
Package ‘matsbyname’
May 29, 2020

Type Package

Title An Implementation of Matrix Mathematics

Version 0.4.15

Date 2020-05-29

Maintainer Matthew Heun <matthew.heun@me.com>

Description An implementation of matrix mathematics wherein operations are performed ``by name.''

License MIT + file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.1.0

Imports assertthat, dplyr, Hmisc, magrittr, purrr, rlang, stringi,
tibble

Suggests covr, knitr, matsindf, rmarkdown, testthat, tidyr

VignetteBuilder knitr

URL https://github.com/MatthewHeun/matsbyname

BugReports https://github.com/MatthewHeun/matsbyname/issues

NeedsCompilation no

Author Matthew Heun [aut, cre] (<https://orcid.org/0000-0002-7438-214X>)

Repository CRAN

Date/Publication 2020-05-29 13:10:02 UTC

R topics documented:
abs_byname . 3
aggregate_byname . 4
aggregate_to_pref_suff_byname . 5
all_byname . 6
and_byname . 7
any_byname . 8

1

https://github.com/MatthewHeun/matsbyname
https://github.com/MatthewHeun/matsbyname/issues

2 R topics documented:

binaryapply_byname . 9
clean_byname . 10
colprods_byname . 11
colsums_byname . 12
coltype . 13
compare_byname . 14
complete_and_sort . 14
complete_rows_cols . 16
count_vals_byname . 18
count_vals_incols_byname . 19
count_vals_inrows_byname . 20
cumapply_byname . 21
cumprod_byname . 22
cumsum_byname . 23
difference_byname . 24
elementapply_byname . 25
equal_byname . 26
exp_byname . 27
fractionize_byname . 27
geometricmean_byname . 28
getcolnames_byname . 29
getrownames_byname . 30
hadamardproduct_byname . 30
hatinv_byname . 31
hatize_byname . 33
identical_byname . 33
identize_byname . 34
Iminus_byname . 35
invert_byname . 36
iszero_byname . 37
list_of_rows_or_cols . 38
logarithmicmean_byname . 38
logmean . 39
log_byname . 40
make_list . 41
make_pattern . 42
matricize_byname . 43
matrixproduct_byname . 43
mean_byname . 44
naryapplylogical_byname . 46
naryapply_byname . 47
organize_args . 48
pow_byname . 49
prepare_.FUNdots . 50
prep_vector_arg . 51
prodall_byname . 52
quotient_byname . 53
rename_to_pref_suff_byname . 54

abs_byname 3

replaceNaN_byname . 55
row-col-notation . 56
rowprods_byname . 58
rowsums_byname . 59
rowtype . 60
samestructure_byname . 61
select_cols_byname . 61
select_rows_byname . 63
setcolnames_byname . 64
setcoltype . 65
setrownames_byname . 66
setrowtype . 67
sort_rows_cols . 68
sumall_byname . 69
sum_byname . 70
transpose_byname . 71
unaryapply_byname . 72
vectorize_byname . 73

Index 75

abs_byname Absolute value of matrix elements

Description

Absolute value of matrix elements

Usage

abs_byname(a)

Arguments

a a matrix or list of matrices

Value

a with each element replaced by its absolute value

Examples

abs_byname(1)
abs_byname(-1)
m <- matrix(c(-10,1,1,100), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:2))) %>%

setrowtype("Industry") %>% setcoltype("Commodity")
abs_byname(m)

4 aggregate_byname

aggregate_byname Aggregate rows and columns in a matrix

Description

Rows (margin 1), columns (margin = 2), or both (margin = c(1,2), the default) are aggregated
according to aggregation_map.

Usage

aggregate_byname(
a,
aggregation_map = NULL,
margin = c(1, 2),
pattern_type = "exact"

)

Arguments

a a matrix or list of matrices whose rows or columns are to be aggregated
aggregation_map

a named list of rows or columns to be aggregated (or NULL). See details.

margin 1, 2, or c(1,2) for row aggregation, column aggregation, or both

pattern_type See make_pattern().

Details

When aggregation_map is NULL (the default), rows (or columns or both) of same name are aggre-
gated together.

If aggregation_map is not NULL, it must be a named list. The name of each aggregation_map item
is the name of a row or column in a that will contain the specified aggregation. The value of each
item in aggregation_map must be a vector of names of rows or columns in a. The names in the
value are aggregated and inserted into a with the name of the value. For example aggregation_map
= list(new_row = c("r1","r2")) will aggregate rows "r1" and "r2", delete rows "r1" and "r2",
and insert a new row whose name is "new_row" and whose value is the sum of rows "r1" and "r2’.

The items in aggregation_map are interpreted as regular expressions, and they are escaped using
Hmisc::escapeRegex() prior to use.

Note that aggregation on one margin only will sort only the aggregated margin, because the other
margin is not guaranteed to have unique names.

