
mclcar: an R Package for Maximum Monte Carlo

Likelihood Estimation of Conditional

Auto-regression Models

Zhe Sha
University of Oxford

Abstract

We briefly describe the Monte Carlo likelihood method in estimating CAR models
and the implementation in the pkgmclcar. Then we demonstrate the usage of the package
through examples of Gaussian, Binomial and Poisson data.

Keywords: Monte Carlo likelihood, CAR models, spatial statistics, response surface design,
mclcar, R.

1. Introduction

Conditional auto-regression (CAR) models are frequently used with spatial data. However,
the likelihood of such a model is expensive to compute even for a moderately sized data set of
around 1000 sites. For models involving latent variables, the likelihood is not usually available
in closed form.

1.1. CAR models

The CAR models are defined through full conditionals of observations yi from each spatial
unit i

yi|yj∼i ∼ N (Xiβ +
∑
j

ρwij(yj −Xjβ), σ2) (1)

where Xj is the jth row of the design matrix X, β is a vector of the linear coefficients, ρ is the
spatial coefficient showing the global strength of the spatial effect and {wij} are the elements
of the spatial weight matrix W reflecting the local spatial effect. The joint distribution of Y
is the multivariate Gaussian distribution:

Y ∼ N (Xβ,Σ) (2)

where Σ = σ2(I − ρW)−1 is the variance-covariance matrix and ρ ∈ (1/λ1, 1/λN) where
λ1 < λ2 < · · · < λN are the ordered eigenvalues of W .

Non-Gaussian observations can usually model the generalised linear models with a CAR latent

2 mclcar: MC-MLE of CAR Models

variable:
y ∼ π(µ)
g(µ) = η
η = Xβ + Z, Z ∼ N (0,Σ)

(3)

Where π is the distribution of y and g(·) is some link function.

Maximum likelihood of the above models can be computationally expensive, especially for
large N , due to the determinant of Σ in the likelihood of (2) and the integral for the latent
variable Z for (3).

1.2. Overview

In this package, we implement the Monte Carlo approximation to the likelihood (extending
the approach of Geyer and Thompson (1992)), and develop two strategies for maximising
this. One strategy is to limit the step size by defining an experimental region using a Monte
Carlo approximation to the variance of the estimates. The other is to use response surface
methodology (RSM). The iterative procedures are fully automatic, with user-specified options
to control the simulation and convergence criteria.

In the following we first briefly describe the Monte Carlo likelihood and the implemented
optimization procedure; then we demonstrate some major features of the package mclcar
through examples of Gaussian, Binomial and Poisson data.

2. The Monte Carlo likelihood estimation

The Monte Carlo likelihood is an importance sampling approximation to the log-likelihood
ratio logL(θ; y)/L(ψ; y), where θ, ψ ∈ Θ and ψ is the parameter value used in the importance
distribution. The likelihood is usually in the following forms

L(θ; y) = fθ(y) =
1

c(θ)
hθ(y) (4)

L(θ; y) =

∫
fθ(Y = y, Z) dZ (5)

where in (4) the likelihood is the product of a normalising constant C(θ) and the un-normalised
density hθ(y) and in (5), fθ(Y, Z) is the joint density of the observed data Y and the unob-
served or latent variable Z. The corresponding Monte Carlo likelihoods are

ˆ̀s1
ψ (θ) = log

hθ(y)

hψ(y)
− log

1

s1

s1∑
i

hθ(Yi)

hψ(Yi)
(6)

ˆ̀s2
ψ (θ) = log

1

s2

s2∑
i

fθ(y, Z
∗(i))

fψ(y, Z∗(i))
(7)

where Yi are s1 samples from fψ(y) and Z∗(i) are s2 samples from fψ(Z|Y = y).

Given a chosen ψ, the log-likelihood ratio differs from the log-likelihood by a constant and
thus can be maximized to find the MLE. The Monte Carlo MLE (MC-MLE) is defined to be

θ̂sψ = arg max
θ∈Θ

ˆ̀s
ψ(θ) (8)

Zhe Sha 3

Ideally, we would like to find the MC-MLE by directly maximising the Monte Carlo likelihood;
however this might become infeasible as the Monte Carlo error increases as the distance
between ψ and θ becomes large. When an reasonable initial value of ψ is available, iterations
can be done to improve the accuracy by using the MC-MLE obtained from the current step
as the ψ in the next step until the different between the two reaches some tolerance. When
there is no good enough initial value, we put some constraints on the updating step in each
iteration based on the sample variance estimates for the Monte Carlo errors.

