is TRUE, warnings are suppressed. This argument is passed to mxRun. \\
\hline silent & Logical. An argument is passed to mxRun \\
\hline run & Logical. If FALSE, only return the mx model without running the analysis. \\
\hline & Not used yet. \\
\hline
\end{tabular}

\section*{Value}

An object of class osmasem

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Jak, S., \& Cheung, M. W.-L. (2019). Meta-analytic structural equation modeling with moderating effects on SEM parameters. Psychological Methods.

\section*{See Also}
```

Cor2DataFrame, create.vechsR, create.Tau2, create.V, osmasem, Nohe15

```

\section*{Description}

It calculates the R 2 of the moderators in explaining the variances in the heterogeneity variances.

\section*{Usage}
osmasemR2(model1, model0, R2.truncate=TRUE)

\section*{Arguments}
model1 An object in class osmasem.
model0 An object in class osmasem.
R2. truncate Whether to truncate the negative R2 to zero.

\section*{Value}
model1 and model0 are the models with and without the moderators, respectively. The function does not check whether the models are nested. It is the users' responsibility to make sure that the models with and without the moderators are nested. It returns a list of the diagonals of the heterogeneity variances of the models without and with the moderators, and the R2.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
osmasem
```

osmasemSRMR Calculate the SRMR in OSMASEM

```

\section*{Description}

It calculates the standardized root mean squared residuals (SRMR) in OSMASEM.

\section*{Usage}
osmasemSRMR(x)

\section*{Arguments}

\section*{Value}

It calculates the model implied correlation matrix and its saturated counterpart to calculate the SRMR. It should be noted that the heterogeneity variances are ignored in the calculations.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

See Also
osmasem, Nohe15
pattern.n Display the Accumulative Sample Sizes for the Covariance Matrix

\section*{Description}

It displays the accumulative sample sizes for the covariance matrix.

\section*{Usage}
pattern.n(x, n)

\section*{Arguments}
\(x \quad\) A list of square matrices
\(\mathrm{n} \quad\) A vector of sample sizes.

\section*{Value}

A square matrix of the accumulative sample sizes of the input matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Examples}
\#\# Show the pattern of missing data
pattern.n(Hunter83\$data, Hunter83\$n)

\# Ability Knowledge
```

pattern.na Display the Pattern of Missing Data of a List of Square Matrices

```

\section*{Description}

It displays the pattern of missing data (or pattern of data that are present) of a list of square matrices with the same dimensions.

\section*{Usage}
pattern.na(x, show.na = TRUE, type=c("tssem", "osmasem"))

\section*{Arguments}

X
show.na
type

A list of square matrices
If it is TRUE, it shows the pattern of missing data. If it is FALSE, it shows the pattern of data that are present.
If it is tssem, it reports the pattern of missing correlations for the tssem approach. If it is osmasem, it reports the pattern of missing correlations for the data created by Cor2DataFrame.

\section*{Value}

A square matrix of numerical values with the same dimensions of the input matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{Examples}

\section*{Description}

It plots the models from either the lavaan model or meta, wls, and osmasem objects.

\section*{Usage}
\#\# S3 method for class 'meta'
plot(x, effect.sizes, add.margin \(=0.1\), interval \(=0.95\),
main= "Effect Sizes and their Confidence Ellipses",
axis.labels= paste("Effect size ", effect.sizes, sep = ""),
study.col = "black", study.pch = 19, study.min.cex = 0.8,
study.weight.plot = FALSE, study.ellipse.plot = TRUE,
study.ellipse.col = "black", study.ellipse.lty = 2,
study.ellipse.lwd = 0.5, estimate.col = "blue",
estimate.pch = 18, estimate.cex = 2,
estimate.ellipse.plot = TRUE, estimate.ellipse.col = "red",
estimate.ellipse.lty = 1, estimate.ellipse.lwd = 2,
randeff.ellipse.plot = TRUE, randeff.ellipse.col = "green",
randeff.ellipse.lty = 1, randeff.ellipse.lwd = 2,
univariate.plot = TRUE, univariate.lines.col = "gray",
univariate.lines.lty \(=3\), univariate.lines.lwd \(=1\),
univariate. polygon.width \(=0.02\),
univariate.polygon.col = "red",
univariate.arrows.col = "green", univariate.arrows.lwd = 2,
diag.panel = FALSE, xlim=NULL, ylim=NULL, ...)
\#\# S3 method for class 'character'
plot(x, fixed.x=FALSE, nCharNodes=0, nCharEdges=0,
layout=c("tree", "circle", "spring", "tree2", "circle2"),
sizeMan=8, sizeLat=8, edge.label.cex=1.3, color="white", ...)
\#\# S3 method for class 'wls'
plot(x, manNames=NULL, latNames=NULL, labels=c("labels", "RAM"),
what="est", nCharNodes=0, nCharEdges=0,
layout=c("tree", "circle", "spring", "tree2", "circle2"), sizeMan=8, sizeLat=8, edge.label.cex=1.3, color="white", weighted=FALSE, ...)
\#\# S3 method for class 'osmasem'
plot(x, manNames=NULL, latNames=NULL, labels=c("labels", "RAM"), what="est", nCharNodes=0, nCharEdges=0,
layout=c("tree", "circle", "spring", "tree2", "circle2"), sizeMan=8, sizeLat=8, edge.label.cex=1.3, color="white",
weighted=FALSE, ...)

\section*{Arguments}

X
An object returned from either a lavaan model class character, osmasem, wls or meta
effect.sizes Numeric values indicating which effect sizes to be plotted. At least two effect sizes are required. To plot the effect sizes of \(y_{1}\) and \(y_{2}\), one may use effect.sizes \(=c(1,2)\). If it is missing, all effect sizes will be plotted in a pairwise way.
add.margin Value for additional margins on the left and bottom margins.
interval Interval for the confidence ellipses.
main Main title of each plot. If there are multiple plots, a vector of character titles may be used.
axis.labels Labels for the effect sizes.
study.col The color for individual studies. See col in par.
study.pch Plotting character of individual studies. See pch in points.
study.min.cex The minimum value of cex for individual studies. See cex in par.
study.weight.plot
Logical. If TRUE, the plotting size of individual studies (cex) will be proportional to one over the square root of the determinant of the sampling covariance matrix of the study.
study.ellipse.plot
Logical. If TRUE, the confidence ellipses of individual studies are plotted.
study.ellipse.col
The color of the confidence ellipses of individual studies. See col in par.
study.ellipse.lty
The line type of the confidence ellipse of individual studies. See lty in par.
study.ellipse.lwd
The line width of the confidence ellipse of individual studies. See lwd in par.
estimate.col The color of the estimated effect size. See col in par.
estimate.pch Plotting character of the estimated effect sizes. See pch in points.
estimate.cex The amount of plotting of the estimated effect sizes. See cex in par.
estimate.ellipse.plot
Logical. If TRUE, the confidence ellipse of the estimated effect sizes will be plotted.
estimate.ellipse.col
The color of the confidence ellipse of the estimated effect sizes. See col in par.
estimate.ellipse.lty
The line type of the confidence ellipse of the estimated effect sizes. See lty in par.
estimate.ellipse.lwd
The line width of the confidence ellipse of the estimated effect sizes. See lwd in par.
randeff.ellipse.plot
Logical. If TRUE, the confidence ellipses of the random effects will be plotted.
randeff.ellipse.col
Color of the confidence ellipses of the random effects. See col in par.
randeff.ellipse.lty
The line type of the confidence ellipses of the random effects. See lty in par.
randeff.ellipse.lwd
The line width of the confidence ellipses of the random effects. See lwd in par.
univariate.plot
Logical. If TRUE, the estimated univariate effect sizes will be plotted.
univariate.lines.col
The color of the estimated univariate effect sizes. See col in par.
univariate.lines.lty
The line type of the estimated univariate effect sizes. See lty in par. univariate.lines.lwd

The line width of the estimated univariate effect sizes. See lwd in par. univariate.polygon.width

The width of the polygon of the estimated univariate effect sizes.
univariate.polygon.col
The color of the polygon of the estimated univariate effect sizes.
univariate. arrows.col
The color of the arrows of the estimated univariate effect sizes.
univariate. arrows.lwd
The line width of the arrows of the estimated univariate effect sizes.
diag. panel Logical. If TRUE, diagonal panels will be created. They can then be used for forrest plots for univariate meta-analysis.
\(x \lim \quad\) NULL or a numeric vector of length 2; if it is NULL, it provides defaults estimated from the data.
ylim \(\quad\) NULL or a numeric vector of length 2; if it is NULL, it provides defaults estimated from the data.
fixed.x Argument passed to semPlotModel.
manNames Argument passed to semPaths
latNames Argument passed to semPaths
labels Argument passed to semPaths
what Argument passed to semPaths
nCharNodes Argument passed to semPaths
nCharEdges Argument passed to semPaths
layout Argument passed to semPaths
color Argument passed to semPaths
sizeMan Argument passed to semPaths
sizeLat Argument passed to semPaths
edge.label.cex Argument passed to semPaths
weighted Argument passed to semPaths
. . Further arguments passed to the methods.

Note
The estimated effect sizes and random effects are based on the labels Intercept1, Intercept2, ... and Tau2_1_1, Tau2_2_1, Tau2_2_2, etc. At least two effect sizes are required for this function.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling, 20, 429-454.

\section*{See Also}

Berkey98, wvs94a meta2semPlot semPaths

\section*{Examples}
```


## Not run:

## lavaan model

model <- "y ~ m + x
m ~ x"
plot(model)

## End(Not run)

```
print Print Methods for various Objects

\section*{Description}

Print methods for the tssem1FEM, tssem1FEM.cluster, tssem1REM, wls, meta, meta3X, reml, uniR1 and impliedR objects.

\section*{Usage}
\#\# S3 method for class 'tssem1FEM'
print(x, ...)
\#\# S3 method for class 'tssem1FEM.cluster'
print(x, ...)
\#\# S3 method for class 'tssem1REM'
print (x, ...)
\#\# S3 method for class 'wls'
print(x, ...)
\#\# S3 method for class 'meta'
print(x, ...)
\#\# S3 method for class 'meta3X'
```

print(x, ...)

## S3 method for class 'reml'

print(x, ...)

## S3 method for class 'uniR1'

print(x, ...)

## S3 method for class 'impliedR'

print(x, ...)