Value

a version of a with aggregated rows and/or columns

aggregate_to_pref_suff_byname 5

Examples

library(dplyr)
library(tibble)
m <- matrix(1:9, byrow = TRUE, nrow = 3,

dimnames = list(c("r2", "r1", "r1"), c("c2", "c1", "c1"))) %>%
setrowtype("rows") %>% setcoltype("cols")

Aggregate all rows by establishing an aggregation map (am)
am <- list(new_row = c("r1", "r2"))
aggregate_byname(m, aggregation_map = am, margin = 1)
aggregate_byname() also works with lists and in data frames
m1 <- matrix(42, nrow = 1, dimnames = list(c("r1"), c("c1")))
m2 <- matrix(1:4, byrow = TRUE, nrow = 2,

dimnames = list(c("a", "a"), c("a", "a")))
m3 <- matrix(1:9, byrow = TRUE, nrow = 3,

dimnames = list(c("r2", "r1", "r1"), c("c2", "c1", "c1")))
DF <- tibble(m = list(m1, m1, m1, m2, m2, m2, m3, m3, m3),

margin = list(1, 2, c(1,2), 1, 2, c(1, 2), 1, 2, c(1, 2))) %>%
mutate(

aggregated = aggregate_byname(m, margin = margin),
)

m1
DF$aggregated[[1]] # by rows
DF$aggregated[[2]] # by cols
DF$aggregated[[3]] # by rows and cols
m2
DF$aggregated[[4]] # by rows
DF$aggregated[[5]] # by cols
DF$aggregated[[6]] # by rows and cols
m3
DF$aggregated[[7]] # by rows
DF$aggregated[[8]] # by cols
DF$aggregated[[9]] # by rows and cols

aggregate_to_pref_suff_byname

Aggregate a matrix to prefixes or suffixes of row and/or column names

Description

Row and column names are often constructed in the form prefix_start prefix prefix_end
suffix_start suffix suffix_end and described by a notation vector. (See notation_vec().)
This function performs aggregation by prefix or suffix according to a notation vector..

Usage

aggregate_to_pref_suff_byname(
a,
aggregation_map = NULL,
keep,

6 all_byname

margin = c(1, 2),
notation,
pattern_type = "exact"

)

Arguments

a a matrix of list of matrices to be aggregated by prefix or suffix
aggregation_map

See aggregate_byname().

keep See rename_to_pref_suff_byname()

margin the dimension over which aggregation is to be performed; 1 for rows, 2 for
columns, or c(1,2) for both.

notation See notation_vec().

pattern_type See aggregate_byname().

Details

This function is a convenience function, as it bundles sequential calls to two helper functions,
rename_to_pref_suff_byname() and aggregate_byname(). All arguments are passed to the
helper functions.

Value

an aggregated version of a

Examples

m <- matrix((1:9), byrow = TRUE, nrow = 3,
dimnames = list(c("r1 -> b", "r2 -> b", "r3 -> a"), c("c1 -> z", "c2 -> y", "c3 -> y")))

m
Aggregation by prefixes does nothing more than rename, because all prefixes are different.
Doing renaming like this (without also aggregating) is potentially dangerous, because
some rows and some columns could end up with same names.
aggregate_to_pref_suff_byname(m, keep = "prefix", notation = arrow_notation())
Aggregation by suffix reduces the number of rows and columns,
because there are same suffixes in both rows and columns
aggregate_to_pref_suff_byname(m, keep = "suffix", notation = arrow_notation())

all_byname Are all matrix elements TRUE?

Description

Tells whether all elements in matrix a are true.

and_byname 7

Usage

all_byname(a)

Arguments

a a matrix or list of matrices

Details

a can be a matrix or a list of matrices.

Value

TRUE if all elements of a are TRUE, FALSE otherwise

Examples

all_byname(matrix(rep(TRUE, times = 4), nrow = 2, ncol = 2))
all_byname(matrix(c(TRUE, FALSE), nrow = 2, ncol = 1))

and_byname And "by name"

Description

Operands should be logical, although numerical operands are accepted. Numerical operands are
interpreted as FALSE when 0 and TRUE for any other number.

Usage

and_byname(...)

Arguments

... operands to the logical and function

Value

logical and applied to the operands

8 any_byname

Examples

and_byname(TRUE)
and_byname(FALSE)
and_byname(list(TRUE, FALSE), list(TRUE, TRUE), list(TRUE, TRUE), list(TRUE, TRUE))
m1 <- matrix(c(TRUE, TRUE, TRUE, FALSE), nrow = 2, ncol = 2,

dimnames = list(c("r1", "r2"), c("c1", "c2")))
m2 <- matrix(c(TRUE, FALSE, TRUE, TRUE), nrow = 2, ncol = 2,

dimnames = list(c("r1", "r2"), c("c1", "c2")))
and_byname(m1, m1)
and_byname(m1, m2)
and_byname(list(m1, m1), list(m1, m1), list(m2, m2))

any_byname Are any matrix elements TRUE?