The constrained iterative procedure is implemented by functions OptimMCL and rsmMCL: the
former directly optimise the Monte Carlo likelihood and update in each iteration such that
the error of the Monte Carlo likelihood at the new ψ does not exceed some tolerance; while the
later use the response surface methodology (RSM, Box and Draper (2007)) in maximisation
combined with the constraints in the steepest ascent analysis for updating the system. A
quick introduction of implementing the RSM in R can be found in Lenth (2009).

3. Examples

Install and load the package.

> library(mclcar)

3.1. Simulate Data

The package provides several functions to simulate samples from a given direct CAR model in
(2) or a GLM model with CAR latent variables as in (3). For example, we can generate CAR
errors on a 10× 10 torus with spatial coefficient ρ = 0.2 and precision τ2 = 1/sigma2 = 2/3
by the following

> set.seed(33)

> n.torus <- 10

> rho <- 0.2

> sigma <- 1

> prec <- 1/sigma

> beta <- c(1, 1)

> XX <- cbind(rep(1, n.torus^2), sample(log(1:n.torus^2)/5))

> mydata1 <- CAR.simTorus(n1 = n.torus, n2 = n.torus, rho = rho, prec = prec)

The simulated data is a vector of length 100. When the spatial weight matrix W is supplied,
the CAR errors can be generated by

> Wmat <- mydata1$W

> mydata2 <- CAR.simWmat(rho = rho, prec = prec, W = Wmat)

Then with the above we can generate observations from a linear model with CAR error

4 mclcar: MC-MLE of CAR Models

> y <- XX %*% beta + mydata1$X

> mydata1$data.vec <- data.frame(y=y, XX[,-1])

> mydata3 <- CAR.simLM(pars = c(0.1, 1, 2, 0.5), data = mydata1)

For the direct CAR models we can do exact evaluation of the likelihood for an object of the
same struture as mydata1

> str(mydata1)

List of 3

$ W : num [1:100, 1:100] 0 1 0 0 0 0 0 0 0 1 ...

$ X : num [1:100] -0.8692 -1.3844 0.533 0.0556 -1.3113 ...

$ data.vec:'data.frame': 100 obs. of 2 variables:

..$ y : num [1:100] 0.892 0.353 2.307 1.956 0.57 ...

..$ XX....1.: num [1:100] 0.761 0.738 0.774 0.9 0.881 ...

> #### evaluate the log-likelihood

> ## without supplying lamdab -- the eigenvalues of W

> loglik.dCAR(pars = c(0.1, 1, 0.9, 2.1), data = mydata1)

[1] -163.7614

> ## with lamda

> lambda <- eigen(mydata1$W, symmetric = TRUE, only.values=TRUE)$values

> mydata1$lambda <- lambda

> loglik.dCAR(pars = c(0.1, 1, 0.9, 2.1), data = mydata1)

[1] -163.7614

> ## evaluate the profile log-likelihood of rho

> ploglik.dCAR(rho = 0.1, data = mydata1)

[1] -65.76634

> ## given rho = 0.1, find the least square estimates for beta and sigma

> get.beta.lm(rho = 0.1, data = mydata1)

[,1]

(Intercept) 0.3631509

XX....1. 2.3623263

> sigmabeta(rho = 0.1, data = mydata1)

sigma beta1 beta2

1.3422579 0.3631509 2.3623263

> ## find the maximum pseudo-likelihood estimates

> (psi1 <- mple.dCAR(data = mydata1))

[1] 0.1855299 1.2390929 0.3595575 2.3672658

Zhe Sha 5

We can also generate Binomial or Poisson observations with CAR latent variables

> mydata4 <- CAR.simGLM(method="binom", n=c(10,10),

+ pars = c(rho, sigma, beta),

+ Xs=XX, n.trial = 5)

> mydata5 <- CAR.simGLM(method="poisson", n=c(10, 10),

+ pars = c(rho, sigma, beta), Xs=XX)

> str(mydata5)

List of 10

$ rho : num 0.2

$ sigma : num 1

$ beta : num [1:2] 1 1

$ y : int [1:100] 7 41 18 31 6 8 4 10 6 4 ...