```

\section*{Arguments}
x
An object returned from either class tssem1FEM, class tssem1FEM.cluster, class tssem1REM, class wls, class meta, class meta3X, class reml, class uniR1 or class impliedR
... Further arguments to be passed to summary. default or unused.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
tssem1, wls, meta, reml
```

rCor Generate Sample/Population Correlation/Covariance Matrices

```

\section*{Description}

It generates random sample or population correlation or covariance matrices. rCor() is a wrapper to call rCorPop() and then rCorSam() .

\section*{Usage}
```

rCor(Sigma, V, n, corr=TRUE, raw.data=FALSE,
nonPD.pop=c("replace", "nearPD", "accept"),
nonPD.sam=c("stop", "nearPD"))
rCorPop(Sigma, V, k, corr=TRUE,
nonPD.pop=c("replace", "nearPD", "accept"))
rCorSam(Sigma, n, corr=TRUE, raw.data=FALSE,
nonPD.sam=c("stop", "nearPD"))

```

\section*{Arguments}
\begin{tabular}{ll}
Sigma & A list of population correlation/covariance matrices or a single matrix \\
V & A variance-covariance matrix of Sigma. \\
n & A vector or a single sample sizes. \\
corr & Logical. Whether to generate correlation or covariance matrices.
\end{tabular}
\begin{tabular}{ll}
raw. data & \begin{tabular}{l}
Logical. Whether correlation/covariance matrices are generated via raw.data or \\
directly from a Wishart distribution.
\end{tabular} \\
nonPD.pop & \begin{tabular}{l}
If it is replace, generated non-positive definite matrices are replaced by gener- \\
ated new ones which are positive definite. If it is nearPD, they are replaced by \\
nearly positive definite matrices by calling Matrix: : nearPD(). If it is accept, \\
they are accepted.
\end{tabular} \\
nonPD.sam & \begin{tabular}{l}
If it is stop, the program stops when the inputs in the rCorSam are non-positive \\
definite. If it is nearPD, they are replaced by nearly positive definite matrices by \\
calling Matrix:
\end{tabular} \\
k nearPD ().
\end{tabular}

\section*{Value}

An object of the generated population/sample correlation/covariance matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Examples}
```

Sigma <- matrix(c(1, . 2, .3,
.2, 1, .4,
.3, .4, 1), ncol=3, nrow=3)
V <- diag(c(.1, .1, .1))

## Generate two population correlation matrices

Pop.corr <- rCorPop(Sigma, V, k=2)
Pop.corr
summary(Pop.corr)

## Generate two sample correlation matrices

rCorSam(Sigma=Pop.corr, n=c(10, 10))

## The above code is the same as the following one

rCor(Sigma, V, n=c(10, 10))

```
 readData

\section*{Description}

It reads full/lower triangle/stacked vectors of correlation/covariance data into a list of correlation/covariance matrices.

\section*{Usage}
```

readFullMat(file, ...)
readStackVec(file, ...)
readLowTriMat(file, no.var, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
file & File name of the data. \\
no.var & The number of variables in the data. \\
\(\ldots\) & \begin{tabular}{l}
Further arguments to be passed to scan for readLowTriMat and to read. table \\
for readFullMat and readStackVec.
\end{tabular}
\end{tabular}

\section*{Value}

A list of correlation/covariance matrices.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Examples}
```


## Not run:

## Write two full correlation matrices into a file named "fullmat.dat".

## x2 is missing in the second matrix.

## The content of "fullmat.dat" is

# 1.0 0.3 0.4

# 0.3 1.0 0.5

# 0.4 0.5 1.0

# 1.0 NA 0.4

# NA NA NA

# 0.4 NA 1.0

## cat("1.0 0.3 0.4\n0.3 1.0 0.5\n0.4 0.5 1.0

## 1.0 NA 0.4\nNA NA NA\n0.4 NA 1.0",

## file="fullmat.dat", sep="")

## Read the correlation matrices

## my.full <- readFullMat("fullmat.dat")

## my.full

# \$`1`

# 

# x1 1.0 0.3 0.4

# x2 0.3 1.0 0.5

# x3 0.4 0.5 1.0

# 

# \$`2`

# x1 x2 x3

# x1 1.0 NA 0.4

# x2 NA NA NA

```
```


# x3 0.4 NA 1.0

## Write two lower triangle correlation matrices into a file named "lowertriangle.dat".

## x2 is missing in the second matrix.

## The content of "lowertriangle.dat" is

# 1.0

# 0.3 1.0

# 0.4 0.5 1.0

# 1.0

# NA NA

# 0.4 NA 1.0

## cat("1.0\n0.3 1.0\n0.4 0.5 1.0\n1.0\nNA NA\n0.4 NA 1.0",

## file="lowertriangle.dat", sep="")

## Read the lower triangle correlation matrices

## my.lowertri <- readLowTriMat(file = "lowertriangle.dat", no.var = 3)

## my.lowertri

# \$\

# 

# x1 1.0 0.3 0.4

# x2 0.3 1.0 0.5

# x3 0.4 0.5 1.0

# 

# \$`2`

# x1 x2 x3

# x1 1.0 NA 0.4

# x2 NA NA NA

# x3 0.4 NA 1.0

## Write two vectors of correlation coefficients based on

## column major into a file named "stackvec.dat".

## x2 is missing in the second matrix.

## The content of "stackvec.dat" is

# 1.0 0.3 0.4 1.0 0.5 1.0

# 1.0 NA 0.4 NA NA 1.0

## cat("1.0 0.3 0.4 1.0 0.5 1.0\n1.0 NA 0.4 NA NA 1.0\n",

## file="stackvec.dat", sep="")

## my.vec <- readStackVec("stackvec.dat")

## my.vec

# \$1`

# xlllll

# x1 1.0 0.3 0.4

# x2 0.3 1.0 0.5

# x3 0.4 0.5 1.0

# 

# \$`2`

# x1 x2 x3

# x1 1.0 NA 0.4

# x2 NA NA NA

# x3 0.4 NA 1.0

```
```


## End(Not run)

```
reml

Estimate Variance Components with Restricted (Residual) Maximum Likelihood Estimation

\section*{Description}

It estimates the variance components of random-effects in univariate and multivariate meta-analysis with restricted (residual) maximum likelihood (REML) estimation method.

\section*{Usage}
```

