
Package ‘mcgfa’
June 24, 2019

Version 2.2.1

Type Package

Title Mixtures of Contaminated Gaussian Factor Analyzers

Description Clustering and classification using the Mixtures of Contaminated Gaussian Factor Ana-
lyzers model. Allows for automatic detection of outliers and noise. Punzo, A, Blostein, M, Mc-
Nicholas, PD (2017) <arXiv:1408.2128v2>.

Imports stats, parallel

License GPL (>= 2)

LazyData TRUE

NeedsCompilation yes

Author Martin Blostein [aut, cre],
Antonio Punzo [aut],
Paul D. McNicholas [aut, ths]

Maintainer Martin Blostein <martin.blostein@gmail.com>

Repository CRAN

Date/Publication 2019-06-24 14:30:03 UTC

R topics documented:

mcgfa-package . 2
gaussnoise . 2
mcgfa . 3
olive . 8
wine . 9

Index 11

1

2 gaussnoise

mcgfa-package mcgfa: Model-Based Clustering and Classification with Mixtures of
Contaminated Gaussian Factor Analyzers

Description

Performs clustering and classification using the Mixtures of Contaminated Gaussian Factor Ana-
lyzers model. Allows for automatic detection of outliers and noise.

Details

Package: mcgfa
Type: Package
Version: 1.0
Date: 2015-06-13
License: GPL (>=2)
LazyLoad: yes

Author(s)

Martin Blostein, Antonio Punzo, and Paul D. McNicholas

Maintained by: Martin Blostein <martin.blostein@gmail.com>

References

...

See Also

mcgfa for main function, and details.

gaussnoise Gaussian Clusters with White Noise

Description

Simulated toy data set to demonstrate the MCGFA package. Generated using the mnormt package
for R.

Usage

data(gaussnoise)

mcgfa 3

Format

A data frame with 205 observations and 6 columns. The first column gives the class number: 1
and 2 are the two Gaussian clusters. The second column indicates whether an observation arose as
noise. (This is eqivalent to the first column being equal to 3.)

mcgfa Model Fitting for Mixtures of Contaminated Gaussian Factor Analyz-
ers

Description

Performs clustering and classification using the Mixtures of Contaminated Gaussian Factor Ana-
lyzers model. This model allows for automatic detection of outliers and noise, and automatically
detects outliers. It is appropriate for high-dimensional numerical data.

Usage

mcgfa(X, rG=1:3, rq=1:3, models="all", known=NULL, init_method="emEM",
init_z, max_it=400, tol=1e-3, alpha_min=0.5, eta_max=1000,
scale=T, parallel=F, cores=NULL, silent=F, ememargs =
list(numstart = 25, iterations = 5, model = "UUUUU", q = max(rq)))

Arguments

X The data matrix. Rows correspond to observations and columns to variables/features;
thus X is an N -by-p matrix. X must be numerical.

rG The set of values used for the number of components.

rq The set of values used for the number of latent factors.

models The set of parsimonious models used. Either the string "all", or a character
vector specifying a subset of models. See Details.

known If NULL, clustering or “unsupervised learning” is performed. If a vector of
length equal to the number of observations, semi-supervised learning is per-
formed. In this case, the i-th entry of the argument class is either 0, or some
number in 1, 2, . . . , G, whereG is the number of components. A value of 0 indi-
cates that the label for observation i is unknown, while a nonzero value gives the
known label. Note that if all values are nonzero, the model parameters are sim-
ply fit and fully supervised classification of new observations may be performed
using the predict method of the mcgfa class.

init_method Determines how starting values for the AECM algorithm are generated. Valid
options are "emEM", "kmeans", "given" or "supervised". If known parameter is
provided, this parameter is automatically set to "supervised".

• emEM: initialization determined using the emEM method, where initializa-
tion candidates are randomly generated, and the AECM algorithm is ap-
plied for a small number of iterations. Whichever random initialization
produces the best model in the short AECM runs is selected as the initial-
ization for the full AECM runs.