$ covX : num [1:100, 1:2] 1 1 1 1 1 1 1 1 1 1 ...

$ W : num [1:100, 1:100] 0 1 0 0 0 0 0 0 0 1 ...

$ Z.true : num [1:100] 0.281 2.027 1.033 1.297 -0.129 ...

$ eta : num [1:100, 1] 2.04 3.77 2.81 3.2 1.75 ...

$ Emean : num [1:100, 1] 7.71 43.18 16.57 24.45 5.77 ...

$ n.trial: num 1

The result is a list containing all the information of the GLM model used in the simulation.

3.2. Prepare the Monte Carlo samples

Before evaluating the Monte carlo likelihood, we need to generate Monte Carlo samples from
the importance sampling distribution. For direct CAR models, we only need to specify the
number of Monte Carlo samples by n.samples and the value of psi to be used in the impor-
tance sampler.

> #### Prepare the Monte Carlo samples for the direct CAR models

> mcdata1 <- mcl.prep.dCAR(psi = psi1, n.samples = 500, data = mydata1)

Monte Carlo samples for the GLM with latent CAR models need to be simuated by using
MCMC algorithms and it can be done by postZ. Two major MCMC algorithms, the radom
walk Metropolis Hastings ("rwmh") and Metropolis Adjusted Langevin alogrithm ("mala"),
are implemented in the function and the parameters in the algorithm can be controlled by
mcmc.control. More details can be found in the package documentaion.

> Z.S0 <- CAR.simWmat(psi1[1], 1/psi1[2], mydata4$W) # initial value

> mc.cons <- list(method = "mala") # control the MCMC algorithm

> simZy <- postZ(data = mydata4, Z.start = Z.S0, psi = psi1,

+ family = "binom", mcmc.control = mc.cons,

+ plots = TRUE) # diagnostic plots for the MCMC

Similar to the direct CAR models, the function mcl.prep.glm provide as an wrapper for
postZ for preparing the Monte Carlo samples.

6 mclcar: MC-MLE of CAR Models

> mc.BinData <- mcl.prep.glm(data = mydata4, family = "binom", psi = psi1,

+ pilot.plot = FALSE, plot.diag = TRUE)

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

Index

ac
ce

pt

0 5 10 15 20 25 30
−

0.
2

0.
2

0.
6

1.
0

lag

au
to

co
rr

el
at

io
n

0 200 400 600 800 1000

−
10

−
5

0
5

10

n.iter

Z
.i

3.3. Evaluate the Monte Carlo likelihood

Now with the prepared Monte Carlo samples in the objects mcdata1, mc.BinData and mc.PoiData,
we can evaluate the Monte Carlo likelhoods and get variance estimations.

> ## the Monte Carlo likelihoods at the true value

> pars.t <- c(rho, sigma, beta)

> mcl.dCAR(pars.t, data = mydata1, simdata = mcdata1, Evar = TRUE)

[1] -4.58463275 0.06991544

Zhe Sha 7

> mcl.glm(pars.t, family = "binom", mcdata = mc.BinData, Evar = FALSE)

[1] 1.751072

> ## When Evar = TRUE the function returns the Monte Carlo likelihood,

> ## an variance estimate of the Monte Carlo likelihood

3.4. The iterative maximization procedure

The Monte Carlo likelihood can be directly maximised to find the Monte Carlo MLE in an
iterative procedure that uses the Monte Carlo variance estimate as an constraints on step size
of the update in each iteration. The function OptimMCL implement such procedure and users
can define the starting value of the ψ in the importance sampler and control the parameters
of the MCMC algorithm as before by setting mc.control.

The function has an aditional option control that can be defined by users to control the
number of iterations and etc. in the iterative procedure.

> iter.mcmle <- OptimMCL(data = mydata1, psi0 = psi1, family = "gauss",

+ control = list(mc.var = FALSE, verbose = FALSE))

> summary(iter.mcmle, family = "gauss", mc.covar=FALSE)

$MC.mle

sigma beta1 beta2

0.1720960 1.2552967 0.3601331 2.3664747

$N.iter

[1] 3

$total.time

elapsed

36.655

$convergence

[1] TRUE

$hessian

NULL

$mc.covar

NULL

$mc.samples

[1] 500 1000

> ## similar syntax for Binomial data but take longer time to run

8 mclcar: MC-MLE of CAR Models

> ## iter.mcmle.b <- OptimMCL(data = mydata4, psi0 = psi1, family = "binom",

> ## control = list(mc.var = TRUE, verbose = TRUE))

By default verbose = TRUE in the list of control and the function print out a few lines of
summary information of the current iteration.