reml(y, v, x, data, RE.constraints = NULL, RE.startvalues = 0.1,
RE.lbound = 1e-10, intervals.type = c("z", "LB"),
model.name="Variance component with REML",
suppressWarnings = TRUE, silent = TRUE, run = TRUE, ...)

```

\section*{Arguments}
\(\mathrm{y} \quad\) A vector of effect size for univariate meta-analysis or a \(k \times p\) matrix of effect sizes for multivariate meta-analysis where \(k\) is the number of studies and \(p\) is the number of effect sizes.
\(v \quad\) A vector of the sampling variance of the effect size for univariate meta-analysis or a \(k \times p *\) matrix of the sampling covariance matrix of the effect sizes for multivariate meta-analysis where \(p *=p(p+1) / 2\). It is arranged by column major as used by vech.

X
A predictor or a \(k \times m\) matrix of predictors where \(m\) is the number of predictors.
data
An optional data frame containing the variables in the model.
RE.constraints A \(p \mathrm{x} p\) matrix specifying the variance components of the random effects. If the input is not a matrix, it is converted into a matrix by as.matrix(). The default is that all covariance/variance components are free. The format of this matrix follows as.mxMatrix. Elements of the variance components can be constrained equally by using the same labels. If a zero matrix is specified, it becomes a fixed-effects meta-analysis.
RE.startvalues \(A\) vector of \(p\) starting values on the diagonals of the variance component of the random effects. If only one scalar is given, it will be repeated across the diagonals. Starting values for the off-diagonals of the variance component are all 0 . A \(p \times p\) symmetric matrix of starting values is also accepted.
RE.lbound A vector of \(p\) lower bounds on the diagonals of the variance component of the random effects. If only one scalar is given, it will be repeated across the diagonals. Lower bounds for the off-diagonals of the variance component are set at NA. A \(p \times p\) symmetric matrix of the lower bounds is also accepted.
intervals. type Either \(z\) (default if missing) or LB. If it is \(z\), it calculates the \(95 \%\) Wald confidence intervals (CIs) based on the \(z\) statistic. If it is LB, it calculates the \(95 \%\) likelihood-based CIs on the parameter estimates. Note that the \(z\) values and their associated \(p\) values are based on the \(z\) statistic. They are not related to the likelihood-based CIs.
model. name A string for the model name in mxModel.
suppressWarnings
Logical. If TRUE, warnings are suppressed. It is passed to mxRun.
silent Logical. An argument to be passed to mxRun
run Logical. If FALSE, only return the \(m x\) model without running the analysis.
... Further arguments to be passed to mxRun

\section*{Details}

Restricted (residual) maximum likelihood obtains the parameter estimates on the transformed data that do not include the fixed-effects parameters. A transformation matrix \(M=I-X\left(X^{\prime} X\right)^{-1} X\) is created based on the design matrix \(X\) which is just a column vector when there is no predictor in x. The last \(N\) redundant rows of \(M\) is removed where \(N\) is the rank of \(X\). After pre-multiplying by \(M\) on y , the parameters of fixed-effects are removed from the model. Thus, only the parameters of random-effects are estimated.

An alternative but equivalent approach is to minimize the \(-2 * \log\)-likelihood function:
\[
\log \left(\operatorname{det}\left|V+T^{2}\right|\right)+\log \left(\operatorname{det}\left|X^{\prime}\left(V+T^{2}\right)^{-1} X\right|\right)+(y-X \hat{\alpha})^{\prime}\left(V+T^{2}\right)^{-1}(y-X \hat{\alpha})
\]
where \(V\) is the known conditional sampling covariance matrix of \(y, T^{2}\) is the variance component of the random effects, and \(\hat{\alpha}=\left(X^{\prime}\left(V+T^{2}\right)^{-1} X\right)^{-1} X^{\prime}\left(V+T^{2}\right)^{-1} y\). reml() minimizes the above likelihood function to obtain the parameter estimates.

\section*{Value}

An object of class reml with a list of
\begin{tabular}{ll}
call & Object returned by match.call \\
data & A data matrix of \(y, v\) and \(x\) \\
no.y & No. of effect sizes \\
no.x & No. of predictors \\
miss.vec & \begin{tabular}{l}
A vector indicating missing data. Studies will be removed before the analysis if \\
they are TRUE
\end{tabular} \\
\(m x . f i t\) & A fitted object returned from mxRun
\end{tabular}

\section*{Note}
reml is more computationally intensive than meta. Moreover, reml is more likely to encounter errors during optimization. Since a likelihood function is directly employed to obtain the parameter estimates, there is no number of studies and number of observed statistics returned by mxRun. Adhoc steps are used to modify mx.fit@runstate\$objectives[[1]]@numObs and mx.fit@runstate\$objectives[[1]]@num

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2013). Implementing restricted maximum likelihood estimation in structural equation models. Structural Equation Modeling, 20(1), 157-167.
Mehta, P. D., \& Neale, M. C. (2005). People Are Variables Too: Multilevel Structural Equations Modeling. Psychological Methods, 10(3), 259-284.
Searle, S. R., Casella, G., \& McCulloch, C. E. (1992). Variance components. New York: Wiley.
Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the randomeffects model. Journal of Educational and Behavioral Statistics, 30(3), 261-293.

\section*{See Also}
meta, reml3, Hox02, Berkey98
\begin{tabular}{ll}
reml3 & Estimate Variance Components in Three-Level Univariate Meta- \\
Analysis with Restricted (Residual) Maximum Likelihood Estimation
\end{tabular}

\section*{Description}

It estimates the variance components of random-effects in three-level univariate meta-analysis with restricted (residual) maximum likelihood (REML) estimation method.

\section*{Usage}
reml3(y, v, cluster, \(x\), data, RE2.startvalue=0.1, RE2.lbound=1e-10, RE3.startvalue=RE2.startvalue, RE3.lbound=RE2.lbound, RE.equal=FALSE, intervals.type=c("z", "LB"), model.name="Variance component with REML", suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)

\section*{Arguments}
y
\(\checkmark \quad\) A vector of \(k\) studies of sampling variance.
cluster A vector of \(k\) characters or numbers indicating the clusters.
x
data An optional data frame containing the variables in the model.
RE2.startvalue Starting value for the level-2 variance.
RE2.lbound Lower bound for the level-2 variance.
RE3.startvalue Starting value for the level-3 variance.
\begin{tabular}{|c|c|}
\hline RE3.lbound & Lower bound for the level-3 variance. \\
\hline RE.equal & Logical. Whether the variance components at level-2 and level-3 are constrained equally. \\
\hline intervals.type & Either z (default if missing) or LB. If it is \(z\), it calculates the \(95 \%\) Wald confidence intervals (CIs) based on the \(z\) statistic. If it is LB, it calculates the \(95 \%\) likelihood-based CIs on the parameter estimates. Note that the \(z\) values and their associated p values are based on the z statistic. They are not related to the likelihood-based CIs. \\
\hline model. name & A string for the model name in mxModel. \\
\hline \multicolumn{2}{|l|}{suppressWarnings} \\
\hline & Logical. If TRUE, warnings are suppressed. It is passed to mxRun. \\
\hline silent & Logical. Argument to be passed to mxRun \\
\hline run & Logical. If FALSE, only return the mx model without running the analysis. \\
\hline & Further arguments to be passed to mxRun \\
\hline
\end{tabular}

\section*{Details}

Restricted (residual) maximum likelihood obtains the parameter estimates on the transformed data that do not include the fixed-effects parameters. A transformation matrix \(M=I-X\left(X^{\prime} X\right)^{-1} X\) is created based on the design matrix \(X\) which is just a column vector when there is no predictor in x. The last \(N\) redundant rows of \(M\) is removed where \(N\) is the rank of \(X\). After pre-multiplying by \(M\) on y , the parameters of fixed-effects are removed from the model. Thus, only the parameters of random-effects are estimated.

An alternative but the equivalent approach is to minimize the \(-2 * \log\)-likelihood function:
\[
\log \left(\operatorname{det}\left|V+T^{2}\right|\right)+\log \left(\operatorname{det}\left|X^{\prime}\left(V+T^{2}\right)^{-1} X\right|\right)+(y-X \hat{\alpha})^{\prime}\left(V+T^{2}\right)^{-1}(y-X \hat{\alpha})
\]
where \(V\) is the known conditional sampling covariance matrix of \(y, T^{2}\) is the variance component combining level-2 and level-3 random effects, and \(\hat{\alpha}=\left(X^{\prime}\left(V+T^{2}\right)^{-1} X\right)^{-1} X^{\prime}\left(V+T^{2}\right)^{-1} y\). reml() minimizes the above likelihood function to obtain the parameter estimates.

\section*{Value}

An object of class reml with a list of
```

call Object returned by match.call
data A data matrix of y,v, and x
mx.fit A fitted object returned from mxRun

```

\section*{Note}
reml is more computationally intensive than meta. Moreover, reml is more likely to encounter errors during optimization. Since a likelihood function is directly employed to obtain the parameter estimates, there is no number of studies and number of observed statistics returned by mxRun. Adhoc steps are used to modify mx.fit@runstate\$objectives[[1]]@numObs and mx.fit@runstate\$objectives[[1]]@num

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2013). Implementing restricted maximum likelihood estimation in structural equation models. Structural Equation Modeling, 20(1), 157-167.

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19, 211-229.

Mehta, P. D., \& Neale, M. C. (2005). People Are Variables Too: Multilevel Structural Equations Modeling. Psychological Methods, 10(3), 259-284.

Searle, S. R., Casella, G., \& McCulloch, C. E. (1992). Variance components. New York: Wiley.

\section*{See Also}
meta3, reml, Cooper03, Bornmann07
rerun Rerun models via mxTryHard()

\section*{Description}

It reruns models via mxTryHard().

\section*{Usage}
rerun(object, autofixtau2=FALSE, ...)

\section*{Arguments}
object An object of either class tssem1FEM, class tssem1REM, class wls, class meta, class reml, class osmasem, and class MxModel.
autofixtau2 Logical. Whether automatically fixes elements of tau2 with NA of standard errors. It only works for objects of class tssem1REM, class meta, and class osmasem.
... Further arguments to be passed to mxTryHard

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{Examples}
```


## Not run:

random1 <- tssem1(Digman97$data, Digman97$n, method="REM", RE.type="Diag")
random1_rerun <- rerun(random1)
summary(random1_rerun)

## End(Not run)

```
Roorda11 Studies on Students' School Engagement and Achievement Reported by Roorda et al. (2011)

\section*{Description}

The data set includes 45 studies on the influence of affective teacher-student relationships on students' school engagement and achievement reported by Roorda et al. (2011).

\section*{Usage}
data(Roorda11)

\section*{Details}

The variables are:
data A list of 45 studies of correlation matrices. The variables are pos (positive teacher-student relations), neg (negative teacher-student relations), enga (student engagement), and achiev (student achievement).
n A vector of sample sizes
SES A vector of average socio-economic status (SES) of the samples

\section*{Source}

Roorda, D. L., Koomen, H. M. Y., Spilt, J. L., \& Oort, F. J. (2011). The influence of affective teacher-student relationships on students' school engagement and achievement a meta-analytic approach. Review of Educational Research, 81(4), 493-529.

\section*{References}

Jak, S., \& Cheung, M. W.-L. (2018). Addressing heterogeneity in meta-analytic structural equation modeling using subgroup analysis. Behavior Research Methods, 50, 1359-1373.

\section*{Examples}
```


## Not run:

## Random-effects model: First stage analysis

random1 <- tssem1(Cov = Roorda11$data, n = Roorda11$n, method = "REM",
RE.type = "Diag")
summary(random1)
varnames <- c("pos", "neg", "enga", "achiev")

## Prepare a regression model using create.mxMatrix()

A <- create.mxMatrix(c(0,0,0,0,
0,0,0,0,
"0.1*b31","0.1*b32",0,0,
0,0,"0.1*b43",0),
type = "Full", nrow = 4, ncol = 4, byrow = TRUE,
name = "A", as.mxMatrix = FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(A) <- list(varnames, varnames)
A
S <- create.mxMatrix(c(1,
".5*p21",1,
0,0,"0.6*p33",
0,0,0,"0.6*p44"),
type="Symm", byrow = TRUE,
name="S", as.mxMatrix = FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(S) <- list(varnames, varnames)
S

## Random-effects model: Second stage analysis

random2 <- tssem2(random1, Amatrix=A, Smatrix=S, diag.constraints=TRUE,
intervals="LB")
summary(random2)

## Display the model with the parameter estimates

plot(random2)

