Package 'mcp'

August 3, 2020

Title Regression with Multiple Change Points

Version 0.3.0

Date 2020-07-27

URL http://lindeloev.github.io/mcp/

BugReports https://github.com/lindeloev/mcp/issues

Description Flexible and informed regression with Multiple Change Points (MCP). 'mcp' can infer change points in means, variances, autocorrelation structure, and any combination of these, as well as the parameters of the segments in between. All parameters are estimated with uncertainty and prediction intervals are supported also near the change points. 'mcp' supports hypothesis testing via Savage-Dickey density ratio, posterior contrasts, and cross-validation. 'mcp' is described in Lindeløv (submitted) <doi:10.31219/osf.io/fzqxv> and generalizes the approach described in Carlin, Gelfand, & Smith (1992) <doi:10.2307/2347570> and Stephens (1994) <doi:10.2307/2986119>.

License GPL-2

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Imports parallel, future, future.apply, rjags (>= 4.9), coda (>= 0.19.3), loo (>= 2.1.0), bayesplot (>= 1.7.0), tidybayes (>= 2.0.3), dplyr (>= 1.0.0), magrittr (>= 1.5), tidyr (>= 1.0.0), tidyselect (>= 0.2.5), tibble (>= 2.1.3), stringr (>= 1.4.0), ggplot2 (>= 3.2.1), patchwork (>= 1.0.0), stats, rlang (>= 0.4.1)

Suggests hexbin, testthat (>= 2.1.0), purrr (>= 0.3.3), knitr, rmarkdown, covr

NeedsCompilation no

Author Jonas Kristoffer Lindeløv [aut, cre] (<https://orcid.org/0000-0003-4565-0595>) Maintainer Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

Repository CRAN

Date/Publication 2020-08-03 09:30:21 UTC

R topics documented:

	2
ncp-package	
pernoulli	. 3
riterion	. 4
xponential	. 5
x_ar	. 5
x_binomial	. 6
x_demo	. 6
x_fit	. 7
x_plateaus	. 7
x_quadratic	. 8
x_rel_prior	. 8
x_trig	. 9
x_variance	. 9
x_varying	. 10
itted.mcpfit	. 10
ypothesis	. 12
logit	. 14
probit	. 14
s.mcpfit	. 15
ogit	. 15
ncp	. 16
ncpfit-class	. 19
olot.mcpfit	. 20
olot_pars	. 22
pp_check	. 24
predict.mcpfit	. 25
print.mcpprior	. 27
probit	. 28
esiduals.mcpfit	. 28
d_to_prec	. 30
ummary.mcpfit	. 30

Index

mcp-package

Description

The **mcp** package provides an interface to fit regression models with multiple change points between generalized linear segments, optionally with per-segment variance and autocorrelation structures.

The main function of **mcp** is the mcp() function, which uses a formula syntax to specify a wide range of change point models. Based on the supplied data, formulas, and additional information, it writes JAGS code on the fly and use **rstan** to fit the model, optionally in parallel to speed up sampling. You will need to install JAGS for mcp() to work.

A large number of post-processing methods can be applied. These include

- Summarise fits using summary(), fixef(), and ranef().
- Visualize fits using plot() and individual parameters using plot_pars().
- Test hypotheses using hypothesis() and loo().

Extensive documentation with worked examples is available at the mcp website.

bernoulli

Bernoulli family for mcp

Description

Bernoulli family for mcp

Usage

bernoulli(link = "logit")

Arguments

link Link function.

```
criterion
```

Description

Takes an mcpfit as input and computes information criteria using loo or WAIC. Compare models using loo_compare and loo_model_weights. more in loo.

Usage

```
criterion(fit, criterion = "loo", ...)
## S3 method for class 'mcpfit'
loo(x, ...)
## S3 method for class 'mcpfit'
waic(x, ...)
```

Arguments

fit	An mcpfit object.
criterion	One of "loo" (calls loo) or "waic" (calls waic).
	Currently ignored
х	An mcpfit object.

Value

a loo or psis_loo object.

Methods (by generic)

- loo: Computes loo on mcpfit objects
- waic: Computes WAIC on mcpfit objects

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

See Also

criterion criterion

exponential

Examples

```
# Define two models and sample them
# options(mc.cores = 3) # Speed up sampling
model1 = list(y ~ 1 + x, ~ 1)
model2 = list(y ~ 1 + x) # Without a change point
fit1 = mcp(model1, ex_plateaus)
fit2 = mcp(model2, ex_plateaus)
# Compute LOO for each and compare (works for waic(fit) too)
fit1$loo = loo(fit1)
fit2$loo = loo(fit2)
loo::loo_compare(fit1$loo, fit2$loo)
```

exponential Exponential family for mcp

Description

Exponential family for mcp

Usage

exponential(link = "identity")

Arguments

link Link function

ex_ar

A change point in a time series

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_ar

Format

A data frame with 300 rows and 2 variables:

time The x-axis.

price The y-axis.

ex_binomial

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_binomial

Format

A data frame with 100 rows and 3 variables:

- **x** The x-axis.
- y The y-axis.
- ${\bf N}~$ The number of trials for for y.

ex_demo

Two change points between three linear segments

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_demo

Format

A data frame with 100 rows and 2 variables:

time The x-axis.

response The y-axis.