4 mcgfa

• kmeans: begin by clustering observations using built-in kmeans R function.
• given: initialization manually specified in init_z argument
• supervised: Observations with known class labels are assigned to their

known component with probability 1, while unlabelled components are ini-
tialized with equal prior probability of membership for each component

See Details for more information.

init_z Used when init_method is set to given to manually prescribe the initializa-
tion used by the AECM algorithm. A list of row-stochastic matrices of same
length as rG, where z[i, g] represents the prior probability that observation i is a
member of group g.

max_it The maximum number of iterations for the AECM algorithm.

tol The tolerance for the Aitken acceleration stopping criterion.

alpha_min The minimum allowable value for alpha, which represents the proportion of
“good” points in a given group.

eta_max The maximum allowable value for eta, which is the covariance inflation factor
for outlying points.

scale If TRUE, the data is scaled before the algorithm is begun. Recommended.

parallel If TRUE, computation takes place in parallel on several processors.

cores Only relevent if parallel=TRUE. Determines the number of cores used in par-
allel computation. If left undefined, number of available cores is determined
automatically.

silent If TRUE, function will not print any output at completion.

ememargs A list used to set options for the emEM initialization method:

• numstart: The number of random starting values
• iterations: The number of AECM iterations applied to each starting

value
• model: The covariance model used in the emEM iterations
• q: The number of latent factors used in the emEM iterations

Details

This function implements the Mixtures of Contaminated Gaussian Factor Analyzers (MCGFA)
model, for model-based clustering and classification. The approach is meant to be applied on on
high-dimensional, and noisy, data. A description of the model can be found in Punzo, Blostein
and McNicholas (2017). Parameter estimation is performed using an Alternating Expectation-
Conditional Maximization (AECM) algorithm (Meng and Van Dyk, 1997).

Besides clustering into components, this algorithm also automatically detects outliers through the
use of the contaminated Gaussian distribution. So, in the end each observation is classified in a
nested fashion: first into components, then into as inliers/outliers.

To specify an individual MCGFA model, one must determine: the number of components (G), the
number of latent factors (q), and the model name. The model name is one of the following thirty-two
options:

mcgfa 5

• CCCCC, CCUCC, CUCCC, CUUCC, UCCCC, UCUCC, UUCCC, UUUCC
CCCCU, CCUCU, CUCCU, CUUCU, UCCCU, UCUCU, UUCCU, UUUCU
CCCUC, CCUUC, CUCUC, CUUUC, UCCUC, UCUUC, UUCUC, UUUUC
CCCUU, CCUUU, CUCUU, CUUUU, UCCUU, UCUUU, UUCUU, UUUUU

Explanation of the model naming scheme can be found in the next subsection, as well as instructions
on how to conveniently generate of subset of the full set of models.

The user may choose to fit a single model. However, usually many models are fit to the same data,
and a model selection criterion is used to determine the best one. By multiple values for the rG, rq
and models parameters, many models can be fit at once. The mcgfa function then selects the best
model according to the Bayesian Information Criterion (BIC).

When fitting many models to large data, parallel computation may be employed by mcgfa, using the
parallel parameter. This parallelization is provided by the mcapply function from the parallel
package for R.

Model Names & Constraints: The model name indicates which constraints are to be imposed
on to the covariance structure of the factor analysis model, and as well as on to the parameters η
and α.
Because the MCGFA is a mixture of factor analyzers model, the covariance matrix of the g-th
group, Σg , can be decomposed as follows:

Σg = ΛgΛ′
g + Ψg

where Λg is a p by q factor loading matrix, and Ψg is a diagonal matrix that determines the noise
variance for each of the p variables. The family of eight models is formed by introducing different
sets of constraints on Λ and Ψ.
The five-letter model names are interpreted as follows. “C” indicates that the constraint is im-
posed, and “U” that it is not.

1. Λ constrained to be equal across groups (Λg = Λ)
2. Ψ constrained to be equal across groups (Ψg = Ψ)
3. Error variances constrained to be to be equal within groups (Ψg = Iψ)
4. α constrained to be equal across groups (αg = α)
5. η constrained to be equal across groups (ηg = η)

The subset of models to fit is specified in the models argument as a character vector. For conve-
nience, the user may also use the character ’X’ in a model name to indicate a wildcard. For exam-
ple, 'UUUXX' is equivalent to the set c('UUUCC','UUUCU','UUUUC','UUUUU'). These wildcards
may be combined, so for example c('UUUUU','CCCCX') is equivalent to c('UUUUU','CCCCU','CCCCC').
Any duplicate models generated by wildcards will be removed.