Description

Tells whether any elements in matrix a are true.

Usage

any_byname(a)

Arguments

a a matrix or list of matrices

Details

a can be a matrix or a list of matrices.

Value

TRUE if any elements of a are TRUE, FALSE otherwise

Examples

any_byname(matrix(c(TRUE, FALSE), nrow = 2, ncol = 1))
any_byname(matrix(rep(FALSE, times = 4), nrow = 2, ncol = 2))

binaryapply_byname 9

binaryapply_byname Apply a binary function "by name"

Description

If either a or b is missing or NULL, 0 is passed to FUN in its place. Note that if either a and b are lists,
elements must be named the same. The names of list elements of a are applied to the output.

Usage

binaryapply_byname(
FUN,
a,
b,
.FUNdots = NULL,
match_type = c("all", "matmult", "none"),
set_rowcoltypes = TRUE,
.organize = TRUE

)

Arguments

FUN a binary function to be applied "by name" to a and b.

a the first operand for FUN.

b the second operand for FUN.

.FUNdots a list of additional named arguments passed to FUN.

match_type one of "all", "matmult", or "none". When both a and b are matrices, "all" (the
default) indicates that rowtypes of a must match rowtypes of b and coltypes of
a must match coltypes of b. If "matmult", coltypes of a must match rowtypes of
b. If "none", neither coltypes nor rowtypes are checked.

set_rowcoltypes

tells whether to apply row and column types from a and b to the output. Set
TRUE (the default) to apply row and column types to the output. Set FALSE, to
not apply row and column types to the output.

.organize a boolean that tells whether or not to automatically complete a and b relative to
each other and sort the rows and columns of the completed matrices. Normally,
this should be TRUE (the default). However, if FUN takes over this responsibility,
set to FALSE.

Value

the result of applying FUN "by name" to a and b.

10 clean_byname

Examples

productnames <- c("p1", "p2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%

setrowtype("Products") %>% setcoltype("Industries")
Y <- matrix(1:4, ncol = 2, dimnames = list(rev(productnames), rev(industrynames))) %>%

setrowtype("Products") %>% setcoltype("Industries")
sum_byname(U, Y)
binaryapply_byname(`+`, U, Y)

clean_byname Clean (delete) rows or columns of matrices that contain exclusively
clean_value

Description

Cleaning is performed when all entries in a row or column or both, depending on the value of
margin are within +/- tol of clean_value. Internally, values are deemed within +/- of tol when
abs(x -clean_value) <= tol.

Usage

clean_byname(a, margin = c(1, 2), clean_value = 0, tol = 0)

Arguments

a the matrix to be cleaned

margin the dimension over which cleaning should occur, 1 for rows, 2 for columns, or
c(1,2) for both rows and columns. Default is c(1,2).

clean_value the undesirable value. Default is 0.

tol the tolerance with which any value is deemed equal to clean_value. Default is
0.
When a row (when margin = 1) or a column (when margin = 2) contains exclu-
sively clean_value (within tol), the row or column is deleted from the matrix.

Details

If there is concern about machine precision, you might want to call this function with tol = .Machine$double.eps.

Value

a "cleaned" matrix, expunged of rows or columns that contain exclusively clean_value.

colprods_byname 11

Examples

m <- matrix(c(-20, 1, -20, 2), nrow = 2, dimnames = list(c("r1", "r2"), c("c1", "c2")))
m
m %>% clean_byname(margin = 1, clean_value = -20) # Eliminates -20, -20 row
Nothing cleaned, because no columns contain all 0's (the default clean_value).
m %>% clean_byname(margin = 2)
Also works with lists
list(m, m) %>% clean_byname(margin = 1, clean_value = -20)
Also works with data frames
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
DF %>% clean_byname(margin = 1, clean_value = -20)
m2 <- matrix(c(-20, -20, 0, -20, -20, 0, -20, -20, -20), nrow = 3,

dimnames = list(c("r1", "r2", "r3"), c("c1", "c2", "c3")))
m2
clean_byname(m2, margin = c(1,2), clean_value = -20)
DF2 <- data.frame(m2 = I(list()))
DF2[[1, "m2"]] <- m2
DF2[[2, "m2"]] <- m2
DF2 %>% clean_byname(margin = c(1, 2), clean_value = -20)

colprods_byname Column products, sorted by name

Description

Calculates column products (the product of all elements in a column) for a matrix. An optional
rowname for the resulting row vector can be supplied. If rowname is NULL or NA (the default), the
row name is set to the row type as given by rowtype(a).

Usage

colprods_byname(a, rowname = NA)

Arguments

a a matrix or data frame from which column products are desired.

rowname name of the output row containing column products.

Value

a row vector of type matrix containing the column products of a.