## End(Not run)

```

Scalco17 Correlation Matrices from Scalco et al. (2017)

\section*{Description}

The data set includes correlation matrices using the theory of planned behavior to predict organic food consumption reported by Scalco17 et al. (2017).

\section*{Usage}
```

data(Scalco17)

```

\section*{Details}

A list of data with the following structure:
data A list of correlation matrices. The variables are ATT (attitude), \(S N\) (subjective norm), \(P B C\) (perceived behavior control), \(B I\) (behavioral intention), and \(B E H\) (behavior)
n A vector of sample sizes
Age A vector of the mean age of the samples
Female A vector of the percentage of the female samples

\section*{Source}

Scalco, A., Noventa, S., Sartori, R., \& Ceschi, A. (2017). Predicting organic food consumption: A meta-analytic structural equation model based on the theory of planned behavior. Appetite, 112, 235-248.

\section*{Examples}
data(Scalco17)
smdMES
Compute Effect Sizes for Multiple End-point Studies

\section*{Description}

It computes the standardized mean differences and their asymptotic sampling covariance matrix for two multiple end-point studies with \(p\) effect sizes.

\section*{Usage}
smdMES(m1, m2, V1, V2, n1, n2,
homogeneity=c("covariance", "correlation", "none"), bias.adjust=TRUE, list.output=TRUE, lavaan.output=FALSE)

\section*{Arguments}
m1
m2
V1
V2
n1 The sample size of the first group.
n2
A vector of \(p\) sample means of the first group.
A vector of \(p\) sample means of the second group.
A \(p\) by \(p\) sample covariance matrix of the first group.
A \(p\) by \(p\) sample covariance matrix of the second group.

The sample size of the second group.
homogeneity If it is covariance (the default), homogeneity of covariance matrices is assumed. The common standard deviations are used as the standardizers in calculating the effect sizes. If it is correlation, homogeneity of correlation is not assumed. The standard deviations of the first group are used as the standardizer in calculating the effect sizes. If it is none, no homogeneity assumption is made. The standard deviations of the first group are used as the standardizer in calculating the effect sizes.
bias.adjust If it is TRUE (the default), the effect sizes are adjusted for small bias by multiplying \(1-3 /(4 *(n 1+n 2)-9)\).
list.output If it is TRUE (the default), the effect sizes and their sampling covariance matrix are outputed as a list. If it is FALSE, they will be stacked into a vector.
lavaan. output If it is FALSE (the default), the effect sizes and its sampling covariance matrix are reported. If it is TRUE, it outputs the fitted lavaan-class object.

\section*{Details}

Gleser and Olkin (2009) introduce formulas to calculate the standardized mean differences and their sampling covariance matrix for multiple end-point studies under the assumption of homogeneity of the covariance matrix. This function uses a structural equation modeling (SEM) approach introduced in Chapter 3 of Cheung (2015) to calculate the same estimates. The SEM approach is more flexible in two ways: (1) it allows homogeneity of covariance or correlation matrices or not; and (2) it allows users to test this assumption by checking the fitted lavaan-class object.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley \& Sons, Inc.
Cheung, M. W.-L. (2018). Computing multivariate effect sizes and their sampling covariance matrices with structural equation modeling: Theory, examples, and computer simulations. Frontiers in Psychology, 9(1387). https://doi.org/10.3389/fpsyg.2018.01387

Gleser, L. J., \& Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, \& J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis. (2nd ed., pp. 357-376). New York: Russell Sage Foundation.

\section*{See Also}

Gleser94

\section*{Examples}
```


## Not run:

## Sample means for the two constructs in Group 1

m1 <- c(2.5, 4.5)

```
```


## Sample means for the two constructs in Group 2

m2 <- c(3, 5)

## Sample covariance matrix in Group 1

V1 <- matrix(c(3,2,2,3), ncol=2)

## Sample covariance matrix in Group 2

V2 <- matrix(c(3.5,2.1,2.1,3.5), ncol=2)

## Sample size in Group 1

n1 <- 20

## Sample size in Group 2

n2 <- 25

## SMD with the assumption of homogeneity of covariance matrix

smdMES(m1, m2, V1, V2, n1, n2, homogeneity="cov", bias.adjust=TRUE,
lavaan.output=FALSE)

## SMD with the assumption of homogeneity of correlation matrix

smdMES(m1, m2, V1, V2, n1, n2, homogeneity="cor", bias.adjust=TRUE,
lavaan.output=FALSE)

## SMD without any assumption of homogeneity

smdMES(m1, m2, V1, V2, n1, n2, homogeneity="none", bias.adjust=TRUE,
lavaan.output=FALSE)

## Output the fitted lavaan model

## It provides a likelihood ratio test to test the null hypothesis of

## homogeneity of variances.

fit <- smdMES(m1, m2, V1, V2, n1, n2, homogeneity="cov", bias.adjust=TRUE,
lavaan.output=TRUE)
lavaan::summary(fit)
lavaan::parameterestimates(fit)

## End(Not run)

```
smdMTS

Compute Effect Sizes for Multiple Treatment Studies

\section*{Description}

It computes the standardized mean differences and their asymptotic sampling covariance matrix for \(k\) multiple treatment studies. The first group is assumed as the control group.

\section*{Usage}
smdMTS(m, v, n, homogeneity=c("variance", "none"), bias.adjust=TRUE, all.comparisons=FALSE, list.output=TRUE, lavaan.output=FALSE)

\section*{Arguments}
\(\mathrm{m} \quad\) A vector of \(k\) sample means.
\(v \quad\) A vector of \(k\) sample variances.
\(\mathrm{n} \quad\) A vector of \(k\) sample sizes.
homogeneity If it is variance (the default), homogeneity of variances is assumed. The common standard deviation is used as the standardizer in calculating the effect sizes. If it is none, homogeneity of variances is not assumed. The standard deviation of the first group is used as the standardizer in calculating the effect sizes.
bias.adjust If it is TRUE (the default), the effect sizes are adjusted for small bias by multiplying \(1-3 /(4 *(n 1+n 2)-9)\).
all. comparisons
If it is FALSE (the default), all groups (except the first group) are compared against the first group. If it is TRUE, all pairwise comparisons are calculated. This may be useful in network meta-analysis.
list.output If it is TRUE (the default), the effect sizes and their sampling covariance matrix are outputed as a list. If it is FALSE, they will be stacked into a vector.
lavaan. output If it is FALSE (the default), the effect sizes and its sampling covariance matrix are reported. If it is TRUE, it outputs the fitted lavaan-class object.

\section*{Details}

Gleser and Olkin (2009) introduce formulas to calculate the standardized mean differences and their sampling covariance matrix for multiple treatment studies under the assumption of homogeneity of the covariance matrix. This function uses a structural equation modeling (SEM) approach introduced in Chapter 3 of Cheung (2015) to calculate the same estimates. The SEM approach is more flexible in three ways: (1) it allows homogeneity of variances or not; (2) it allows users to test the assumption of homogeneity of variances by checking the fitted lavaan-class object; and (3) it may calculate all pairwise comparisons.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley \& Sons, Inc.
Cheung, M. W.-L. (2018). Computing multivariate effect sizes and their sampling covariance matrices with structural equation modeling: Theory, examples, and computer simulations. Frontiers in Psychology, 9(1387). https://doi.org/10.3389/fpsyg.2018.01387
Gleser, L. J., \& Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, \& J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis. (2nd ed., pp. 357-376). New York: Russell Sage Foundation.

\section*{See Also}

Gleser94

\section*{Examples}
```


## Not run:

## Sample means for groups 1 to 3

m <- c(5,7,9)

## Sample variances

v <- c(10,11,12)

## Sample sizes

n <- c(50,52,53)

## Assuming homogeneity of variances

smdMTS(m, v, n, homogeneity = "var", bias.adjust=TRUE, all.comparisons=FALSE,
lavaan.output=FALSE)

## Not assuming homogeneity of variances and comparing all pairwise groups

## Please note that the SD of the first group is used as the standardizer

smdMTS(m, v, n, homogeneity = "none", bias.adjust=TRUE, all.comparisons=TRUE,
lavaan.output=FALSE)

## Output the fitted lavaan model

## It provides a likelihood ratio test to test the null hypothesis of

## homogeneity of variances.

fit <- smdMTS(m, v, n, homogeneity = "var", bias.adjust=FALSE, all.comparisons=FALSE,
lavaan.output=TRUE)
lavaan::summary(fit)
lavaan::parameterestimates(fit)

## End(Not run)

```
Stadler15
Correlations from Stadler et al. (2015)

\section*{Description}

The data set includes correlations between complex problem solving and intelligence reported by Stadler et al. (2015).

\section*{Usage}
data(Stadler15)

\section*{Details}

A list of data with the following structure:
ID ID of the effect sizes

Authors Authors of the studies
Year Year of the studies
N Sample size
CPSMeasure Complex problem solving (CPS) measure
IntelligenceMeasure Intelligence measure
r Correlation between CPS and intelligence
v Sampling variance of \(r\)

\section*{Source}

Stadler, M., Becker, N., Godker, M., Leutner, D., \& Greiff, S. (2015). Complex problem solving and intelligence: A meta-analysis. Intelligence, 53, 92-101.

\section*{Description}

It summaries results for various class.

\section*{Usage}
```


## S3 method for class 'tssem1FEM'

summary(object, ...)

## S3 method for class 'tssem1FEM.cluster'

summary(object, ...)

## S3 method for class 'tssem1REM'

summary(object, robust=FALSE, ...)

## S3 method for class 'wls'

    summary(object, df.adjustment=0, ...)
    ## S3 method for class 'wls.cluster'
    summary(object, df.adjustment=0, ...)
    ## S3 method for class 'meta'
    summary(object, homoStat=TRUE, robust=FALSE, ...)
    ## S3 method for class 'meta3X'
    summary(object, allX=FALSE, robust=FALSE, ...)
    ## S3 method for class 'reml'
    summary(object, ...)
    ## S3 method for class 'CorPop'
    summary(object, ...)
    ## S3 method for class 'bootuniR2'
    summary(object, probs=c(0, 0.1, 0.5, 0.9, 1),
        cutoff.chisq.pvalue=0.05, cutoff.CFI=0.9, cutoff.SRMR=0.1,
        cutoff.RMSEA=0.05, ...)
    ## S3 method for class 'osmasem'
    ```
```

summary(object, fitIndices=FALSE, numObs, robust=FALSE, ...)

## S3 method for class 'tssem1FEM'

print.summary(x, ...)

## S3 method for class 'wls'

print.summary(x, ...)

## S3 method for class 'meta'

print.summary(x, ...)

## S3 method for class 'meta3X'

print.summary(x, ...)

## S3 method for class 'reml'

print.summary(x, ...)

## S3 method for class 'CorPop'

print.summary(x, ...)

## S3 method for class 'bootuniR2'

print.summary(x, ...)

```

\section*{Arguments}

\section*{Note}

If the OpenMx status1 is either 0 or 1 , the estimation is considered fine. If the OpenMx status 1 is other values, it indicates estimation problems. Users should refer to https://openmx.ssri.psu. edu//wiki/errors for more details.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{See Also}
tssem1, wls, meta, reml, rCor, bootuniR2, osmasem

\section*{Description}

Fourty-eight studies reported by Tenenbaum and Leaper (2002, Table 1).