Initialization Methods: Because the AECM algorithm cannot guarantee convergence to a global
maximum, success of the algorithm in reaching a good fit depends heavily on starting values.
Starting values in this case refer to the prior probability of class membership for each observation.
This is represented in an n-by-G stochastic matrix z, where n is the number of observations and G
is the number of components. The element z[i, j] indicates the prior probability that observation
i lies in group G. Several different options are provided for the generation of this initialization
matrix, through the init_method argument.
The default initialization method is emEM. In this case, several candidates for initial classification
matrices are generated, and then the AECM algorithm is applied to each for a small number

6 mcgfa

of iterations. Whichever candidate achieves the best BIC value is selected as the initialization
for the full AECM runs. This process occurs separately for each value of G, but only using
one parsimonious model and one value of q. The number of candidates, number of iterations,
parsimonious model and q used for the emEM initialization can be specified in the ememargs
argument. Options for the emEM initialization can be provided in the ememargs argument.
The second option is kmeans, which uses the k-means clustering method to generate a “hard” ini-
tial classification. k-means is a fast, simple clustering algorithm that returns a hard classification.
Finally, using the given option, the user may provide a specific initialization matrix for each value
of G in rG. The initialization is provided in the init_z argument. That argument must be a list
of the same length as rG, where each element is a matrix with N rows and number of columns
corresponding the matching value of rG. The [i, j]−th element of each matrix indicates the initial
probability that observation i lies in class j.

Classification: This function provides two methods for model-based classification. The first
is usual fully-supervised classification. For this method, the model is fit to fully labelled data
(by providing a known vector argument with no zeros). Then, after model fitting takes place, the
predict generic function can be applied to the mcgfa object returned by this function, to predict
the class labels of a matrix of unlabelled observations. This method has the advantage that as new
observations arise, predictions can be made very quickly, without refitting the model.
The other form of classification is a form of semi-supervised learning. Semi-supervised classi-
fication makes use of both unlabelled and labelled data for training. The information that the
unlabelled data provides about the structure of the dataset can improve classification. For this
method, the known vector argument is simply provided with elements equal to zero, indicated
that the corresponding observation has no known label. The MCGFA model is then fit and the
unknown elements are classified as usual. The second method requires that the model be fitted
again each time new data arrives. However, it is also completely possible to apply the predict
method a model fit using semi-supervised classification.

Value

X The data the model was fit to. If the data was scaled, then this matrix will be as
well, with the centering and scale factors applied to it stored as attributes.

all.bic An array of all of the BIC values for every model fitted, indexed by model name,
number of groups and number of latent factors.

model The name of the best model: determines the constraints on the covariance struc-
ture. See Details for more information.

G The number of groups in the best model.

q The number of latent factors for the best model.

z The “soft” clustering matrix. The element in the i-th row and g-th column gives
the posterior probability that observation i is in group g.

group The “hard” classifications into groups. A vector of integers in the range rG,
giving the a posteriori classification of each observation for the best model.

isBad Similar, to group, the maximum a posteriori classification of each observation
as “good” or “bad”. If the i-th value is 1, the i-th observation is labelled as an
outlier or noise in the best model.

mcgfa 7

isBad.soft The “soft” classification vector of each observation as “good” or “bad”. The
closer the i-th value is to 1, the more likely the i-th observation is an outlier or
noise.

mu The matrix of group means (each column corresponds to a group), for the best
model.

alpha The proportion of “good” points for each group, for the best model.

eta The contamination inflation factors for each group, for the best model.

lambda The factor loading matrices of each group, for the best model.

psi The error variance matrices of each group, for the best model.

sigma The covariance matrices of each group, for the best model.

npar The total number of free parameters in the best model.

iterations The number of iterations of the AECM algorithm performed, for the fitting of
the best model.

init_z The initial z matrix used for initialization of the AECM algorithm, for each value
of G in rG.

References

Meng, X.-L. and Van Dyk, D. (1997). The EM Algorithm - An old folksong sung to a fast new tune.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(3), 511-567. Punzo,
A., Blostein, M. and McNicholas, P. D. (2017). High-dimensional clustering with the contaminated
Gaussian distribution arXiv preprint arXiv:1408.2128v2.