12 colsums_byname

Examples

library(dplyr)
M <- matrix(c(1:6), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 3:1))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
colprods_byname(M)
colprods_byname(M, rowname = "E.ktoe")
M %>% colprods_byname %>% rowprods_byname
This also works with lists
colprods_byname(list(M, M))
colprods_byname(list(M, M), rowname = "E.ktoe")
colprods_byname(list(M, M), rowname = NA)
colprods_byname(list(M, M), rowname = NULL)
DF <- data.frame(M = I(list()))
DF[[1,"M"]] <- M
DF[[2,"M"]] <- M
colprods_byname(DF$M[[1]])
colprods_byname(DF$M)
colprods_byname(DF$M, "prods")
res <- DF %>% mutate(

cs = colprods_byname(M),
cs2 = colprods_byname(M, rowname = "prod")

)
res$cs2

colsums_byname Column sums, sorted by name

Description

Calculates column sums for a matrix by premultiplying by an identity vector (containing all 1’s).
In contrast to colSums (which returns a numeric result), the return value from colsums_byname is
a matrix. An optional rowname for the resulting row vector can be supplied. If rowname is NULL or
NA (the default), the row name is set to the row type as given by rowtype(a).

Usage

colsums_byname(a, rowname = NA)

Arguments

a a matrix or list of matrices from which column sums are desired.

rowname name of the output row containing column sums.

Value

a row vector of type matrix containing the column sums of a.

coltype 13

Examples

library(dplyr)
m <- matrix(c(1:6), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 3:1))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
colsums_byname(m)
colsums_byname(m, rowname = "E.ktoe")
m %>% colsums_byname %>% rowsums_byname
This also works with lists
colsums_byname(list(m, m))
colsums_byname(list(m, m), rowname = "E.ktoe")
colsums_byname(list(m, m), rowname = NA)
colsums_byname(list(m, m), rowname = NULL)
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
colsums_byname(DF$m[[1]])
colsums_byname(DF$m)
colsums_byname(DF$m, "sums")
res <- DF %>% mutate(

cs = colsums_byname(m),
cs2 = colsums_byname(m, rowname = "sum")

)
res$cs2

coltype Column type

Description

Extracts column type of a.

Usage

coltype(a)

Arguments

a the object from which you want to extract column types

Value

the column type of a

Examples

commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype(rowtype = "Commodities") %>% setcoltype("Industries")

14 complete_and_sort

coltype(U)
This also works for lists
coltype(list(U,U))

compare_byname Compare matrix entries to a value

Description

Compares matrix entries to a value, returning a matrix of same size as a containing TRUE or FALSE
values as the result of applying compare_fun and val to all entries in a.

Usage

compare_byname(a, compare_fun = c("==", "!=", "<", "<=", ">=", ">"), val = 0)

Arguments

a a matrix or list of matrices whose values are to be counted according to compare_fun

compare_fun the comparison function, one of "==", "!=", "<", "<=", ">=", or ">". Default is
"==".

val a single value against which entries in matrix a are compared. Default is 0.

Value

a logical matrix of same size as a containing TRUE where the criterion is met, FALSE otherwise

Examples

m <- matrix(c(0, 1, 2, 3, 4, 0), nrow = 3, ncol = 2)
compare_byname(m, "<", 3)
compare_byname(list(m,m), "<", 3)

complete_and_sort Complete matrices relative to one another and sort into same row,
column order

Description

Completes each matrix relative to each other, thereby assuring that both matrices have same row and
column names. Missing rows and columns (relative to the other matrix) are filled with fill. There-
after, rows and columns of the matrices are sorted such that they are in the same order (by name).
To complete rows of m1 relative to columns of m2, set the m2 argument to transpose_byname(m2).

complete_and_sort 15

Usage

complete_and_sort(
a,
b,
fill = 0,
margin = c(1, 2),
roworder = NA,
colorder = NA

)

Arguments

a The first matrix

b The second (optional) matrix.

fill rows and columns added to a and b will contain the value fill. (a double)

margin Specifies the dimension(s) of a and b over which completing and sorting will
occur

roworder Specifies a custom ordering for rows of returned matrices. Unspecified rows are
dropped.

colorder Specifies a custom ordering for columns of returned matrices. Unspecified
columns are dropped.

Details

margin has nearly the same semantic meaning as in apply. For rows only, give 1; for columns only,
give 2; for both rows and columns, give c(1,2), the default value.

If only m1 is specified, rows of m1 are completed and sorted relative to columns of m1. If neither m1
nor m2 have dimnames, m1 and m2 are returned unmodified. If only one of m1 or m2 has dimnames,
an error is thrown.

Value

A named list containing completed and sorted versions of a and b.