\section*{Usage}
data(Tenenbaum02)

\section*{Details}

The variables are:
Authors Authors of the study
Year Year of publication
N Sample size
r Correlation between parents' gender schemas and their offspring's gender-related cognitions.
v Sampling variance of \(r\)
Publication_source Publication source: 1="top-tier journal", 2="second-tier journal or book chapter", 3="dissertation", 4="other unpublished study"
Author_gender Gender of the first author: "W"="woman", "M"="man"
Parent_type Parent type: "M"="mother", "F"="father", "MF"="mother and father"
Parent_predictor Parent predictor: "S"="self gender schema", "A"="gender attitudes about others"
Offspring_age Offspring age (months)
Offspring_type Offspring type: "D"="daughter", "S"="son", "DS"="daughter and son"
Offspring_outcome Offspring outcome: "S"="gender schema for self", "A"="gender attitudes toward others", "I"="gender-related interests and preferences", "W"="work-related attitudes"

\section*{Source}

Tenenbaum, H. R., \& Leaper, C. (2002). Are parents' gender schemas related to their children's gender-related cognitions? A meta-analysis. Developmental Psychology, 38(4), 615-630. https://doi.org/10.1037/00121649.38.4.615

\section*{Examples}
```


## Not run:

data(Tenenbaum02)

## End(Not run)

```

\section*{Description}

It conducts the first stage analysis of TSSEM by pooling correlation/covariance matrices. tssem1FEM() and tssem1REM() use fixed- and random-effects models, respectively. tssem1 () is a wrapper of these functions.

\section*{Usage}
```

tssem1(Cov, n, method=c("REM","FEM"), cor.analysis = TRUE, cluster=NULL,
RE.type=c("Diag", "Symm", "Zero", "User"), RE.startvalues=0.1,
RE.lbound=1e-10, RE.constraints=NULL, I2="I2q",
acov=c("weighted", "individual", "unweighted"),
model.name=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)
tssem1FEM(Cov, n, cor.analysis=TRUE, model.name=NULL,
cluster=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)
tssem1REM(Cov, n, cor.analysis=TRUE, RE.type=c("Diag", "Symm", "Zero","User"),
RE.startvalues=0.1, RE.lbound=1e-10, RE.constraints=NULL,
I2="I2q", acov=c("weighted", "individual", "unweighted"),
model.name=NULL, suppressWarnings=TRUE,
silent=TRUE, run=TRUE, ...)

```

\section*{Arguments}

Cov
n
method
cor.analysis Logical. The output is either a pooled correlation or a covariance matrix.
cluster A vector of characters or numbers indicating the clusters. Analyses will be conducted for each cluster. It will be ignored when method="REM".
RE.type Either "Diag", "Symm", "Zero" or "User". If it is "Diag", a diagonal matrix is used for the random effects meaning that the random effects are independent. If it is "Symm" (default if missing), a symmetric matrix is used for the random effects on the covariances among the correlation (or covariance) vectors. If it is "Zero", there is no random effects which is similar to the conventional Generalized Least Squares (GLS) approach to fixed-effects analysis. "User", the user
has to specify the variance component via the RE. constraints argument. This argument will be ignored when method="FEM".
RE.startvalues Starting values on the diagonals of the variance component of the random effects. It will be ignored when method="FEM".
RE. lbound Lower bounds on the diagonals of the variance component of the random effects. It will be ignored when method="FEM".
RE.constraints A \(p * \mathrm{x} p *\) matrix specifying the variance components of the random effects, where \(p *\) is the number of effect sizes. If the input is not a matrix, it is converted into a matrix by as.matrix(). The default is that all covariance/variance components are free. The format of this matrix follows as .mxMatrix. Elements of the variance components can be constrained equally by using the same labels. If a zero matrix is specified, it becomes a fixed-effects meta-analysis.

I2 Possible options are "I2q", "I2hm" and "I2am". They represent the I2 calculated by using a typical within-study sampling variance from the \(Q\) statistic, the harmonic mean and the arithmetic mean of the within-study sampling variances (Xiong, Miller, \& Morris, 2010). More than one options are possible. If intervals.type="LB", \(95 \%\) confidence intervals on the heterogeneity indices will be constructed.
acov If it is individual, the sampling variance-covariance matrices are calculated based on individual correlation/covariance matrix. If it is either unweighted or weighted (the default), the average correlation/covariance matrix is calculated based on the unweighted or weighted mean with the sample sizes. The average correlation/covariance matrix is used to calculate the sampling variancecovariance matrices. This argument is ignored with the method="FEM" argument.
model. name A string for the model name in mxModel.
suppressWarnings
Logical. If TRUE, warnings are suppressed. It is passed to mxRun.
silent Logical. An argument to be passed to mxRun
run Logical. If FALSE, only return the \(m x\) model without running the analysis.
... Further arguments to be passed to mxRun

\section*{Value}

Either an object of class tssem1FEM for fixed-effects TSSEM, an object of class tssem1FEM. cluster for fixed-effects TSSEM with cluster argument, or an object of class tssem1REM for randomeffects TSSEM.

\section*{Note}

If the cluster argument is used, it returns a list of results on each cluster.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46, 29-40.
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling, 20, 429-454.

Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.
Cheung, M. W.-L., \& Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.

See Also
wls, Cheung09, Becker92, Digman97, issp89, issp05
tssemParaVar Estimate the heterogeneity (SD) of the parameter estimates of the TSSEM object

\section*{Description}

It estimates the heterogeneity of the parameter estimates of the TSSEM objects using either the bootstrap or the delta methods.

\section*{Usage}
tssemParaVar(tssem1.obj, tssem2.obj, method=c("bootstrap", "delta"),
interval=0.8, Rep=50, output=c("data.frame", "matrices"), nonPD.pop=c("replace", "nearPD", "accept"))

\section*{Arguments}
tssem1.obj An object of class tssem1REM returned from tssem1 ()
tssem2.obj An object of class wls returned from tssem2() or wls()
method If it is bootstrap, random correlation matrices are sampled from the tssem1.obj by the parametric bootstrap. If it is delta, the delta method is used to estimate the heterogeneity of the parameter estimates.
interval The desired interval, e.g., 8 or 95 .
Rep The number of parametric bootstrap. It is ignored when the method is delta.
output Either a data.frame or matrices of the output.
nonPD.pop If it is replace, generated non-positive definite matrices are replaced by generated new ones which are positive definite. If it is nearPD, they are replaced by nearly positive definite matrices by calling Matrix: : nearPD(). If it is accept, they are accepted.

\section*{Details}

The bootstrap method is based on the discussion in Cheung (2018) and Yu et al. (2016). The delta method is an alternative method to obtain the heterogeneity.

\section*{Value}

Either a data. frame or matrices of the output.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2018). Issues in solving the problem of effect size heterogeneity in metaanalytic structural equation modeling: A commentary and simulation study on Yu, Downes, Carter, and O'Boyle (2016). Journal of Applied Psychology, 103, 787-803.

Yu, J. (Joya), Downes, P. E., Carter, K. M., \& O’Boyle, E. H. (2016). The problem of effect size heterogeneity in meta-analytic structural equation modeling. Journal of Applied Psychology, 101, 1457-1473.

\section*{See Also}
bootuniR1, bootuniR2, Nohe15
```

    uniR1 First Stage analysis of the univariate R (uniR) approach
    ```

\section*{Description}

It conducts the first stage analysis of the uniR analysis by pooling elements of the correlation coefficients individually.

\section*{Usage}
uniR1 (Cor, n, ...)

\section*{Arguments}

Cor
A list of correlation matrices
n
...

A vector of sample sizes
Further arguments which are currently ignored

\section*{Details}

This function implements the univariate r approach proposed by Viswesvaran and Ones (1995) to conduct meta-analytic structural equation modeling (MASEM). It uses Schmidt and Hunter's approach to combine correlation coefficients. It is included in this package for research interests. The two-stage structural equation modeling (TSSEM) approach is preferred (e.g., Cheung, 2015; Cheung \& Chan, 2005).

\section*{Value}

An object of class uniR1 of the original data, the sample sizes, the harmonic mean of sample sizes, the average correlation matrix, the standard errors of the correlation matrix, and the standard deviations (heterogeneity) of the correlation matrix.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley \& Sons, Inc.

Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.
Schmidt, F. L., \& Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Thousand Oaks, CA: Sage.
Viswesvaran, C., \& Ones, D. S. (1995). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48, 865-885.

\section*{See Also}
uniR2, Becker09
uniR2

Second Stage analysis of the univariate \(R(\) uniR) approach

\section*{Description}

It conducts the second stage analysis of the uniR analysis by fitting structural equation models on the average correlation matrix.

\section*{Usage}
```

    uniR2mx (x, RAM = NULL, Amatrix = NULL, Smatrix = NULL, Fmatrix = NULL,
        model.name=NULL, suppressWarnings=TRUE, silent=TRUE,
        run=TRUE, ...)
    uniR2lavaan(x, model, ...)
    ```

\section*{Arguments}
\begin{tabular}{ll}
x & An object of class uniR1 from uniR1. \\
RAM & A RAM object including a list of matrices of the model returned from lavaan2RAM. \\
Amatrix & \begin{tabular}{l}
If RAM is not specified, an Amatrix is required. An asymmetric matrix in the \\
RAM specification with MxMatrix-class. If it is a matrix, it will be converted \\
into MxMatrix-class by the as.mxMatrix function.
\end{tabular} \\
Smatrix & \begin{tabular}{l}
If RAM is not specified, an Smatrix is required. A symmetric matrix in the RAM \\
specification with MxMatrix-class. If it is a matrix, it will be converted into \\
\\
MxMatrix-class by the as.mxMatrix function.
\end{tabular} \\
Fmatrix & \begin{tabular}{l}
If RAM is not specified, an Fmatrix is required. A filter matrix in the RAM \\
specification with MxMatrix-class. If it is NULL (the default), an identity matrix
\end{tabular} \\
with the same dimensions of Cov will be created. If it is a matrix, it will be \\
converted into MxMatrix-class by the as.mxMatrix function. It is not required \\
when there is no latent variable.
\end{tabular}

\section*{Details}

This function implements the univariate r approach proposed by Viswesvaran and Ones (1995) to conduct meta-analytic structural equation modeling (MASEM). It treats the average correlation matrix as if it was a covariance matrix in fitting structural equation models. The harmonic mean of the sample sizes in combining correlation coefficients is used as the sample size in fitting structural equation models. It is included in this package for research interests. The two-stage structural equation modeling (TSSEM) approach is preferred (e.g., Cheung, 2015; Cheung \& Chan, 2005).