Examples

TOY EXAMPLE: 2 GAUSSIAN COMPONENTS WITH NOISE
small example for easy visualization
data(gaussnoise)
toy_classes <- gaussnoise[,1]
is_noise <- gaussnoise[,2]
X <- gaussnoise[,-c(1,2)]

set.seed(1)
toy_fit <- mcgfa(X, rG=1:3, rq=1, models="XXXCC")
plot: outliers => triangle
plot(toy_fit)
check clustering performance: 2 errors
table(toy_classes[1:175],toy_fit$group[1:175])
check noise detection performance: 2 false positive, 3 false negative
table(is_noise,toy_fit$isBad)

REAL DATA EXAMPLE: WINE DATA
data(wine)
simulate clustering by completely hiding known classes from algorithm
X <- wine[,-1]
wine_classes <- wine[,1]

8 olive

set.seed(1)
wine_fit <- mcgfa(X, rG=1:3, rq=1:4)

check performance:
- correctly selected 3 groups
- 2 errors
table(wine_classes,wine_fit$group)

CLASSIFICATION EXAMPLE: OLIVE DATA

load data
data(olive)
X <- olive[,-c(1,2)]
classes correspond to regions of Italy
regions <- olive[,1]

take eighth of observations to form training data
set.seed(1)
train_ind <- sample.int(nrow(X),nrow(X)/8)

known <- rep(0,nrow(X))
known[train_ind] <- regions[train_ind]

FULL SUPERVISION (only labelled data available to classifier)
In this case, the model is formed using only the 71 labelled
observations. Then this model is used to predict the class
membership of the remaining 501 observations.
fit <- mcgfa(X[train_ind,], rq = 3:4, rG = 3)
pred <- predict(fit,X[-train_ind,])
check classification performance: poor separation
table(regions[-train_ind],pred$hard)

PARTIAL SUPERVISION (unlabelled data available to classifier)
In this case, the model is formed using the 71 labelled
observations, as well the the 501 unlabelled observations.
As a part of this initial model fit, class predictions for the
unlabelled observations are automatically generated.
fit2 <- mcgfa(X,rq=3:4,rG=3,known=known)
check classification performance: extremely good, only 1 error
table(regions[-train_ind],fit2$group[-train_ind])
This shows that the use of the unlabelled observations during
model fitting can significantly improve classification performance.

olive Italian Olive Oil

Description

Data on the percentage composition of eight fatty acids found by lipid fraction of 572 Italian olive
oils. The data come from three regions: Southern Italy, Sardinia, and Northern Italy. Within each

wine 9

region there are a number of different areas. Southern Italy comprises North Apulia, Calabria,
South Apulia, and Sicily. Sardinia is divided into Inland Sardinia and Costal Sardinia. Northern
Italy comprises Umbria, East Liguria, and West Liguria.

Usage

data(olive)

Format

A data frame with 572 observations and 10 columns. The first column gives the region: (1) Southern
Italy, (2) Sardinia, or (3) Northern Italy. The second column gives the area: (1) North Apulia, (2)
Calabria, (3) South Apulia, (4) Sicily, (5) Inland Sardinia, (6) Costal Sardinia, (7) East Liguria, (8)
West Liguria, and (9) Umbria. The other eight columns contain the variables.

Source

These data are available within the GGobi software (Swayne et al., 2006).

References

Forina, M., Armanino, C., Lanteri, S. and Tiscornia, E. (1983). Classification of olive oils from
their fatty acid composition. In Food Research and Data Analysis, pp. 189–214. Applied Science
Publishers, London.

Forina, M. and Tiscornia, E. (1982). Pattern recognition methods in the prediction of Italian olive
oil origin by their fatty acid content. Annali di Chimica 72, 143–155.

Swayne, D.F., Cook, D., Buja, A., Lang, D.T., Wickham, H. and Lawrence, M. (2006). GGobi
Manual. Sourced from www.ggobi.org/docs/manual.pdf.

wine Italian Wine

Description

Data on 27 chemical and physical properties of three types of wine (Barolo, Grignolino, Barbera)
from the Piedmont region of Italy. The study did include one further variable but the sulphur
measurements were not available.

Usage

data(wine)

Format

A data frame with 178 observations and 28 columns. The first column gives the type of wine: (1)
Barolo, (2) Grignolino, or (3) Barbera. The other 27 columns contain the variables.

10 wine

Source

Forina, M., Armanino, C., Castino, M. and Ubigli, M. (1986). Multivariate data analysis as a
discriminating method of the origin of wines. Vitis 25, 189–201.

Index

∗Topic classif
mcgfa, 3

∗Topic cluster
mcgfa, 3

∗Topic datasets
gaussnoise, 2
olive, 8
wine, 9

∗Topic multivariate
mcgfa, 3

∗Topic package
mcgfa-package, 2

gaussnoise, 2

mcgfa, 2, 3
mcgfa-package, 2

olive, 8

wine, 9

11

	mcgfa-package
	gaussnoise
	mcgfa
	olive
	wine
	Index