The summary of OptimMCL prints the Monte Carlo MLE found in the final iteration, the
corresponding Hessian matrix and a few other informations about the iteration.

3.5. The RSM optimisation procedure

We can also use the response surfance methodology to find the Monte Carlo MLE and approx-
imate the likelihood surface around the MLE by rsmMCL. The function has usage as OptimMCL
and users can specify the size of the design region through K and number of design points
n01, n02 in the control list for the response surface design.

For the data from a direct CAR models, we can choose to compare the exact likelihood surface
and the approximated surface in each iteration by setting eval = TRUE and the range of the
ρ, σ2 and the number of grid points to be evaluated in each coordination. For example,

> exacts = list(eval = TRUE, rho = c(-0.25, 0.25),

+ sigma = c(0.5, 2), length = 100)

> rsm.mcmle1 <- rsmMCL(data = mydata1, psi0 = c(-0.1, sigmabeta(-0.1, mydata1)),

+ family = "gauss",

+ control = list(n.iter= 10, trace.all = TRUE))

The same thing can be done for the GLM model with latent CAR variables, except that there
is no exact likelihood values to be compared.

> rsm.mcmle2 <- rsmMCL(data = mydata5, psi0 = c(0, 1, 2, 2), family = "poisson",

+ control = list(n.iter = 20, trace.all = TRUE))

The result can be printed by summary.

> summary(rsm.mcmle1, family = "gauss", mc.covar=FALSE)

$MC.mle

[1] 0.1832807 1.1779017 0.6129708 2.0189213

$N.iter

[1] 2

$total.time

elapsed

6.652

Zhe Sha 9

$convergence

[1] TRUE

$hessian

NULL

$mc.covar

NULL

$mc.samples

[1] 500 1000

The final fitted response surface can be plotted by setting trace.all = FALSE.

> plot(rsm.mcmle1, family = "gauss", trace.all = FALSE)

10 mclcar: MC-MLE of CAR Models

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ρ

σ2

−15

−10

−5

0

 −12

 −9

 −6

 −3

●

●

Final Iteration

Otherwise, the entire evolution of the response surface is shown.

> plot(rsm.mcmle1, family = "gauss")

Path of steepest ascent from ridge analysis:

Path of steepest ascent from ridge analysis:

Zhe Sha 11

−0.1 0.0 0.1 0.2

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ρ

σ2

−15

−10

−5

0

5

 −
12

 −9
 −

6

 −
6

 −3
 0

 3

●

Iteration 1

●

●

●

●

0.0 0.5 1.0 1.5

4
5

6
7

8

distance

M
on

te
 C

ar
lo

 li
ke

lih
oo

d

●

●

●

●

0.0 0.5 1.0 1.5

−
4

−
3

−
2

−
1

0

distance

M
on

te
 C

ar
lo

 v
ar

ia
nc

e

12 mclcar: MC-MLE of CAR Models

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ρ

σ2

−15

−10

−5

0

 −12

 −9

 −6

 −3

●

●

Iteration 2

References

Box GEP, Draper NR (2007). Response Surfaces, Mixtures, and Ridge Analyses. Wiley, New
York.

Geyer CJ, Thompson EA (1992). “Constrained Monte Carlo maximum likelihood for de-
pendent data.” Journal of the Royal Statistical Society. Series B (Methodological), 54(3),
657–699.

Lenth RV (2009). “Response-Surface Methods in R, Using rsm.” Journal of Statistical Soft-
ware, 32(7), 1–17. http://www.jstatsoft.org/v32/i07/.

http://www.jstatsoft.org/v32/i07/

Zhe Sha 13

Affiliation:

Zhe Sha
Department of Statistics
University of Oxford
24-29 St Giles’, Oxford
OX1 3LB, UK
E-mail: zhesha1006@gmail.com

mailto:zhesha1006@gmail.com

	Introduction
	CAR models
	overview

	MC-likelihood
	examples
	Simulate Data
	Prepare the Monte Carlo samples
	Evaluate the Monte Carlo likelihood
	The iterative maximization procedure
	The RSM optimisation procedure

