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cache_filesystem Filesystem Cache

Description

Use a cache on the local filesystem that will persist between R sessions.

Usage

cache_filesystem(path, algo = "xxhash64")

Arguments

path Directory in which to store cached items.

algo The hashing algorithm used for the cache, see digest for available algorithms.
Examples

## Not run:

# Use with Dropbox

db <- cache_filesystem("~/Dropbox/.rcache")
mem_runif <- memoise(runif, cache = db)

# Use with Google Drive

gd <- cache_filesystem("~/Google Drive/.rcache")

mem_runif <- memoise(runif, cache = gd)

## End(Not run)

cache_memory In Memory Cache

Description

A cache in memory, that lasts only in the current R session.

Usage

cache_memory(algo = "sha512")



cache_s3

Arguments
algo The hashing algorithm used for the cache, see digest for available algorithms.
cache_s3 Amazon Web Services S3 Cache Amazon Web Services S3 backed
cache, for remote caching.
Description

Amazon Web Services S3 Cache Amazon Web Services S3 backed cache, for remote caching.

Usage

cache_s3(cache_name, algo = "sha512")
Arguments

cache_name Bucket name for storing cache files.

algo The hashing algorithm used for the cache, see digest for available algorithms.
Examples

## Not run:

# Set AWS credentials.

Sys.setenv("AWS_ACCESS_KEY_ID" = "<access key>",

"AWS_SECRET_ACCESS_KEY" = "<access secret>")
# Set up a unique bucket name.
s3 <- cache_s3("unique-bucket-name")

mem_runif <- memoise(runif, cache = s3)

## End(Not run)

forget Forget past results. Resets the cache of a memoised function.

Description

Forget past results. Resets the cache of a memoised function.

Usage
forget (f)
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Arguments

f memoised function

See Also

memoise, is.memoised

Examples

memX <- memoise(function() { Sys.sleep(1); runif(1) })
# The forget() function

system. time(print(memX()))

system.time(print(memX()))

forget (memX)

system.time(print(memX()))

has_cache Test whether a memoised function has been cached for particular ar-
guments.

Description

Test whether a memoised function has been cached for particular arguments.

Usage
has_cache(f, ...)

Arguments
f Function to test.
arguments to function.
See Also

is.memoised, memoise

Examples

mem_sum <- memoise(sum)
has_cache(mem_sum) (1, 2, 3) # FALSE
mem_sum(1, 2, 3)
has_cache(mem_sum) (1, 2, 3) # TRUE
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is.memoised Test whether a function is a memoised copy. Memoised copies of func-
tions carry an attribute memoised = TRUE, which is.memoised() tests
for.
Description

Test whether a function is a memoised copy. Memoised copies of functions carry an attribute
memoised = TRUE, which is.memoised() tests for.
Usage

is.memoised(f)

Arguments

f Function to test.

See Also

memoise, forget

Examples

mem_1lm <- memoise(1lm)
is.memoised(1lm) # FALSE
is.memoised(mem_1m) # TRUE

memoise Memoise a function.

Description

mf <- memoise(f) creates mf, a memoised copy of f. A memoised copy is basically a lazier
version of the same function: it saves the answers of new invocations, and re-uses the answers of
old ones. Under the right circumstances, this can provide a very nice speedup indeed.

Usage
memoise(f, ..., envir = environment(f), cache = cache_memory())
Arguments
f Function of which to create a memoised copy.
optional variables specified as formulas with no RHS to use as additional re-
strictions on caching. See Examples for usage.
envir Environment of the returned function.

cache Cache function.
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Details

There are two main ways to use the memoise function. Say that you wish to memoise glm, which is
in the stats package; then you could use

mem_glm <- memoise(glm), or you could use

glm <- memoise(stats::glm).

The first form has the advantage that you still have easy access to both the memoised and the original
function. The latter is especially useful to bring the benefits of memoisation to an existing block of
R code.

Two example situations where memoise could be of use:

* You’re evaluating a function repeatedly over the rows (or larger chunks) of a dataset, and
expect to regularly get the same input.

* You’re debugging or developing something, which involves a lot of re-running the code. If
there are a few expensive calls in there, memoising them can make life a lot more pleasant. If
the code is in a script file that you’re source()ing, take care that you don’t just put
glm <- memoise(stats::glm)
at the top of your file: that would reinitialise the memoised function every time the file was
sourced. Wrap it in
if (!is.memoised(glm)) , or do the memoisation call once at the R prompt, or put it
somewhere else where it won’t get repeated.

See Also

forget, is.memoised, timeout, http://en.wikipedia.org/wiki/Memoization

Examples

# a() is evaluated anew each time. memA() is only re-evaluated
# when you call it with a new set of parameters.

a <- function(n) { runif(n) }

memA <- memoise(a)

replicate(5, a(2))

replicate(5, memA(2))

# Caching is done based on parameters' value, so same-name-but-
# changed-value correctly produces two different outcomes...
N <- 4; memA(N)
<- 5; memA(N)
and same-value-but-different-name correctly produces
the same cached outcome.
<- 4; memA(N)
N2 <- 4; memA(N2)

N
# ...
#
N

# memoise() knows about default parameters.

b <- function(n, dummy="a") { runif(n) }

memB <- memoise(b)

memB(2)

memB(2, dummy="a")

# This works, because the interface of the memoised function is the same as
# that of the original function.


http://en.wikipedia.org/wiki/Memoization

timeout 7

formals(b)

formals(memB)

# However, it doesn't know about parameter relevance.
# Different call means different caching, no matter
# that the outcome is the same.

memB(2, dummy="b")

# You can create multiple memoisations of the same function,
# and they'll be independent.

memA (2)

memA2 <- memoise(a)

memA(2) # Still the same outcome

memA2(2) # Different cache, different outcome

# Don't do the same memoisation assignment twice: a brand-new
# memoised function also means a brand-new cache, and xthatx
# you could as easily and more legibly achieve using forget().
# (If you're not sure whether you already memoised something,
# use is.memoised() to check.)

memA(2)

memA <- memoise(a)

memA(2)

# Making a memoized automatically time out after 10 seconds.
memA3 <- memoise(a, ~{current <- as.numeric(Sys.time()); (current - current %% 10) %/% 10 })
memA3(2)

# The timeout function is an easy way to do the above.
memA4 <- memoise(a, ~timeout(10))
memA4(2)

timeout Return a new number after a given number of seconds

Description

This function will return a number corresponding to the system time and remain stable until a given
number of seconds have elapsed, after which it will update to the current time. This makes it useful
as a way to timeout and invalidate a memoised cache after a certain period of time.

Usage

timeout(seconds, current = as.numeric(Sys.time()))

Arguments

seconds Number of seconds after which to timeout.

current The current time as a numeric.
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Value

A numeric that will remain constant until the seconds have elapsed.

See Also

memoise

Examples

a <- function(n) { runif(n) }
memA <- memoise(a, ~timeout(10))
memA(2)
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