
Package ‘mcunit’
March 5, 2020

Title Unit Tests for MC Methods

Version 0.3.1

Maintainer Axel Gandy <a.gandy@imperial.ac.uk>

Description Unit testing for Monte Carlo methods, particu-
larly Markov Chain Monte Carlo (MCMC) methods, are implemented as extensions of the 'test-
that' package. The MCMC methods check whether the MCMC chain has the correct invari-
ant distribution. They do not check other properties of successful sam-
plers such as whether the chain can reach all points, i.e. whether is recurrent. The tests re-
quire the ability to sample from the prior and to run steps of the MCMC chain. The methodol-
ogy is described in Gandy and Scott (2020) <arXiv:2001.06465>.

URL https://bitbucket.org/agandy/mcunit/

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.1)

Imports testthat (>= 2.3), stats, rlang, Rdpack (>= 0.7), methods,
simctest (>= 2.6)

Suggests knitr

VignetteBuilder knitr

RoxygenNote 7.0.2

RdMacros Rdpack

NeedsCompilation no

Author Axel Gandy [aut, cre],
James Scott [aut]

Repository CRAN

Date/Publication 2020-03-05 11:10:05 UTC

1

https://bitbucket.org/agandy/mcunit/

2 expect_bernoulli

R topics documented:
expect_bernoulli . 2
expect_mcmc . 3
expect_mcmc_reversible . 4
expect_mc_iid_chisq . 6
expect_mc_iid_ks . 7
expect_mc_iid_mean . 8
expect_mc_test . 9

Index 10

expect_bernoulli Test Bernoulli distribution using buckets

Description

Test if the success probability of a Bernoulli experiment lies within a desired ’bucket’. This used
the sequential procedure described in Gandy et al. (2019).

Usage

expect_bernoulli(object, J, ok, epsilon = 0.001, ...)

Arguments

object Function that performs one sampling step. Returns 0 or 1.
J Buckets to use. A matrix with two rows, each column describes an interval

bucket. Column names give names for the bucket(s).
ok Name of bucket(s) that pass the Unit test.
epsilon Error bound.
... Further parameters to be passed on to ’mctest’.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Gandy A, Hahn G and Ding D (2019). “Implementing Monte Carlo Tests with P-value Buckets.”
Scandinavian Journal of Statistics. doi: 10.1111/sjos.12434, Accepted for publication, 1703.09305,
https://arxiv.org/abs/1703.09305.

Examples

J <- matrix(nrow=2,c(0,0.945, 0.94,0.96, 0.955,1))
colnames(J) <- c("low","ok","high")
gen <- function() as.numeric(runif(1)<0.95)
expect_bernoulli(gen,J=J,ok="ok")

http://doi.org/10.1111/sjos.12434
https://arxiv.org/abs/1703.09305

expect_mcmc 3

expect_mcmc Test of MCMC chain

Description

Test of MCMC steps having the correct stationary distribution without assuming reversibility of the
chain. Details of this are in Gandy and Scott (2020); it uses ideas described in the appendix of
Gandy and Veraart (2017).

Usage

expect_mcmc(object, control = NULL, thinning = NULL, joint = FALSE)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onwards. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• debug: If positive then debug information will be printed via ’message()’.

Default: 0.

thinning Amount of thinnig for the MCMC chain. 1 corresponds to no thinning. Default:
automatically computed to ensure an autocorrelcation of at most 0.5 at lag 1.

4 expect_mcmc_reversible

joint If TRUE, then the MCMC uses systematic scan of both data and parameters,
rather than just updating parameters with the sampler to be tested. Default:
FALSE.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Gandy A and Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

Gandy A and Veraart LAM (2017). “A Bayesian Methodology for Systemic Risk Assessment in
Financial Networks.” Management Science, 63(12), pp. 4428–4446. doi: 10.1287/mnsc.2016.2546.

See Also

expect_mcmc_reversible

Examples

object <- list(genprior=function() rnorm(1),
gendata=function(theta) rnorm(5,theta),
stepMCMC=function(theta,data,thinning){

f <- function(x) prod(dnorm(data,x))*dnorm(x)
for (i in 1:thinning){

thetanew = rnorm(1,mean=theta,sd=1)
if (runif(1)<f(thetanew)/f(theta))
theta <- thetanew

}
theta

}
)

expect_mcmc(object)

expect_mcmc_reversible

Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain.
Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

https://arxiv.org/abs/2001.06465
http://doi.org/10.1287/mnsc.2016.2546

expect_mcmc_reversible 5

Usage

expect_mcmc_reversible(
object,
control = NULL,
thinning = NULL,
nsteps = 10,
p = 1,
tolerance = 1e-08

)

Arguments

object A list describing the MCMC sampler with the following elements:
• genprior: A function with no arguments that generates a sample of the prior

distribution. No default value.
• gendata: A function that takes as input the parameter value (of the type gen-

erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

control a list controlling the algorithm
• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onwards. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• debug: If positive then debug information will be printed via ’message()’.