Examples

m1 <- matrix(c(1:6), nrow=3, dimnames = list(c("r1", "r2", "r3"), c("c2", "c1")))
m2 <- matrix(c(7:12), ncol=3, dimnames = list(c("r3", "r4"), c("c2", "c3", "c4")))
complete_and_sort(m1)
complete_and_sort(m1, m2)
complete_and_sort(m1, m2, roworder = c("r3", "r2", "r1"))
complete_and_sort(m1, m2, colorder = c("c4", "c3")) # Drops un-specified columns
complete_and_sort(m1, m2, margin = 1)
complete_and_sort(m1, m2, margin = 2)
complete_and_sort(m1, t(m2))
complete_and_sort(m1, t(m2), margin = 1)
complete_and_sort(m1, t(m2), margin = 2)
v <- matrix(1:6, ncol=2, dimnames=list(c("r3", "r1", "r2"), c("c2", "c1")))

16 complete_rows_cols

complete_and_sort(v, v)
Also works with lists
complete_and_sort(list(m1,m1), list(m2,m2))

complete_rows_cols Complete rows and columns in one matrix relative to another

Description

"Completing" rows and columns means that a contains a union of rows and columns between a and
m, with missing data represented by the value for fill (0, by default).

Usage

complete_rows_cols(
a = NULL,
mat = NULL,
fill = 0,
fillrow = NULL,
fillcol = NULL,
margin = c(1, 2)

)

Arguments

a a matrix or list of matrices to be completed.

mat a matrix from which dimnames will be extracted for the purposes of completing
a with respect to mat.

fill rows and columns added to a will contain the value fill. (Default is 0.)

fillrow a row vector of type matrix with same column names as a. Any rows added to
a will be fillrow. If non-NULL, fillrow takes precedence over both fillcol
and fill in the case of conflicts.

fillcol a column vector of type matrix with same row names as a. Any columns added
to a will be fillcol. If non-NULL, fillcol takes precedence over fill in the
case of conflicts.

margin specifies the subscript(s) in a over which completion will occur margin has
nearly the same semantic meaning as in apply For rows only, give 1; for columns
only, give 2; for both rows and columns, give c(1,2), the default value.

Details

Note that complete_rows_cols(mat1,mat2) and complete_rows_cols(mat2,mat1) are not guar-
anteed to have the same order for rows and columns. (Nor are the values in the matrix guaranteed
to have the same positions.) If dimnames(mat) is NULL, a is returned unmodified. If either a
or matrix are missing names on a margin (row or column), an error is given. Matrices can be
completed relative to themselves, meaning that a will be made square, containing the union of row

complete_rows_cols 17

and column names from a itself. All added rows and columns will be created from one of the
fill* arguments. When conflicts arise, precedence among the fill* arguments is fillrow then
fillcol then fill. Self-completion occurs if a is non-NULL and both is.null(matrix) and
is.null(names). Under these conditions, no warning is given. If is.null(names) and dimnames
of matrix cannot be determined (because, for example, matrix doesn’t have any dimnames), a is
completed relative to itself and a warning is given.

Value

A modified version of a possibly containing additional rows and columns whose names are obtained
from matrix

Examples

m1 <- matrix(c(1:6), nrow=3, dimnames = list(c("r1", "r2", "r3"), c("c1", "c2")))
m2 <- matrix(c(7:12), ncol=3, dimnames = list(c("r2", "r3"), c("c2", "c3", "c4")))
complete_rows_cols(m1, m2) # Adds empty column c4
complete_rows_cols(m1, t(m2)) # Creates r2, r3 columns; c2, c3, c4 rows
complete_rows_cols(m1, m2, margin = 1) # No changes because r2 and r3 already present in m1
complete_rows_cols(m1, m2, margin = 2) # Adds empty columns c3 and c4
complete_rows_cols(m1, t(m2), margin = 1) # Adds empty rows c2, c3, c4
complete_rows_cols(m1, m2, fill = 100) # Adds columns c3 and c4 with 100's
complete_rows_cols(m1, m1) # Nothing added, because everything already present
complete_rows_cols(m1, t(m1)) # Adds empty c1, c2 rows; Adds empty r1, r2, r3 columns
Same as previous. With missing matrix, complete relative to transpose of m1.
complete_rows_cols(m1)
Adds rows r10, r11; cols c10, c11
complete_rows_cols(m1, matrix(0, nrow = 2, ncol = 2,

dimnames = list(c("r10", "r11"), c("c10", "c11"))))
Also works with lists
complete_rows_cols(a = list(m1,m1))
complete_rows_cols(a = list(m1,m1), mat = list(m2,m2))
No changes because r2, r3 already present in m1
complete_rows_cols(a = list(m1,m1), mat = list(m2,m2), margin = 1)
complete_rows_cols(a = list(m1,m1), mat = list(m2,m2), margin = 2)
complete_rows_cols(a = list(m1,m1),

mat = make_list(matrix(0, nrow = 2, ncol = 2,
dimnames = list(c("r10", "r11"), c("c10", "c11"))),

n = 2, lenx = 1))
fillrow or fillcol can be specified
a <- matrix(c(11, 12, 21, 22), byrow = TRUE, nrow = 2, ncol = 2,

dimnames = list(c("r1", "r2"), c("c1", "c2")))
b <- matrix(c(1:6), byrow = TRUE, nrow = 3, ncol = 2,

dimnames = list(c("r1", "r2", "r3"), c("c1", "c2")))
fillrow <- matrix(c(31, 32), byrow = TRUE, nrow = 1, ncol = 2,

dimnames = list("r42", c("c1", "c2")))
complete_rows_cols(a = a, mat = b, fillrow = fillrow)