Details

The ex_fit object is fitted to this dataset.

ex_fit

Description

Example fit of the ex_demo dataset

Usage

ex_fit

Format

An mcpfit object.

ex_plateaus

A change point between two plateaus

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_plateaus

Format

A data frame with 100 rows and 2 variables:

x The x-axis.

y The y-axis.

ex_quadratic

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_quadratic

Format

A data frame with 81 rows and 2 variables:

- **x** The x-axis.
- **y** The y-axis.

ex_rel_prior Two change points between three linear segments

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_rel_prior

Format

A data frame with 100 rows and 2 variables:

- **x** The x-axis.
- y The y-axis.

ex_trig

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_trig

Format

A data frame with 234 rows and 2 variables:

- **x** The x-axis.
- **y** The y-axis.

ex_variance

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_variance

Format

A data frame with 100 rows and 2 variables:

- **x** The x-axis.
- y The y-axis.

ex_varying

Description

See how this data was simulated here using fit\$simulate(), including which parameters were used. See an analysis here.

Usage

ex_varying

Format

A data frame with 150 rows and 4 variables:

- **x** The x-axis.
- y The y-axis.

id The participant id (character).

id_numeric The participant id (numeric).

fitted.mcpfit Expected Values from the Posterior Predictive Distribution

Description

Expected Values from the Posterior Predictive Distribution

Usage

```
## S3 method for class 'mcpfit'
fitted(
  object,
 newdata = NULL,
  summary = TRUE,
 probs = TRUE,
  rate = TRUE,
  prior = FALSE,
 which_y = "ct",
  varying = TRUE,
  arma = TRUE,
 nsamples = NULL,
  samples_format = "tidy",
  scale = "response",
  . . .
)
```

fitted.mcpfit

Arguments

object	An mcpfit object.
newdata	A tibble or a data.frame containing predictors in the model. If NULL (default), the original data is used.
summary	Summarise at each x-value
probs	Vector of quantiles. Only in effect when summary == TRUE.
rate	Boolean. For binomial models, plot on raw data (rate = FALSE) or response divided by number of trials (rate = TRUE). If FALSE, linear interpolation on trial number is used to infer trials at a particular x .
prior	TRUE/FALSE. Plot using prior samples? Useful for mcp(, sample = "both")
which_y	What to plot on the y-axis. One of
	 "ct": The central tendency which is often the mean after applying the link function (default). "sigma": The variance "ar1", "ar2", etc. depending on which order of the autoregressive effects
	you want to plot.
varying	 TRUE: All varying effects (fit\$pars\$varying). FALSE: No varying efects (c()).
	 Character vector: Only include specified varying parameters - see fit\$pars\$varying.
arma	Whether to include autoregressive effects.
	 TRUE: Compute autoregressive residuals. Requires the response variable in newdata. FALSE: Disregard the autoregressive effects. For family = gaussian(), predict() just use sigma for residuals.
nsamples	Integer or NULL. Number of samples to return/summarise. If there are varying
risampres	effects, this is the number of samples to return summarise. In there are varying effects, this is the number of samples from each varying group. NULL means "all". Ignored if both are FALSE. More samples trade speed for accuracy.
samples_format	One of "tidy" or "matrix". Controls the output format when summary == FALSE. See more under "value"
scale	One of
	 "response": return on the observed scale, i.e., after applying the inverse link function. "linear": return on the parameter scale (where the linear trends are modelled).
	Currently unused

Value

• If summary = TRUE: A tibble with the posterior mean for each row in newdata, If newdata is NULL, the data in fit\$data is used.

- If summary = FALSE and samples_format = "tidy": A tidybayes tibble with all the posterior samples (Ns) evaluated at each row in newdata (Nn), i.e., with Ns x Nn rows. If there are varying effects, the returned data is expanded with the relevant levels for each row. The return columns are:
 - Predictors from newdata.
 - Sample descriptors: ".chain", ".iter", ".draw" (see the tidybayes package for more), and "data_row" (newdata rownumber)
 - Sample values: one column for each parameter in the model.
 - The estimate. Either "predict" or "fitted", i.e., the name of the type argument.
- If summary = FALSE and samples_format = "matrix": An N_draws X nrows(newdata) matrix with fitted/predicted values (depending on type). This format is used by brms and it's useful as yrep in bayesplot::ppc_* functions.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

See Also

pp_eval predict.mcpfit residuals.mcpfit

Examples

```
fitted(ex_fit)
fitted(ex_fit, probs = c(0.1, 0.5, 0.9)) # With median and 80% credible interval.
fitted(ex_fit, summary = FALSE) # Samples instead of summary.
fitted(ex_fit,
            newdata = data.frame(time = c(-5, 20, 300)), # New data
            probs = c(0.025, 0.5, 0.975))
```

hypothesis

Test hypotheses on mcp objects.