\section*{Value}

A fitted object returned from mxRun or sem.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung @ nus.edu.sg>

\section*{References}

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley \& Sons, Inc.
Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.

Viswesvaran, C., \& Ones, D. S. (1995). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48, 865-885.

\section*{See Also}
uniR1, lavaan2RAM, Becker09
\[
\begin{array}{ll}
\text { vanderPol17 } & \begin{array}{l}
\text { Dataset on the effectiveness of multidimensional family therapy in } \\
\text { treating adolescents with multiple behavior problems }
\end{array}
\end{array}
\]

\section*{Description}

This dataset includes 61 effect sizes from 19 manuscripts nested from 8 studies reported by van der Pol et al. (2017). It studies the effectiveness of multidimensional family therapy in treating adolescents with multiple behavior problems.

\section*{Usage}
data(vanderPol17)

\section*{Details}

A list of data with the following structure:
Number Number of the effect size.
Study Authors of the studies.
N Total sample size.
N_target Sample size in the target group.
N_control Sample size in the control group.
Comparison_condition Either cognitive behavioral therapy (CBT), combined treatment (CT) or group therapy (Group).
Study_ID Level-3 cluster.
Age_mean Mean age of the participants.
Fllow_up Follow-up duration (in months).
Per_Males Percentage of males.
Per_Minorities Percentage of minorities.
Per_Conduct_disorder Percentage of participants with conduct disorder
Per_Severe_cannabis_users Percentage of participants of severe cannabis use.
Outcome_measure Either substance abuse, delinquency, externalizing and internalizing psychopathology, and family functioning
d Effect size in Cohen's d.
v Sampling variance of \(d\)

\section*{Source}
van der Pol, T. M., Hoeve, M., Noom, M. J., Stams, G. J. J. M., Doreleijers, T. A. H., van Domburgh, L., \& Vermeiren, R. R. J. M. (2017). Research Review: The effectiveness of multidimensional family therapy in treating adolescents with multiple behavior problems - a meta-analysis. Journal of Child Psychology and Psychiatry, 58(5), 532-545. https://doi.org/10.1111/jcpp. 12685

\section*{Examples}
data(vanderPol17)
VarCorr Extract Variance-Covariance Matrix of the Random Effects

\section*{Description}

It extracts the variance-covariance matrix of the random effects (variance component) from either the meta or osmasem objects.

\section*{Usage}
\(\operatorname{VarCorr}(x, \ldots)\)

\section*{Arguments}
x
... Further arguments; currently none is used

\section*{Value}

A variance-covariance matrix of the random effects.

\section*{Note}

It is similar to coef(object, select="random") in tssem. The main difference is that coef() returns a vector while \(\operatorname{VarCorr}()\) returns its correspondent matrix.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@ nus.edu.sg>

\section*{See Also}

\footnotetext{
coef, vcov
}

\section*{Examples}
```


## Multivariate meta-analysis on the log of the odds

## The conditional sampling covariance is 0

bcg <- meta(y=cbind(ln_Odd_V, ln_Odd_NV), data=BCG,
v=cbind(v_ln_Odd_V, cov_V_NV, v_ln_Odd_NV))
VarCorr(bcg)

```
vcov Extract Covariance Matrix Parameter Estimates from Objects of Var-
ious Classes

\section*{Description}

It extracts the variance-covariance matrix of the parameter estimates from objects of various classes.

\section*{Usage}
```


## S3 method for class 'tssem1FEM'

vcov(object, ...)

## S3 method for class 'tssem1FEM.cluster'

vcov(object, ...)

## S3 method for class 'tssem1REM'

vcov(object, select = c("all", "fixed", "random"), robust=FALSE, ...)

## S3 method for class 'wls'

vcov(object, ...)

## S3 method for class 'wls.cluster'

vcov(object, ...)

## S3 method for class 'meta'

vcov(object, select = c("all", "fixed", "random"), robust=FALSE, ...)

## S3 method for class 'meta3X'

vcov(object, select = c("all", "fixed", "random","allX"), robust=FALSE, ...)

## S3 method for class 'reml'

vcov(object, ...)

## S3 method for class 'MxRAMModel'

vcov(object, ...)

## S3 method for class 'osmasem'

vcov(object, select=c("fixed", "all", "random"), robust=FALSE, ...)

```

\section*{Arguments}
object An object returned from objects of various classes
select Select all for both fixed- and random-effects parameters, fixed for the fixedeffects parameters or random for the random-effects parameters. For meta3X objects, allX is used to extract all parameters including the predictors and auxiliary variables.
robust Logicial. Whether to use robust standard error from imxRobustSE.
... Further arguments; currently none is used

\section*{Value}

A variance-covariance matrix of the parameter estimates.

\section*{Note}
vcov returns NA when the diag. constraints=TRUE argument is used in wls objects.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
tssem1, wls, meta, reml

\section*{Examples}
```


## Random-effects meta-analysis

model1 <- meta(y=yi, v=vi, data=Hox02)
vcov(model1)

## Fixed-effects only

vcov(model1, select="fixed")

## Random-effects only

vcov(model1, select="random")

```
vec2symMat

\section*{Description}

It converts a vector into a symmetric matrix by filling up the elements into the lower triangle of the matrix.

\section*{Usage}
vec2symMat (x, diag \(=\) TRUE, byrow \(=\) FALSE \()\)

\section*{Arguments}
x
A vector of numerics or characters
diag
Logical. If it is TRUE (the default), the diagonals of the created matrix are replaced by elements of \(x\); otherwise, the diagonals of the created matrix are replaced by "1".
byrow Logical. If it is FALSE (the default), the created matrix is filled by columns; otherwise, the matrix is filled by rows.

\section*{Value}

A symmetric square matrix based on column major

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{See Also}
```

matrix2bdiag

```

\section*{Examples}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{vec2symMat(1:6)} \\
\hline \# & [,1] & [,2] & [,3] \\
\hline \# [1,] & 1 & 2 & \\
\hline \# [2,] & 2 & 4 & 5 \\
\hline \# [3,] & 3 & 5 & \\
\hline
\end{tabular}
```

vec2symMat(1:6, diag=FALSE)

```
\# [,1] [,2] [,3] [,4]
\# [1,] \(1 \begin{array}{llll} & 1 & 2 & 3\end{array}\)
\# [2,] \(1 \begin{array}{lllll}{[2,]} & 1 & 4 & 5\end{array}\)
\# [3,] \(2 \begin{array}{lllll}{[3} & 4 & 1 & 6\end{array}\)
\# \([4] \quad 3 \quad 5 \quad 6 \quad\),
vec2symMat(letters[1:6])
\# [,1] [,2] [,3]
\# [1,] "a" "b" "c"
\# \([2\),\(] "b" "d" "e"\)
\# [3,] "c" "e" "f"
wls Conduct a Correlation/Covariance Structure Analysis with WLS

\section*{Description}

It fits a correlation or covariance structure with weighted least squares (WLS) estimation method where the inverse of the asymptotic covariance matrix is used as the weight matrix. tssem2 conducts the second stage analysis of the two-stage structural equation modeling (TSSEM). tssem2 is a wrapper of wls.

\section*{Usage}
```

wls(Cov, aCov, n, RAM=NULL, Amatrix=NULL, Smatrix=NULL, Fmatrix=NULL,
diag.constraints=FALSE, cor.analysis=TRUE, intervals.type=c("z","LB"),
mx.algebras=NULL, model.name=NULL, suppressWarnings=TRUE,
silent=TRUE, run=TRUE, ...)