18 count_vals_byname

count_vals_byname Count the number of matrix entries that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_byname(m,"<=",1).

Usage

count_vals_byname(
a,
compare_fun = c("==", "!=", "<", "<=", ">=", ">"),
val = 0

)

Arguments

a a matrix or list of matrices whose values are to be counted according to compare_fun

compare_fun the comparison function, one of "==", "!=", "<", "<=", ">", or ">=". Default is
"==".

val the value against which matrix entries are compared. Default is 0.

Details

Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (`!=`).

Value

an integer indicating the number of entries in a that meet the specified criterion

Examples

m <- matrix(c(0, 1, 2, 3, 4, 0), nrow = 3, ncol = 2)
count_vals_byname(m) # uses defaults: compare_fun = "==" and val = 0
count_vals_byname(m, compare_fun = "!=")
count_vals_byname(m, compare_fun = `!=`)
Write expressions in a natural way
count_vals_byname(m, "<=", 1)
Also works for lists
count_vals_byname(list(m,m), "<=", 1)

count_vals_incols_byname 19

count_vals_incols_byname

Count the number of matrix entries in columns that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_incols_byname(m,"<=",1).

Usage

count_vals_incols_byname(
a,
compare_fun = c("==", "!=", "<", "<=", ">=", ">"),
val = 0

)

Arguments

a a matrix or list of matrices whose values are to be counted by columns according
to compare_fun

compare_fun the comparison function, one of "==", "!=", "<", "<=", ">", or ">=". Default is
"=="

val the value against which matrix entries are compared. Default is 0.

Details

Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (`!=`).

Value

an matrix with a single row indicating the number of entries in a that meet the specified criterion
in each column of a

Examples

m <- matrix(c(0, 1, 2, 3, 4, 0), nrow = 3, ncol = 2)
count_vals_incols_byname(m) # uses defaults: compare_fun = "==" and val = 0
count_vals_incols_byname(m, compare_fun = "!=")
count_vals_incols_byname(m, compare_fun = `!=`)
Write expressions in a natural way
count_vals_incols_byname(m, "<=", 1)
Also works for lists
count_vals_incols_byname(list(m,m), "<=", 1)

20 count_vals_inrows_byname

count_vals_inrows_byname

Count the number of matrix entries in rows that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_inrows_byname(m,"<=",1).

Usage

count_vals_inrows_byname(
a,
compare_fun = c("==", "!=", "<", "<=", ">=", ">"),
val = 0

)

Arguments

a a matrix or list of matrices whose values are to be counted by rows according to
compare_fun

compare_fun the comparison function, one of "==", "!=", "<", "<=", ">", or ">=". Default is
"==".

val the value against which matrix entries are compared. Default is 0.

Details

Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (`!=`).

Value

an matrix with a single column indicating the number of entries in a that meet the specified criterion
in each row of a

Examples

m <- matrix(c(0, 1, 2, 3, 4, 0), nrow = 3, ncol = 2)
count_vals_inrows_byname(m) # uses defaults: compare_fun = "==" and val = 0
count_vals_inrows_byname(m, compare_fun = "!=")
count_vals_inrows_byname(m, compare_fun = `!=`)
Write expressions in a natural way
count_vals_inrows_byname(m, "<=", 1)
Also works for lists
count_vals_inrows_byname(list(m,m), "<=", 1)

cumapply_byname 21

cumapply_byname Apply a function cumulatively to a list of matrices or numbers

Description

FUN must be a binary function that also accepts a single argument. The result is a list with first
element FUN(a[[1]]). For i >= 2, elements are FUN(a[[i]],out[[i-1]]), where out is the result
list.

Usage

cumapply_byname(FUN, a)

Arguments

FUN the function to be applied

a the list of matrices or numbers to which FUN will be applied cumulatively

Details

naryapply_byname() and cumapply_byname() are similar. Their differences can be described by
considering a data frame. naryapply_byname() applies FUN to several columns (variables) of the
data frame. For example, sum_byname() applied to several variables gives another column con-
taining the sums across each row of the data frame. cumapply_byname() applies FUN to successive
entries in a single column. For example sum_byname() applied to a single column gives the sum of
all numbers in that column.