Description

Rreturns posterior probabilities and Bayes Factors for flexible hypotheses involving model parameters. The documentation for the argument hypotheses below shows examples of how to specify hypotheses, and read worked examples on the mcp website. For directional hypotheses, hypothesis`` executes the hypothesis string in a tidybayes" environment and summerises the proportion of samples where the expression evaluates to TRUE. For equals-hypothesis, a Savage-Dickey ratio is computed. Savage-Dickey requires a prior too, so remember mcp(..., sample = "both"). This function is heavily inspired by the 'hypothesis' function from the 'brms' package.

hypothesis

Usage

hypothesis(fit, hypotheses, width = 0.95, digits = 3)

Arguments fit

An mcpfit object.

hypotheses

String representation of a logical test involving model parameters. Takes R code that evaluates to TRUE or FALSE in a vectorized way.

Directional hypotheses are specified using <, >, <=, or >=. hypothesis returns the posterior probability and odds in favor of the stated hypothesis. The odds can be interpreted as a Bayes Factor. For example:

- "cp_1 > 30": the first change point is above 30.
- "int_1 > int_2": the intercept is greater in segment 1 than 2.
- "x_2 -x_1 <= 3": the difference between slope 1 and 2 is less than or equal to 3.
- "int_1 > -2 & int_1 < 2": int_1 is between -2 and 2 (an interval hypothesis). This can be useful as a Region Of Practical Equivalence test (ROPE).
- " $cp_1^2 < 30 \mid (log(x_1) + log(x_2)) > 5$ ": be creative.
- "`cp_1_id[1]` > `cp_1_id[2]`": id1 is greater than id2, as estimated through the varying-by-"id" change point in segment 1. Note that `` required for varying effects.

Hypotheses can also test equality using the equal sign (=). This runs a Savage-Dickey test, i.e., the proportion by which the probability density has increased from the prior to the posterior at a given value. Therefore, it requires mcp(sample = "both"). There are two requirements: First, there can only be one equal sign, so don't use and (&) or or (|). Second, the point to test has to be on the right, and the variables on the left.

- "cp_1 = 30": is the first change point at 30? Or to be more precise: by what factor has the credence in cp_1 = 30 risen/fallen when conditioning on the data, relative to the prior credence?
- "int_1 + int_2 = 0": Is the sum of two intercepts zero?
- "`cp_1_id[John]`/`cp_1_id[Erin]` = 2": is the varying change point for John (which is relative to 'cp_1") double that of Erin?
- width Float. The width of the highest posterior density interval (between 0 and 1).

```
digits a non-null value for digits specifies the minimum number of significant dig-
its to be printed in values. The default, NULL, uses getOption("digits"). (For
the interpretation for complex numbers see signif.) Non-integer values will be
rounded down, and only values greater than or equal to 1 and no greater than 22
are accepted.
```

Value

A data.frame with a row per hypothesis and the following columns:

• hypothesis is the hypothesis; often re-arranged to test against zero.

- mean is the posterior mean of the left-hand side of the hypothesis.
- lower is the lower bound of the (two-sided) highest-density interval of width width.
- upper is the upper bound of ditto.
- p Posterior probability. For "=" (Savage-Dickey), it is the BF converted to p. For directional hypotheses, it is the proportion of samples that returns TRUE.
- BF Bayes Factor in favor of the hypothesis. For "=" it is the Savage-Dickey density ratio. For directional hypotheses, it is p converted to odds.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

ilogit	Inverse logit function
Description	
Inverse logi	t function
Usage	
ilogit(et	a)
Arguments	
eta	A vector of logits
Value	
A vector wi	th same length as eta

iprobit

Inverse probit function

Description

Inverse probit function

Usage

iprobit(eta)

Arguments

eta A vector of probits

is.mcpfit

Value

A vector with same length as mu

is.mcpfit

Checks if argument is an mcpfit object

Description

Checks if argument is an mcpfit object

Usage

is.mcpfit(x)

Arguments

x An R object.

logit

Logit function

Description

Logit function

Usage

logit(mu)

Arguments

mu A vector of probabilities (0.0 to 1.0)

Value

A vector with same length as mu

Description

Given a model (a list of segment formulas), mcp infers the posterior distributions of the parameters of each segment as well as the change points between segments. See more details and worked examples on the mcp website. All segments must regress on the same x-variable. Change points are forced to be ordered using truncation of the priors. You can run fit = mcp(model, sample=FALSE) to avoid sampling and the need for data if you just want to get the priors (fit\$prior), the JAGS code fit\$jags_code, or the R function to simulate data (fit\$simulate).

Usage

```
mcp(
   model,
   data = NULL,
   prior = list(),
   family = gaussian(),
   par_x = NULL,
   sample = "post",
   cores = 1,
   chains = 3,
   iter = 3000,
   adapt = 1500,
   inits = NULL,
   jags_code = NULL
)
```