```
```

tssem2(tssem1.obj, RAM=NULL, Amatrix=NULL, Smatrix=NULL, Fmatrix=NULL,
diag.constraints=FALSE, intervals.type=c("z", "LB"), mx.algebras=NULL,
model.name=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline tssem1.obj & An object of either class tssem1FEM, class tssem1FEM. cluster or class tssem1REM returned from tssem1 () \\
\hline Cov & A \(p \mathrm{x} p\) sample correlation/covariance matrix where \(p\) is the number of variables. \\
\hline aCov & A \(p * \mathrm{x} p *\) asymptotic sampling covariance matrix of either vechs (Cov) or vech (Cov) where \(p *=p(p-1) / 2\) for correlation matrix and \(p *=p(p+1) / 2\) for covariance matrix. \\
\hline n & Sample size. \\
\hline RAM & A RAM object including a list of matrices of the model returned from lavaan2RAM. \\
\hline Amatrix & If RAM is not specified, an Amatrix is required. An asymmetric matrix in the RAM specification with MxMatrix-class. If it is NULL, a matrix of zero will be created. If it is a matrix, it will be converted into MxMatrix-class by the as.mxMatrix function. \\
\hline Smatrix & If RAM is not specified, an Smatrix is required. A symmetric matrix in the RAM specification with MxMatrix-class. If it is a matrix, it will be converted into MxMatrix-class by the as.mxMatrix function. \\
\hline Fmatrix & A filter matrix in the RAM specification with MxMatrix-class. If it is NULL (the default), an identity matrix with the same dimensions of Cov will be created. If it is a matrix, it will be converted into MxMatrix-class by the as.mxMatrix function. It is not required when there is no latent variable. \\
\hline \multicolumn{2}{|l|}{diag.constraints} \\
\hline & Logical. This argument is ignored when cor.analysis=FALSE. If diag. constraints=TRUE, the diagonals of the model implied matrix would be constrained at 1 by nonlinear constraints. The drawback is that standard error will not be generated. Parametric bootstrap is used to estimate the standard error by drawing samples from \(\mathcal{N}(v e c h(C o v), a s y C o v)\) for covariance analysis and \(\mathcal{N}(v e c h s(C o v), a s y C o v)\) for correlation analysis while asyCov is treated as fixed. This process is computationally intensive. A better approach is to request likelihood-based confidence intervals (CIs) by specifying intervals.type="LB". If diag. constraints=FALSE and cor.analysis=TRUE, the diagonals are automatically constrained as ones by treating the error variances as computed values rather than as parameters. Since the error variances are not parameters, they are not reported. \\
\hline cor.analysis & Logical. Analysis of correlation or covariance structure. If cor. analysis=TRUE, vechs is used to vectorize \(S\); otherwise, vech is used to vectorize \(S\). \\
\hline intervals.type & Either \(z\) (default if missing) or LB. If it is \(z\), it calculates the \(95 \%\) Wald CIs based on the \(z\) statistic. If it is LB, it calculates the \(95 \%\) likelihood-based CIs on the parameter estimates. Please note that the z values and their associated p values are based on the z statistic. They are not related to the likelihood-based CIs. \\
\hline mx.algebras & A list of mxMatrix or mxAlgebra objects on the Amatrix, Smatrix, and Fmatrx. It can be used to define new functions of parameters and their LBCIs. For example, if the regression coefficients to calculate an indirect effect are stored in \\
\hline
\end{tabular}
\(A[1,2]\) and \(A[1,3]\), we may define list (ind=mxAlgebra(Amatrix[1, 2]*Amatrix[1, 3], name="ind")) See the examples in Becker92 and Hunter83. It should be noted that Fmatrix, Amatrix, Smatrix, Iden (a \(p \mathrm{x} p\) identity matrix), sampleS (sample correlation or covariance matrix), impliedS1, impliedS (model implied correlation or covariance matrix), vecS, invAcov, obj, One, select and constraint and Ematrix (computed error variances when diag. constraints=FALSE) have been defined internally. You should not create new matrices using these names.
model. name A string for the model name in mxModel. If it is missing, the default is "TSSEM2 (or WLS) Analysis of Correlation Structure" for cor. analysis=TRUE and "TSSEM2 (or WLS) Analysis of Covariance Structure" for cor .analysis=FALSE.
suppressWarnings
Logical. If TRUE, warnings are suppressed. The argument to be passed to mxRun.
silent Logical. An argument to be passed to mxRun
run Logical. If FALSE, only return the \(m x\) model without running the analysis.
... Further arguments to be passed to mxRun.

\section*{Value}

An object of class wls with a list of
\begin{tabular}{ll}
call & The matched call \\
Cov & Input data of either a covariance or correlation matrix \\
asyCov & The asymptotic covariance matrix of the input data \\
noObservedStat & Number of observed statistics \\
n & Sample size \\
cor.analysis & logical \\
noConstraints & Number of constraints imposed on S \\
indepModelChisq & Chi-square statistic of the independent model returned by .indepwlsChisq \\
indepModelDf & Degrees of freedom of the independent model returned by .indepwlsChisq \\
\(m x . f i t\) & A fitted object returned from mxRun
\end{tabular}

\section*{Note}

If the input is a list of tssem1 . obj, it returns a list of results for each cluster.

\section*{Author(s)}

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

\section*{References}

Bentler, P.M., \& Savalei, V. (2010). Analysis of correlation structures: current status and open problems. In Kolenikov, S., Thombs, L., \& Steinley, D. (Eds.). Recent Methodological Developments in Social Science Statistics (pp. 1-36). Hoboken, NJ: Wiley.
Cheung, M. W.-L. (2010). Fixed-effects meta-analyses as multiple-group structural equation models. Structural Equation Modeling, 17, 481-509.

Cheung, M. W.-L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46, 29-40.
Cheung, M. W.-L., \& Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.
Cheung, M. W.-L., \& Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.
Joreskog, K. G., Sorbom, D., Du Toit, S., \& Du Toit, M. (1999). LISREL 8: New Statistical Features. Chicago: Scientific Software International.
McArdle, J. J., \& MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-251.

\section*{See Also}
tssem1, Becker92, Digman97, Hunter83, issp89, issp05

\section*{Examples}
```


#### Analysis of correlation structure

R1.labels <- c("a1", "a2", "a3", "a4")
R1 <- matrix(c(1.00, 0.22, 0.24, 0.18,
0.22, 1.00, 0.30, 0.22,
0.24, 0.30, 1.00, 0.24,
0.18, 0.22, 0.24, 1.00), ncol=4, nrow=4,
dimnames=list(R1.labels, R1.labels))
n <- 1000
acovR1 <- asyCov(R1, n)

#### One-factor CFA model using lavaan specification

model1 <- "f =~ a1 + a2 + a3 + a4"
RAM1 <- lavaan2RAM(model1, obs.variables=R1.labels)
wls.fit1a <- wls(Cov=R1, aCov=acovR1, n=n, RAM=RAM1,
cor.analysis=TRUE, intervals="LB")
summary(wls.fit1a)

## One-factor CFA model using RAM specification

(A1 <- cbind(matrix(0, nrow=5, ncol=4),
matrix(c("0.2*a1","0.2*a2","0.2*a3","0.2*a4",0),
ncol=1)))

```
```

(S1 <- Diag(c("0.2*e1","0.2*e2","0.2*e3","0.2*e4",1)))

## The first 4 variables are observed while the last one is latent.

(F1 <- create.Fmatrix(c(1,1,1,1,0), name="F1"))
wls.fit1b <- wls(Cov=R1, aCov=acovR1, n=n, Fmatrix=F1, Smatrix=S1, Amatrix=A1,
cor.analysis=TRUE, intervals="LB")
summary(wls.fit1b)

#### Multiple regression analysis using lavaan specification

R2.labels <- c("y", "x1", "x2")
R2 <- matrix(c(1.00, 0.22, 0.24,
0.22, 1.00, 0.30,
0.24, 0.30, 1.00,
0.18, 0.22, 0.24), ncol=3, nrow=3,
dimnames=list(R2.labels, R2.labels))
acovR2 <- asyCov(R2, n)
model2 <- "y ~ x1 + x2
\#\# Variances of x1 and x2 are 1
x1 ~~ 1*x1
x2 ~~ 1*x2
\#\# x1 and x2 are correlated
x1 ~~ x2"
RAM2 <- lavaan2RAM(model2, obs.variables=R2.labels)
wls.fit2a <- wls(Cov=R2, aCov=acovR2, n=n, RAM=RAM2,
cor.analysis=TRUE, intervals="LB")
summary(wls.fit2a)

#### Multiple regression analysis using RAM specification

## A2: Regression coefficents

# y x1 x2

# y F T T

# x1 F F F

# x2 F F F

(A2 <- mxMatrix("Full", ncol=3, nrow=3, byrow=TRUE,
free=c(FALSE, rep(TRUE, 2), rep(FALSE, 6)), name="A2"))

## S2: Covariance matrix of free parameters

# y x1 x2

# y T F F

# x1 F F F

# x2 F T F

(S2 <- mxMatrix("Symm", ncol=3, nrow=3, values=c(0.2,0,0,1,0.2,1),
labels=c("Var_y", NA, NA, NA, "Cov_x1_x2", NA),
free=c(TRUE,FALSE,FALSE,FALSE,TRUE,FALSE), name="S2"))

## F may be ignored as there is no latent variable.

```
```

wls.fit2b <- wls(Cov=R2, aCov=acovR2, n=n, Amatrix=A2, Smatrix=S2,
cor.analysis=TRUE, intervals="LB")
summary(wls.fit2b)

#### Analysis of covariance structure using lavaan specification

R3.labels=c("a1", "a2", "a3", "a4")
R3 <- matrix(c(1.50, 0.22, 0.24, 0.18,
0.22, 1.60, 0.30, 0.22,
0.24, 0.30, 1.80, 0.24,
0.18, 0.22, 0.24, 1.30), ncol=4, nrow=4,
dimnames=list(R3.labels, R3.labels))
n <- 1000
acovS3 <- asyCov(R3, n, cor.analysis=FALSE)
model3 <- "f =~ a1 + a2 + a3 + a4"
RAM3 <- lavaan2RAM(model3, obs.variables=R3.labels)
wls.fit3a <- wls(Cov=R3, aCov=acovS3, n=n, RAM=RAM3,
cor.analysis=FALSE)
summary(wls.fit3a)

#### Analysis of covariance structure using RAM specification

(A3 <- cbind(matrix(0, nrow=5, ncol=4),
matrix(c("0.2*a1","0.2*a2","0.2*a3","0.2*a4",0),ncol=1)))
(S3 <- Diag(c("0.2*e1","0.2*e2","0.2*e3","0.2*e4",1)))
F3 <- c(TRUE,TRUE,TRUE,TRUE,FALSE)
(F3 <- create.Fmatrix(F3, name="F3", as.mxMatrix=FALSE))
wls.fit3b <- wls(Cov=R3, aCov=acovS3, n=n, Amatrix=A3, Smatrix=S3,
Fmatrix=F3, cor.analysis=FALSE)
summary(wls.fit3b)

```
wvs94a Forty-four Studies from Cheung (2013)

\section*{Description}

Between 1990 and 1993, 57,561 adults aged 18 and above from 42 nations were interviewed by local academic institutes in Eastern European nations and by professional survey organizations in other nations. The standardized mean difference (SMD) between males and females on life satisfaction and life control in each country were calculated as the effect sizes. Positive values indicate that males have higher scores than females do.

\section*{Usage}
data(wvs94a)
wvs94a

\section*{Details}

The variables are:
country Country
lifesat SMD on life satisfaction
lifecon SMD on life control
lifesat_var Sampling variance of lifesat
inter_cov Sampling covariance between lifesat and lifecon
lifecon_var Sampling variance of lifecon
gnp Gross National Product

\section*{Source}

World Values Study Group. (1994). World Values Survey, 1981-1984 and 1990-1993 [Computer file]. Ann Arbor, MI: Inter-university Consortium for Political and Social Research.

\section*{References}

Au, K., \& Cheung, M. W.-L. (2004). Intra-cultural variation and job autonomy in 42 countries. Organization Studies, 25, 1339-1362.
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling, 20, 429-454.

\section*{Examples}
```


## Not run:

data(wvs94a)

## Random-effects model

random.ma1 <- meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var), data=wvs94a,
model.name="Random effects model")
summary(random.ma1)