Value

a list of same length as a containing the cumulative application of FUN to a

Examples

cumapply_byname(sum, list(1, 2, 3, 4))
cumapply_byname(sum_byname, list(1, 2, 3, 4))
cumapply_byname(prod, list(1, 2, 3, 4))
cumapply_byname(hadamardproduct_byname, list(1, 2, 3, 4))

22 cumprod_byname

cumprod_byname Cumulative element-product that respects row and column names

Description

Provides cumulative element-products along a list or column of a data frame. If a is a single number,
a is returned. If a is a list of numbers, a list representing the cumulative product of the numbers
is returned. If a is a single matrix, a is returned. If a is a list of matrices, a list representing the
cumulative product of the matrices is returned. In this case, each entry in the returned list is product
"by name," such that row and column names of the matrices are respected.

Usage

cumprod_byname(a)

Arguments

a a number, list of numbers, matrix or list of matrices for which cumulative ele-
ment product is desired

Details

This function respects groups if a is a variable in a data frame.

Value

a single number, list of numbers, a single matrix, or a list of matrices, depending on the nature of a

Examples

cumprod_byname(list(1, 2, 3, 4, 5))
m1 <- matrix(c(1), nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%

setrowtype("row") %>% setcoltype("col")
m2 <- matrix(c(2), nrow = 1, ncol = 1, dimnames = list("r2", "c2")) %>%

setrowtype("row") %>% setcoltype("col")
m3 <- matrix(c(3), nrow = 1, ncol = 1, dimnames = list("r3", "c3")) %>%

setrowtype("row") %>% setcoltype("col")
cumprod_byname(list(m1, m2, m3))

cumsum_byname 23

cumsum_byname Cumulative sum that respects row and column names

Description

Provides cumulative sums along a list or column of a data frame. If a is a single number, a is
returned. If a is a list of numbers, a list representing the cumulative sum of the numbers is returned.
If a is a single matrix, a is returned. If a is a list of matrices, a list representing the cumulative sum
of the matrices is returned. In this case, each entry in the returned list is sum "by name," such that
row and column names of the matrices are respected.

Usage

cumsum_byname(a)

Arguments

a a number, list of numbers, matrix or list of matrices for which cumulative sum
is desired

Details

If cumulative sums are desired in the context of a data frame, groups in the data frame are respected
if mutate is used. See examples.

Value

a single number, list of numbers, a single matrix, or a list of matrices, depending on the nature of a

Examples

library(dplyr)
library(tibble)
m1 <- matrix(c(1), nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%

setrowtype("row") %>% setcoltype("col")
m2 <- matrix(c(2), nrow = 1, ncol = 1, dimnames = list("r2", "c2")) %>%

setrowtype("row") %>% setcoltype("col")
m3 <- matrix(c(3), nrow = 1, ncol = 1, dimnames = list("r3", "c3")) %>%

setrowtype("row") %>% setcoltype("col")
cumsum_byname(list(m1, m2, m3))
Groups are respected in the context of mutate.
tibble(grp = c("A", "A", "B"), m = list(m1, m2, m3)) %>% group_by(grp) %>%

mutate(m2 = cumsum_byname(m))

24 difference_byname

difference_byname Name-wise subtraction of matrices

Description

Name-wise subtraction of matrices

Usage

difference_byname(minuend, subtrahend)

Arguments

minuend matrix or constant

subtrahend matrix or constant
Performs a union and sorting of row and column names prior to differencing.
Zeroes are inserted for missing matrix elements.

Value

A matrix representing the name-wise difference between minuend and subtrahend

Examples

library(dplyr)
difference_byname(100, 50)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
U - G # Non-sensical. Row and column names not respected.
difference_byname(U, G) # Row and column names respected! Should be all zeroes.
difference_byname(100, U)
difference_byname(10, G)
difference_byname(G) # When subtrahend is missing, return minuend (in this case, G).
difference_byname(subtrahend = G) # When minuend is missing, return - subtrahend (in this case, -G)
This also works with lists
difference_byname(list(100, 100), list(50, 50))
difference_byname(list(U,U), list(G,G))
DF <- data.frame(U = I(list()), G = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"G"]] <- G
DF[[2,"G"]] <- G
difference_byname(DFU, DFG)
DF %>% mutate(diffs = difference_byname(U, G))

elementapply_byname 25

elementapply_byname Apply a function to an element of a matrix specified by rows and
columns

Description

FUN is applied to the element of a that is specified by row and col.

Usage

elementapply_byname(FUN, a, row, col, .FUNdots = NULL)

Arguments

FUN a unary function to be applied to specified rows and columns of a

a the argument to FUN

row the row name of the element to which FUN will be applied

col the column name of the element to which FUN will be applied

.FUNdots a list of additional arguments to FUN. (Default is NULL.)