Arguments

model	A list of formulas - one for each segment. The first formula has the format response ~ predictors while the following formulas have the format response ~ changepoint ~ predictors. The response and change points can be omitted (changepoint ~ predictors assumes same response. ~ predictors assumes an intercept-only change point). The following can be modeled:
	• <i>Regular formulas:</i> e.g., ~ 1 + x). Read more.
	 Extended formulas:, e.g., ~ I(x^2) + exp(x) + sin(x). Read more.
	 Variance: e.g., ~sigma(1) for a simple variance change or ~sigma(rel(1) + I(x^2))) for more advanced variance structures. Read more
	• Autoregression: e.g., ~ar(1) for a simple onset/change in AR(1) or ar(2, 0 + x) for an AR(2) increasing by x. Read more
data	Data.frame or tibble in long format.
prior	Named list. Names are parameter names (cp_i, int_i, xvar_i, 'sigma") and the values are either

mcp

	 A JAGS distribution (e.g., int_1 = "dnorm(0,1) T(0,)") indicating a conventional prior distribution. Uninformative priors based on data properties are used where priors are not specified. This ensures good parameter estimations, but it is a questionable for hypothesis testing. mcp uses SD (not precision) for dnorm, dt, dlogis, etc. See details. Change points are forced to be ordered through the priors using truncation, except for uniform priors where the lower bound should be greater than the previous change point, dunif(cp_1,MAXX). A numerical value (e.g., int_1 = -2.1) indicating a fixed value. A model parameter name (e.g., int_2 = "int_1"), indicating that this parameter is shared - typically between segments. If two varying effects are shared this way, they will need to have the same grouping variable. A scaled Dirichlet prior is supported for change point and N = 1 is most often used. This prior is less informative about the location of the change points than the default uniform prior, but it samples less efficiently, so you will often need to set iter higher. It is recommended for hypothesis testing and for the estimation of more than 5 change points. Read more.
family	One of gaussian(), binomial(), bernoulli(), or poission(). Only default link functions are currently supported.
par_x	String (default: NULL). Only relevant if no segments contains slope (no hint at what x is). Set this, e.g., $par_x = "time"$.
sample	 One of "post" (default): Sample the posterior. "prior": Sample only the prior. Plots, summaries, etc. will use the prior. This is useful for prior predictive checks. "both": Sample both prior and posterior. Plots, summaries, etc. will default to using the posterior. The prior only has effect when doing Savage-Dickey density ratios in hypothesis. "none" or FALSE: Do not sample. Returns an mcpfit object without sample. This is useful if you only want to check prior strings (fit\$prior), the JAGS model (fit\$jags_code), etc.
cores	 Positive integer or "all". Number of cores. 1: serial sampling (Default). options(mc.cores = 3) will dominate cores = 1 but not larger values of cores. >1: parallel sampling on this number of cores. Ideally set chains to the same value. Note: cores > 1 takes a few extra seconds the first time it's called but subsequent calls will start sampling immediately. "all": use all cores but one and sets chains to the same value. This is a convenient way to maximally use your computer's power.
chains	Positive integer. Number of chains to run.
iter	Positive integer. Number of post-warmup samples to draw. The number of iterations per chain is iter/chains.
adapt	Positive integer. Also sometimes called "burnin", this is the number of samples used to reach convergence. Set lower for greater speed. Set higher if the chains haven't converged yet or look at tips, tricks, and debugging.

inits	A list if initial values for the parameters. This can be useful if a model fails to
	converge. Read more in jags.model. Defaults to NULL, i.e., no inits.
jags_code	String. Pass JAGS code to mcp to use directly. This is useful if you want to tweak the code in fit\$jags_code and run it within the mcp framework.

Details

Notes on priors:

- Order restriction is automatically applied to cp_* parameters using truncation (e.g., T(cp_1,)) so that they are in the correct order on the x-axis UNLESS you do it yourself. The one exception is for dunif distributions where you have to do it as above.
- In addition to the model parameters, MINX (minimum x-value), MAXX (maximum x-value), SDX (etc...), MINY, MAXY, and SDY are also available when you set priors. They are used to set uninformative default priors.
- Use SD when you specify priors for dt, dlogis, etc. JAGS uses precision but mcp converts to precision under the hood via the sd_to_prec() function. So you will see SDs in fit\$prior but precision (\$1/SD^2) in fit\$jags_code

Value

An mcpfit object.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

See Also

get_segment_table

Examples

```
# Define the segments using formulas. A change point is estimated between each formula.
model = list(
  response ~ 1, # Plateau in the first segment (int_1)
  ~ 0 + time,
                 # Joined slope (time_2) at cp_1
  ~ 1 + time
                 # Disjoined slope (int_3, time_3) at cp_2
)
# Fit it. The `ex_demo` dataset is included in mcp. Sample the prior too.
# options(mc.cores = 3) # Uncomment to speed up sampling
ex_fit = mcp(model, data = ex_demo, sample = "both")
# See parameter estimates
summary(ex_fit)
# Visual inspection of the results
plot(ex_fit) # Visualization of model fit/predictions
plot_pars(ex_fit) # Parameter distributions
```

