mdmb: Model Based Treatment of Missing Data
Contains model-based treatment of missing data for regression
models with missing values in covariates or the dependent
variable using maximum likelihood or Bayesian estimation
(Ibrahim et al., 2005; <doi:10.1198/016214504000001844>;
Luedtke, Robitzsch, & West, 2019a, 2019b, <doi:10.1037/met0000233>;
<doi:10.1080/00273171.2019.1640104>).
The regression model can be nonlinear (e.g., interaction
effects, quadratic effects or B-spline functions).
Multilevel models with missing data in predictors are
available for Bayesian estimation. Substantive-model compatible
multiple imputation can be also conducted.
Version: |
1.4-12 |
Depends: |
R (≥ 3.1) |
Imports: |
CDM, coda, graphics, miceadds (≥ 3.2-23), Rcpp, sirt, stats, utils |
LinkingTo: |
miceadds, Rcpp, RcppArmadillo |
Suggests: |
MASS |
Enhances: |
JointAI, jomo, mice, smcfcs |
Published: |
2020-05-12 |
Author: |
Alexander Robitzsch [aut, cre], Oliver Luedtke [aut] |
Maintainer: |
Alexander Robitzsch <robitzsch at leibniz-ipn.de> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://github.com/alexanderrobitzsch/mdmb,
https://sites.google.com/site/alexanderrobitzsch2/software |
NeedsCompilation: |
yes |
Citation: |
mdmb citation info |
Materials: |
README NEWS |
In views: |
MissingData |
CRAN checks: |
mdmb results |
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mdmb
to link to this page.