## Random-effects model with both population effect sizes fixed at 0

random.ma2 <- meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var), data=wvs94a,
intercept.constraints=matrix(0, nrow=1, ncol=2),
model.name="Effect sizes are fixed at 0")
summary(random.ma2)

## Compare the nested models

anova(random.ma1, random.ma2)

## Fixed-effects model by fixing the variance component at 0

fixed.ma <- meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var), data=wvs94a,
RE.constraints=matrix(0, ncol=2, nrow=2),
model.name="Fixed effects model")

```
```

summary(fixed.ma)

## Mixed-effects model

## gnp is divided by }10000\mathrm{ and centered by using

## scale(gnp/10000, scale=FALSE)

mixed.ma1 <- meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var),
x=scale(gnp/10000, scale=FALSE), data=wvs94a,
model.name="GNP as a predictor")
summary(mixed.ma1)

## Mixed-effects model with equal regression coefficients

mixed.ma2 <- meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var),
x=scale(gnp/10000, scale=FALSE), data=wvs94a,
coef.constraints=matrix(c("0.0*Eq_slope",
"0.0*Eq_slope"), nrow=2),
model.name="GNP as a predictor with equal slope")
summary(mixed.ma2)

## Compare the nested models

anova(mixed.ma1, mixed.ma2)

## Plot the multivariate effect sizes

plot(random.ma1, main="Estimated effect sizes and their 95% confidence ellipses",
axis.label=c("Gender difference on life satisfaction",
"Gender difference on life control"))

## End(Not run)

```
wvs94b

Forty-four Covariance Matrices on Life Satisfaction, Job Satisfaction, and Job Autonomy

\section*{Description}

Between 1990 and 1993, 57,561 adults aged 18 and above from 42 nations were interviewed by local academic institutes in Eastern European nations and by professional survey organizations in other nations. The covariance matrices among Life Satisfaction, Job Satisfaction, and Job Autonomy were calculated.

\section*{Usage}
data(wvs94b)

\section*{Details}

The variables are:
data Covariance matrix among Life Satisfaction (LS), Job Satisfaction (JS), and Job Autonomy (JA)
n Sample size in the country

\section*{Source}

World Values Study Group. (1994). World Values Survey, 1981-1984 and 1990-1993 [Computer file]. Ann Arbor, MI: Inter-university Consortium for Political and Social Research.

\section*{References}

Au, K., \& Cheung, M. W.-L. (2004). Intra-cultural variation and job autonomy in 42 countries. Organization Studies, 25, 1339-1362.
Cheung, M.W.-L., \& Cheung, S.-F. (2016). Random-effects models for meta-analytic structural equation modeling: Review, issues, and illustrations. Research Synthesis Methods, 7, 140-155.

\section*{Examples}
```


## Not run:

data(wvs94b)

## Get the indirect and the direct effects and

## their sampling covariance matrices for each study

indirect1 <- indirectEffect(wvs94b$data, wvs94b$n)
indirect1

## Multivariate meta-analysis on the indirect and direct effects

indirect2 <- meta(indirect1[, c("ind_eff", "dir_eff")],
indirect1[, c("ind_var", "ind_dir_cov", "dir_var")])
summary(indirect2)

## End(Not run)

```

\section*{Index}

\footnotetext{
*Topic bootuniR
bootuniR1, 30
bootuniR2, 31
*Topic compute effect sizes
indirectEffect, 68
*Topic datasets
Aloe14, 5
BCG, 14
Becker09, 18
Becker83, 21
Becker92, 23
Becker94, 25
Berkey98, 27
Boer16, 28
Bornmann07, 32
Cheung00, 35
Cheung09, 37
Cooke16, 40
Cooper03, 42
Digman97, 54
Gleser94, 57
Gnambs18, 58
HedgesOlkin85, 59
Hox02, 62
Hunter83, 63
issp05, 70
issp89, 72
Jaramillo05, 74
Kalaian96, 75
Mak09, 79
Nam03, 88
Nohe15, 89
Norton13, 93
Roorda11, 112
Scalco17, 113
Stadler15, 118
Tenenbaum02, 121
vanderPol17, 128
wvs94a, 137
}
wvs94b, 139
*Topic meta-analysis
asyCov, 13
homoStat, 60
meta, 82
meta3, 86
reml, 107
reml3, 109
smdMES, 114
smdMTS, 116
*Topic methods
anova, 6
coef, 39
lavaan2RAM, 76
meta2semPlot, 85
plot, 99
print, 102
summary, 119
VarCorr, 129
vcov, 130
*Topic osmasem
Cor2DataFrame, 43
create.Tau2, 49
create. V, 50
create.vechsR, 51
osmasem, 94
osmasemR2, 96
osmasemSRMR, 96
*Topic package
metaSEM-package, 3
*Topic tssem
lavaan2RAM, 76
meta2semPlot, 85
rerun, 111
tssem1, 122
tssemParaVar, 124
wls, 132
*Topic uniR
uniR1, 125
uniR2, 126
*Topic utilities
as.mxAlgebra, 8
as.mxMatrix, 10
as.symMatrix, 11
bdiagMat, 16
bdiagRep, 17
checkRAM, 34
create.Fmatrix, 45
create.mxMatrix, 46
create.mxModel, 47
Diag, 53
impliedR, 65
is.pd, 69
list2matrix, 78
matrix2bdiag, 81
pattern.n, 97
pattern.na, 98
rCor, 103
readData, 104
vec2symMat, 131
Aloe14, 5
anova, 6
as.mxAlgebra, 8
as.mxMatrix, \(8,10,12,34,45,77,82,83,86\), 87, 107, 123
as.symMatrix, 10, 11
asyCov, 13, 44, 69
BCG, 14
bdiagMat, 16, 17
bdiagRep, 16, 17
Becker09, 18, 77, 85, 126, 128
Becker83, 21
Becker92, 23, 77, 85, 124, 134, 135
Becker94, 25
Berkey98, 27, 84, 102, 109
Boer16, 28
bootuniR1, 30, 125
bootuniR2, 31, 31, 121, 125
Bornmann07, 32, 88, 111
checkRAM, 10, 34, 77
Cheung00, 35
Cheung09, 37, 124
coef, 39, 129
Cooke16, 40
Cooper03, 42, 88, 111

Cor2DataFrame, 43, 95, 98
create.Fmatrix, 10, 45, 47
create.mxMatrix, 10, 45, 46, 47
create.mxModel, 47
create. Tau2, 44, 49, 51, 52, 95
create.V, 44, 50, 50, 52, 95
create. vechsR, 44, 50, 51, 51, 95
Diag, 53
diag, 54
Diag<- (Diag), 53
Digman97, 54, 77, 85, 124, 135
Gleser94, 57, 115, 117
Gnambs18, 58
HedgesOlkin85, 59
homoStat, 60
Hox02, 62, 84, 109
Hunter83, 63, 77, 85, 134, 135
impliedR, 65
imxRobustSE, 120, 130
indirectEffect, 68
is.pd, 69
issp05, 70, 73, 124, 135
issp89, 71, 72, 124, 135
Jaramillo05, 74
Kalaian96, 75
lavaan2RAM, \(10,34,48,76,94,127,128,133\)
list2matrix, 78
Mak09, 79
match.call, 83, 108, 110
matrix2bdiag, \(16,17,81,132\)
meta, \(13,40,61,82,103,109,121,131\)
meta2semPlot, 85, 102
meta3, 86, 111
meta3X (meta3), 86
metaFIML (meta), 82
metaSEM (metaSEM-package), 3
metaSEM-package, 3
model.syntax, 77, 127
mvrnorm, 69
mxAlgebra, 8, 48, 133
mxCompare, 6, 7
mxData, 48
mxMatrix, 10, 46-48, 133
mxModel, 48, 83, 87, 94, 95, 108, 110, 123, 127, 134
mxRun, 13, 48, 83, 84, 87, 95, 108, 110, 123, 127, 134
mxTryHard, 111
Nam03, 88
Nohe15, 31, 89, 95, 97, 125
Nohe15A1 (Nohe15), 89
Nohe15A2 (Nohe15), 89
Norton13, 93
omxGetParameters, 40
osmasem, 40, 44, 50-52, 94, 95-97, 121
osmasemR2, 96
osmasemSRMR, 96
par, 100, 101
pattern.n, 97
pattern.na, 98
plot, 99
points, 100
print, 102
print. summary.bootuniR2 (summary), 119
print. summary. CorPop (summary), 119
print.summary.meta (summary), 119
print. summary.meta3X (summary), 119
print. summary.reml (summary), 119
print. summary.tssem1FEM (summary), 119
print.summary.wls (summary), 119
printCoefmat, 120
ramModel, 77, 85
rCor, 31, 103, 121
rCorPop (rCor), 103
rCorSam (rCor), 103
read.table, 105
readData, 104
readFullMat (readData), 104
readLowTriMat (readData), 104
readStackVec (readData), 104
reml, 40, 84, 103, 107, 111, 121, 131
reml3, 88, 109, 109
rerun, 111
rimpliedR(impliedR), 65
Roorda11, 112
Scalco17, 113
scan, 105
sem, 31, 127
semPaths, 101, 102
semPlotModel, 101
smdMES, 57, 114
smdMTS, 57, 116
Stadler15, 118
summary, 7, 119
summary. bootuniR2 (summary), 119
summary. CorPop (summary), 119
summary.meta (summary), 119
summary.meta3X (summary), 119
summary. osmasem (summary), 119
summary.reml (summary), 119
summary.tssem1FEM (summary), 119
summary.tssem1REM (summary), 119
summary.wls (summary), 119
Tenenbaum02, 121
tssem1, 40, 103, 121, 122, 131, 135
tssem1FEM (tssem1), 122
tssem1REM (tssem1), 122
tssem2 (wls), 132
tssemParaVar, 31, 124
uniR1, 125, 127, 128
uniR2, 126, 126
uniR2lavaan (uniR2), 126
uniR2mx (uniR2), 126
vanderPol17, 128
VarCorr, 129
vcov, 129, 130
vec2symMat, 81,131
vech, 61, 79, 82, 107, 133
vechs, 79, 133
wls, \(7,40,45,103,121,124,131,132\)
wvs94a, 84, 102, 137
wvs94b, 139```