mcpfit-class

```
pp_check(ex_fit) # Prior/Posterior predictive checks
# Test a hypothesis
hypothesis(ex_fit, "cp_1 > 10")
# Make predictions
fitted(ex_fit)
predict(ex_fit)
predict(ex_fit, newdata = data.frame(time = c(55.545, 80, 132)))
# Compare to a one-intercept-only model (no change points) with default prior
model_null = list(response ~ 1)
fit_null = mcp(model_null, data = ex_demo, par_x = "time") # fit another model here
ex_fit$loo = loo(ex_fit)
fit_null$loo = loo(fit_null)
loo::loo_compare(ex_fit$loo, fit_null$loo)
# Inspect the prior. Useful for prior predictive checks.
summary(ex_fit, prior = TRUE)
plot(ex_fit, prior = TRUE)
# Show all priors. Default priors are added where you don't provide any
print(ex_fit$prior)
# Set priors and re-run
prior = list(
  int_1 = 15,
  time_2 = "dt(0, 2, 1) T(0, )", # t-dist slope. Truncated to positive.
  cp_2 = "dunif(cp_1, 80)", # change point to segment 2 > cp_1 and < 80.
                           # Shared intercept between segment 1 and 3
  int_3 = "int_1"
)
fit3 = mcp(model, data = ex_demo, prior = prior)
# Show the JAGS model
cat(ex_fit$jags_code)
```

mcpfit-class

Class mcpfit of models fitted with the mcp package

Description

Models fitted with the mcp function are represented as an mcpfit object which contains the user input (model, data, family), derived model characteristics (prior, parameter names, and jags code), and the fit (prior and/or posterior mcmc samples).

Details

See methods(class = "mcpfit") for an overview of available methods. User-provided information (see mcp for more details):

Plot full fits

Slots

model A list of formulas, making up the model. Provided by user. See mcp for more details. data A data frame. Provided by user. See mcp for more details. family An mcpfamily object. Provided by user. See mcp for more details. prior A named list. Provided by user. See mcp for more details. mcmc_post An mcmc.list object with posterior samples. mcmc_prior An mcmc.list object with prior samples. mcmc_loglik An mcmc.list object with samples of log-likelihood. pars A list of character vectors of model parameter names. jags_code A string with jags code. Use cat(fit\$jags_code) to show it. simulate A method to simulate and predict data. .other Information that is used internally by mcp.

plot.mcpfit

Description

Plot prior or posterior model draws on top of data. Use plot_pars to plot individual parameter estimates.

Usage

```
## S3 method for class 'mcpfit'
plot(
  х,
  facet_by = NULL,
 lines = 25,
  geom_data = "point",
  cp_dens = TRUE,
  q_fit = FALSE,
  q_predict = FALSE,
  rate = TRUE,
  prior = FALSE,
 which_y = "ct",
  arma = TRUE,
 nsamples = 2000,
  scale = "response",
  . . .
)
```

plot.mcpfit

Arguments

x	An mcpfit object
facet_by	String. Name of a varying group.
lines	Positive integer or FALSE. Number of lines (posterior draws). FALSE or lines = 0 plots no lines. Note that lines always plot fitted values - not predicted. For prediction intervals, see the q_predict argument.
geom_data	String. One of "point" (default), "line" (good for time-series), or FALSE (don not plot).
cp_dens	TRUE/FALSE. Plot posterior densities of the change point(s)? Currently does not respect facet_by. This will be added in the future.
q_fit	Whether to plot quantiles of the posterior (fitted value).
	 TRUE: Add 2.5% and 97.5% quantiles. Corresponds to q_fit = c(0.025,0.975). FALSE (default): No quantiles A vector of quantiles. For example, quantiles = 0.5 plots the median and quantiles = c(0.2,0.8) plots the 20% and 80% quantiles.
q_predict	Same as q_{fit} , but for the prediction interval.
rate	Boolean. For binomial models, plot on raw data (rate = FALSE) or response divided by number of trials (rate = TRUE). If FALSE, linear interpolation on trial number is used to infer trials at a particular x.
prior	TRUE/FALSE. Plot using prior samples? Useful for mcp(, sample = "both")
which_y	What to plot on the y-axis. One of
	 "ct": The central tendency which is often the mean after applying the link function (default). "sigma": The variance "ar1", "ar2", etc. depending on which order of the autoregressive effects you want to plot.
arma	Whether to include autoregressive effects.
	• TRUE: Compute autoregressive residuals. Requires the response variable in newdata.
	• FALSE: Disregard the autoregressive effects. For family = gaussian(), predict() just use sigma for residuals.
nsamples	Integer or NULL. Number of samples to return/summarise. If there are varying effects, this is the number of samples from each varying group. NULL means "all". Ignored if both are FALSE. More samples trade speed for accuracy.
scale	One of
	 "response": return on the observed scale, i.e., after applying the inverse link function. "linear": return on the parameter scale (where the linear trends are modelled).
	Currently ignored.

Details

plot() uses fit\$simulate() on posterior samples. These represent the (joint) posterior distribution.

Value

A ggplot2 object.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

Examples

```
# Typical usage. ex_fit is an mcpfit object.
plot(ex_fit)
plot(ex_fit, prior = TRUE) # The prior
plot(ex_fit, lines = 0, q_fit = TRUE) # 95% HDI without lines
plot(ex_fit, q_predict = c(0.1, 0.9)) # 80% prediction interval
plot(ex_fit, which_y = "sigma", lines = 100) # The variance parameter on y
# Show a panel for each varying effect
# plot(fit, facet_by = "my_column")
# Customize plots using regular ggplot2
library(ggplot2)
plot(ex_fit) + theme_bw(15) + ggtitle("Great plot!")
```

plot_pars

Plot individual parameters

Description

Plot many types of plots of parameter estimates. See examples for typical use cases.