Default: 0.
thinning Amount of thinnig for the MCMC chain. 1 corresponds to no thinning. Default:

automatically computed to ensure an autocorrelcation of at most 0.5 at lag 1.
nsteps Number of steps of the chain to use. Default: 10.
p The probability with which the MCMC updates the parameter as opposed to the

data in a given step. If less than 1.0, then the MCMC is a random scan on both
data and parameters. Default: 1.0.

tolerance Absolute error where value of the samplers are treated as equal. Default: 1e-8.

6 expect_mc_iid_chisq

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J and Clifford P (1989). “Generalized Monte Carlo significance tests.” Biometrika, 76(4),
pp. 633–642. doi: 10.1093/biomet/76.4.633.

Gandy A and Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

See Also

expect_mcmc

Examples

object <- list(genprior=function() rnorm(1),
gendata=function(theta) rnorm(5,theta),
stepMCMC=function(theta,data,thinning){

f <- function(x) prod(dnorm(data,x))*dnorm(x)
for (i in 1:thinning){

thetanew = rnorm(1,mean=theta,sd=1)
if (runif(1)<f(thetanew)/f(theta))
theta <- thetanew

}
theta

},
test=function(x) x
)

expect_mcmc_reversible(object)

expect_mc_iid_chisq Test iid samples for correct cdf using chisq test

Description

Test if samples are behaving like an iid sample from a given distribution via the chisq test and a
sequential approach. Only works for discrete distributions taking finitely many values.

Usage

expect_mc_iid_chisq(object, prob, control = NULL)

http://doi.org/10.1093/biomet/76.4.633
https://arxiv.org/abs/2001.06465

expect_mc_iid_ks 7

Arguments

object A function taking one argument - that generates n univariate iid samples.

prob A vector of probabilities for finitely many consecutive integers from 0 onwards.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onwards. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• debug: If positive then debug information will be printed via ’message()’.

Default: 0.

Value

The first argument, invisibly, to allow chaining of expectations.

Examples

sampler <- function(n) rbinom(n,prob=0.6,size=5)
expect_mc_iid_chisq(sampler, dbinom(0:5,prob=0.6,size=5))
testthat::expect_error(expect_mc_iid_chisq(sampler, dbinom(0:5,prob=0.63,size=5)))

expect_mc_iid_ks Test iid samples for correct cdf using KS test

Description

Test if samples are behaving like an iid sample from a given CDF via the KS test and a sequential
approach. Only works for continuous CDFs. Will report a warning if values are discrete

Usage

expect_mc_iid_ks(object, cdf, control = NULL)

Arguments

object A function taking one argument - that generates n univariate iid samples.

cdf A univariate cumulative distribution function, taking exactly one argument.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onwards. Default: 4.

8 expect_mc_iid_mean

• level: bound on the type I error, ie the probability of wrongly rejecting a
sampler with the correct distribution. Default: 1e-5.

• debug: If positive then debug information will be printed via ’message()’.
Default: 0.

Value

The first argument, invisibly, to allow chaining of expectations.

Examples

sampler <- function(n) rnorm(n)
expect_mc_iid_ks(sampler, pnorm)

expect_mc_iid_mean Test iid samples for correct mean

Description

Test if samples are coming from a specific mean. Not guaranteed to be exact, as it estimates the
standard error from the sample.

Usage

expect_mc_iid_mean(object, mean, control = NULL)

Arguments

object A function taking one argument - that generates n univariate iid samples.

mean The expected mean of the samples returned from object.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onwards. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• debug: If positive then debug information will be printed via ’message()’.

Default: 0.

Value

The first argument, invisibly, to allow chaining of expectations.

expect_mc_test 9

Examples

sampler <- function(n) rbinom(n,prob=0.6,size=5)
expect_mc_iid_mean(sampler, mean=3)
testthat::expect_error(expect_mc_iid_mean(sampler, mean=2))

expect_mc_test Test if p-values are coming from the null using a sequential approach.

Description

Requires as input a generic test that for a given sample size provides a vector of p-values. Aims to
reject if these are not from the null. Guarantees a bound on the type I error rate.

Usage

expect_mc_test(object, control = NULL, npval = 1)

Arguments

object A function taking one argument n - that generates p-values based on a sample
size n.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onwards. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• debug: If positive then debug information will be printed via ’message()’.

Default: 0.

npval number of p-values returned by the test. A Bonferroni correction is applied if
>1. Default: 1.

Value

The first argument, invisibly, to allow chaining of expectations.

Examples

pvalsampler <- function(n){
x <- sample.int(11,size=n,replace=TRUE)-1;

chisq.test(tabulate(x+1,nbins=11),
p=rep(1/11,11))$p.value

}
expect_mc_test(pvalsampler)

Index

expect_bernoulli, 2
expect_mc_iid_chisq, 6
expect_mc_iid_ks, 7
expect_mc_iid_mean, 8
expect_mc_test, 9
expect_mcmc, 3, 6
expect_mcmc_reversible, 4, 4

10

	expect_bernoulli
	expect_mcmc
	expect_mcmc_reversible
	expect_mc_iid_chisq
	expect_mc_iid_ks
	expect_mc_iid_mean
	expect_mc_test
	Index