Usage

```
plot_pars(
    fit,
    pars = "population",
    regex_pars = character(0),
    type = "combo",
    ncol = 1,
    prior = FALSE
)
```

22

plot_pars

Arguments

fit	An mcpfit object.
pars	Character vector. One of:
	• Vector of parameter names.
	• "population" (default): plots all population parameters.
	 "varying": plots all varying effects. To plot a particular varying effect, use regex_pars = "^name".
regex_pars	Vector of regular expressions. This will typically just be the beginning of the parameter name(s), i.e., "^cp_" plots all change points, "^my_varying" plots all levels of a particular varying effect, and "^cp_l^my_varying" plots both.
type	String or vector of strings. Calls bayesplot::mcmc_>>type<<(). Common calls are "combo", "trace", and "dens_overlay". Current options include 'acf', 'acf_bar', 'areas', 'areas_ridges', 'combo', 'dens', 'dens_chains', 'dens_overlay', 'hist', 'intervals', 'rank_hist', 'rank_overlay', 'trace', 'trace_highlight', and 'violin".
ncol	Number of columns in plot. This is useful when you have many parameters and only one plot type.
prior	TRUE/FALSE. Plot using prior samples? Useful for mcp(, sample = "both")

Details

For other type, it calls bayesplot::mcmc_type(). Use these directly on fit\$mcmc_post or fit\$mcmc_prior if you want finer control of plotting, e.g., bayesplot::mcmc_dens(fit\$mcmc_post). There are also a number of useful plots in the **coda** package, i.e., coda::gelman.plot(fit\$mcmc_post) and coda::crosscorr.plot(fit\$mcmc_post)

In any case, if you see a few erratic lines or parameter estimates, this is a sign that you may want to increase argument 'adapt' and 'iter' in mcp.

Value

A ggplot2 object.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

Examples

```
# Typical usage. ex_fit is an mcpfit object.
plot_pars(ex_fit)
## Not run:
# More options
plot_pars(ex_fit, regex_pars = "^cp_") # Plot only change points
plot_pars(ex_fit, pars = c("int_3", "time_3")) # Plot these parameters
plot_pars(ex_fit, type = c("trace", "violin")) # Combine plots
# Some plots only take pairs. hex is good to assess identifiability
plot_pars(ex_fit, type = "hex", pars = c("cp_1", "time_2"))
```

```
# Visualize the priors:
plot_pars(ex_fit, prior = TRUE)
# Useful for varying effects:
# plot_pars(my_fit, pars = "varying", ncol = 3) # plot all varying effects
# plot_pars(my_fit, regex_pars = "my_varying", ncol = 3) # plot all levels of a particular varying
# Customize multi-column ggplots using "*" instead of "+" (patchwork)
library(ggplot2)
plot_pars(ex_fit, type = c("trace", "dens_overlay")) * theme_bw(10)
## End(Not run)
```

pp_check

Posterior Predictive Checks For Mcpfit Objects

Description

Plot posterior (default) or prior (prior = TRUE) predictive checks. This is convenience wrapper around the bayesplot::ppc_*() methods.

Usage

```
pp_check(
   object,
   type = "dens_overlay",
   facet_by = NULL,
   newdata = NULL,
   prior = FALSE,
   varying = TRUE,
   arma = TRUE,
   nsamples = 100,
   ...
)
```

Arguments

object	An mcpfit object.
type	<pre>One of bayesplot::available_ppc("grouped",invert = TRUE) %>% stringr::str_remove("ppc_"</pre>
facet_by	Name of a column in data modeled as varying effect(s).
newdata	A tibble or a data.frame containing predictors in the model. If NULL (default), the original data is used.
prior	TRUE/FALSE. Plot using prior samples? Useful for mcp(, sample = "both")
varying	• TRUE: All varying effects (fit\$pars\$varying).
	- FALSE: No varying efects (c()).

24

	 Character vector: Only include specified varying parameters - see fit\$pars\$varying.
arma	Whether to include autoregressive effects.
	• TRUE: Compute autoregressive residuals. Requires the response variable in newdata.
	 FALSE: Disregard the autoregressive effects. For family = gaussian(), predict() just use sigma for residuals.
nsamples	Number of draws. Note that you may want to use all data for summary geoms. e.g., pp_check(fit,type = "ribbon",nsamples = NULL).
	Further arguments passed to bayesplot::ppc_type(y,yrep,)

Value

A ggplot2 object for single plots. Enriched by patchwork for faceted plots.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

See Also

plot.mcpfit pp_eval

Examples

```
pp_check(ex_fit)
pp_check(ex_fit, type = "ecdf_overlay")
#pp_check(some_varying_fit, type = "loo_intervals", facet_by = "id")
```

predict.mcpfit Samples from the Posterior Predictive Distribution

Description

Samples from the Posterior Predictive Distribution

Usage

```
## S3 method for class 'mcpfit'
predict(
    object,
    newdata = NULL,
    summary = TRUE,
    probs = TRUE,
```

```
rate = TRUE,
prior = FALSE,
which_y = "ct",
varying = TRUE,
arma = TRUE,
nsamples = NULL,
samples_format = "tidy",
....)
```

Arguments

object	An mcpfit object.
newdata	A tibble or a data.frame containing predictors in the model. If NULL (default), the original data is used.
summary	Summarise at each x-value
probs	Vector of quantiles. Only in effect when summary == TRUE.
rate	Boolean. For binomial models, plot on raw data (rate = FALSE) or response divided by number of trials (rate = TRUE). If FALSE, linear interpolation on trial number is used to infer trials at a particular x .
prior	TRUE/FALSE. Plot using prior samples? Useful for mcp(, sample = "both")
which_y	What to plot on the y-axis. One of
	• "ct": The central tendency which is often the mean after applying the link function (default).
	• "sigma": The variance
	• "ar1", "ar2", etc. depending on which order of the autoregressive effects you want to plot.
varying	• TRUE: All varying effects (fit\$pars\$varying).
	- FALSE: No varying efects (c()).
	 Character vector: Only include specified varying parameters - see fit\$pars\$varying.
arma	Whether to include autoregressive effects.
	• TRUE: Compute autoregressive residuals. Requires the response variable in newdata.
	• FALSE: Disregard the autoregressive effects. For family = gaussian(), predict() just use sigma for residuals.
nsamples	Integer or NULL. Number of samples to return/summarise. If there are varying effects, this is the number of samples from each varying group. NULL means "all". Ignored if both are FALSE. More samples trade speed for accuracy.
samples_format	One of "tidy" or "matrix". Controls the output format when summary == FALSE. See more under "value"
	Currently unused

26

print.mcpprior

Value

- If summary = TRUE: A tibble with the posterior mean for each row in newdata, If newdata is NULL, the data in fit\$data is used.
- If summary = FALSE and samples_format = "tidy": A tidybayes tibble with all the posterior samples (Ns) evaluated at each row in newdata (Nn), i.e., with Ns x Nn rows. If there are varying effects, the returned data is expanded with the relevant levels for each row.

The return columns are:

- Predictors from newdata.
- Sample descriptors: ".chain", ".iter", ".draw" (see the tidybayes package for more), and "data_row" (newdata rownumber)
- Sample values: one column for each parameter in the model.
- The estimate. Either "predict" or "fitted", i.e., the name of the type argument.
- If summary = FALSE and samples_format = "matrix": An N_draws X nrows(newdata) matrix with fitted/predicted values (depending on type). This format is used by brms and it's useful as yrep in bayesplot::ppc_* functions.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

See Also

pp_eval fitted.mcpfit residuals.mcpfit

Examples

predict(ex_fit) # Evaluate at each ex_fit\$data

```
predict(ex_fit, probs = c(0.1, 0.5, 0.9)) # With median and 80% credible interval.
predict(ex_fit, summary = FALSE) # Samples instead of summary.
predict(
    ex_fit,
    newdata = data.frame(time = c(-5, 20, 300)), # Evaluate
    probs = c(0.025, 0.5, 0.975)
)
```

print.mcpprior *Print mcpprior*

Description

The mcpprior is just a list, but it can be displayed in a more condensed way using cbind.

Usage

S3 method for class 'mcpprior'
print(x, ...)

Arguments

х	An mcpfit object.
	Currently ignored

probit	Probit function	

Description

Probit function

Usage

probit(mu)

Arguments

mu A vector of probabilities (0.0 to 1.0)

Value

A vector with same length as mu

residuals.mcpfit Compute Residuals From Mcpfit Objects

Description

Equivalent to fitted(fit,...) -fit\$data[,fit\$data\$yvar](or fitted(fit,...) -newdata[,fit\$data\$yvar]), but with fixed arguments for fitted: rate = FALSE, which_y = 'ct', samples_format = 'tidy'.

28

residuals.mcpfit

Usage

```
## S3 method for class 'mcpfit'
residuals(
   object,
   newdata = NULL,
   summary = TRUE,
   probs = TRUE,
   prior = FALSE,
   varying = TRUE,
   arma = TRUE,
   nsamples = NULL,
   ...
)
```

Arguments

object	An mcpfit object.
newdata	A tibble or a data.frame containing predictors in the model. If NULL (default), the original data is used.
summary	Summarise at each x-value
probs	Vector of quantiles. Only in effect when summary == TRUE.
prior	TRUE/FALSE. Plot using prior samples? Useful for mcp(, sample = "both")
varying	 TRUE: All varying effects (fit\$pars\$varying). FALSE: No varying efects (c()). Character vector: Only include specified varying parameters - see fit\$pars\$varying.
arma	Whether to include autoregressive effects.
	 TRUE: Compute autoregressive residuals. Requires the response variable in newdata. FALSE: Disregard the autoregressive effects. For family = gaussian(), predict() just use sigma for residuals.
nsamples	Integer or NULL. Number of samples to return/summarise. If there are varying effects, this is the number of samples from each varying group. NULL means "all". Ignored if both are FALSE. More samples trade speed for accuracy.
••••	Currently unused

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

See Also

pp_eval fitted.mcpfit predict.mcpfit

Examples

```
residuals(ex_fit)
residuals(ex_fit, probs = c(0.1, 0.5, 0.9)) # With median and 80% credible interval.
residuals(ex_fit, summary = FALSE) # Samples instead of summary.
```

sd_to_prec

Transform a prior from SD to precision.

Description

JAGS uses precision rather than SD. This function converts dnorm(4.2, 1.3) into $dnorm(4.2, 1/1.3^2)$. It allows users to specify priors using SD and then it's transformed for the JAGS code. It works for the following distributions: dnormldtldcauchylddexpldlogisldlnorm. In all of these, tau/sd is the second parameter.

Usage

```
sd_to_prec(prior_str)
```

Arguments

prior_str String. A JAGS prior. Can be truncated, e.g. dt(3, 2, 1) T(my_var,).

Value

A string

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

summary.mcpfit Summarise mcpfit objects

Description

Summarise parameter estimates and model diagnostics.

30

summary.mcpfit

Usage

```
## S3 method for class 'mcpfit'
summary(object, width = 0.95, digits = 2, prior = FALSE, ...)
fixef(object, width = 0.95, prior = FALSE, ...)
ranef(object, width = 0.95, prior = FALSE, ...)
## S3 method for class 'mcpfit'
print(x, ...)
```

Arguments

object	An mcpfit object.
width	Float. The width of the highest posterior density interval (between 0 and 1).
digits	a non-null value for digits specifies the minimum number of significant dig- its to be printed in values. The default, NULL, uses getOption("digits"). (For the interpretation for complex numbers see signif.) Non-integer values will be rounded down, and only values greater than or equal to 1 and no greater than 22 are accepted.
prior	TRUE/FALSE. Summarise prior instead of posterior?
	Currently ignored
х	An mcpfit object.

Value

A data frame with parameter estimates and MCMC diagnostics. OBS: The change point distributions are often not unimodal and symmetric so the intervals can be deceiving Plot them using plot_pars(fit).

- mean is the posterior mean
- lower is the lower quantile of the highest-density interval (HDI) given in width.
- upper is the upper quantile.
- Rhat is the Gelman-Rubin convergence diagnostic which is often taken to be acceptable if < 1.1. It is computed using gelman.diag.
- n.eff is the effective sample size computed using effectiveSize. Low effective sample sizes are also obvious as poor mixing in trace plots (see plot_pars(fit)). Read how to deal with such problems here
- ts_err is the time-series error, taking autoregressive correlation into account. It is computed using spectrum0.ar.

For simulated data, the summary contains two additional columns so that it is easy to inspect whether the model can recover the parameters. Run simulation and summary multiple times to get a sense of the robustness.

- sim is the value used to generate the data.
- match is "OK" if sim is contained in the HDI interval (lower to upper).

Functions

- fixef: Get population-level ("fixed") effects of an mcpfit object.
- ranef: Get varying ("random") effects of an mcpfit object.
- print.mcpfit: Print the posterior summary of an mcpfit object.

Author(s)

Jonas Kristoffer Lindeløv <jonas@lindeloev.dk>

Examples

```
# Typical usage
summary(ex_fit)
summary(ex_fit, width = 0.8, digits = 4) # Set HDI width
# Get the results as a data frame
results = summary(ex_fit)
# Varying (random) effects
# ranef(my_fit)
# Summarise prior
summary(ex_fit, prior = TRUE)
```

Index

* datasets ex_ar, 5 ex_binomial, 6 ex_demo, 6 ex_fit,7 ex_plateaus, 7 ex_quadratic, 8 ex_rel_prior, 8 ex_trig, 9 ex_variance, 9 ex_varying, 10 bernoulli.3 criterion, 4, 4 effectiveSize, 31 ex_ar, 5 ex_binomial, 6 ex_demo, 6 ex_fit,7 ex_plateaus, 7 ex_quadratic, 8 ex_rel_prior, 8 ex_trig, 9 ex_variance, 9 ex_varying, 10 exponential, 5 fitted (fitted.mcpfit), 10 fitted.mcpfit, 10, 27, 29 fixed.effects (summary.mcpfit), 30 fixef(summary.mcpfit), 30 gelman.diag, 31 get_segment_table, 18 hypothesis, 12, 17 ilogit, 14 iprobit, 14

is.mcpfit, 15
jags.model, 18

logit, 15 LOO (criterion), 4 loo, 4 loo (criterion), 4 loo_compare, 4 loo_model_weights, 4

mcmc.list, 20
mcp, 16, 19, 20, 23
mcp-package, 3
mcpfit, 4, 7, 13, 18, 21, 23, 28, 31, 32
mcpfit(mcpfit-class), 19
mcpfit-class, 19

plot (plot.mcpfit), 20
plot.mcpfit, 20, 25
plot_pars, 22
pp_check, 24
pp_eval, 12, 25, 27, 29
predict (predict.mcpfit), 25
predict.mcpfit, 12, 25, 29
print (summary.mcpfit), 30
print.mcpprior, 27
probit, 28

random.effects(summary.mcpfit), 30
ranef(summary.mcpfit), 30
resid(residuals.mcpfit), 28
residuals(residuals.mcpfit), 28
residuals.mcpfit, 12, 27, 28

sd_to_prec, 30
spectrum0.ar, 31
summary(summary.mcpfit), 30
summary.mcpfit, 30

WAIC (criterion), 4

INDEX

waic,*4* waic(criterion),4

34