Details

row and col can be any of row or column names or integer indices or a mix of both.

Value

a, after FUN has been applied to the element at row and col

Examples

divide <- function(x, divisor){
x/divisor

}
m <- matrix(c(1:4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%

setrowtype("row") %>% setcoltype("col")
elementapply_byname(divide, a = m, row = 1, col = 1, .FUNdots = list(divisor = 2))
elementapply_byname(divide, a = m, row = 1, col = 2, .FUNdots = list(divisor = 10))
elementapply_byname(divide, a = m, row = "r2", col = "c2", .FUNdots = list(divisor = 100))

26 equal_byname

equal_byname Compare two matrices "by name" for equality

Description

If operands are matrices, they are completed and sorted relative to one another prior to comparison.

Usage

equal_byname(...)

Arguments

... operands to be compared

Details

Comparisons are made by isTRUE(all.equal(a,b)) so that variations among numbers within the
computational precision will still return TRUE.

If EXACT comparison is needed, use identical_byname, which compares using identical(a,b).

Value

TRUE iff all information is equal, including row and column types and row and column names and
entries in the matrices.

Examples

a <- matrix(1:4, nrow = 2)
b <- matrix(1:4, nrow = 2)
equal_byname(a, b)
equal_byname(a, b + 1e-100)
identical_byname(a, b + 1e-100)
a <- a %>% setrowtype("Industries") %>% setcoltype("Commodities")
equal_byname(a, b) # FALSE because a has row and column types, but b does not.
b <- b %>% setrowtype("Industries") %>% setcoltype("Commodities")
equal_byname(a, b)
dimnames(a) <- list(c("i1", "i2"), c("c1", "c2"))
dimnames(b) <- list(c("c1", "c2"), c("i1", "i2"))
equal_byname(a, b) # FALSE, because row and column names are not equal
dimnames(b) <- dimnames(a)
equal_byname(a, b)

exp_byname 27

exp_byname Exponential of matrix elements

Description

Gives the exponential of all elements of a matrix or list of matrices

Usage

exp_byname(a)

Arguments

a a matrix of list of matrices

Value

M with each element replaced by its exponential

Examples

exp_byname(1)
m <- matrix(c(log(10),log(1),log(1),log(100)),

nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:2))) %>%
setrowtype("Industry") %>% setcoltype("Commodity")

exp_byname(m)

fractionize_byname Compute fractions of matrix entries

Description

This function divides all entries in a by the specified sum, thereby "fractionizing" the matrix.

Usage

fractionize_byname(a, margin)

Arguments

a the matrix to be fractionized

margin If 1 (rows), each entry in a is divided by its row’s sum. If 2 (columns), each
entry in a is divided by its column’s sum. If c(1,2) (both rows and columns),
each entry in a is divided by the sum of all entries in a.

28 geometricmean_byname

Value

a fractionized matrix of same dimensions and same row and column types as a.

Examples

M <- matrix(c(1, 5,
4, 5),

nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("p1", "p2"), c("i1", "i2"))) %>%
setcoltype("Products") %>% setrowtype("Industries")

fractionize_byname(M, margin = c(1,2))
fractionize_byname(M, margin = 1)
fractionize_byname(M, margin = 2)

geometricmean_byname Name- and element-wise geometric mean of two matrices.

Description

Gives the geometric mean of corresponding entries of a and b.

Usage

geometricmean_byname(...)

Arguments

... operands; constants, matrices, or lists of matrices

Details

This function performs a union and sorting of row and column names prior to performing geometric
mean. Zeroes are inserted for missing matrix elements.

Value

name-wise geometric mean of operands

Examples

library(dplyr)
geometricmean_byname(10, 1000)
geometricmean_byname(10, 1000, 100000)
commoditynames <- c("c1", "c2")
industrynames <- "i1"
U <- matrix(c(10, 1000), ncol = 1, nrow = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
G <- matrix(c(1e3, 1e5), ncol = 1, nrow = 2,

dimnames = list(rev(commoditynames), rev(industrynames))) %>%

getcolnames_byname 29

setrowtype("Commodities") %>% setcoltype("Industries")
Non-sensical. Row and column names not respected.
sqrt(U*G)
Row and column names respected!
geometricmean_byname(U, G)
geometricmean_byname(1000, U)
geometricmean_byname(10, G)
This also works with lists
geometricmean_byname(list(10, 1000), list(1000, 10))
geometricmean_byname(list(U,U), list(G,G))
DF <- data.frame(U = I(list()), G = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"G"]] <- G
DF[[2,"G"]] <- G
geometricmean_byname(DFU, DFG)
DF %>% mutate(geomeans = geometricmean_byname(U, G))

getcolnames_byname Gets column names

Description

Gets column names in a way that is amenable to use in chaining operations in a functional program-
ming way

Usage

getcolnames_byname(a)

Arguments

a The matrix or data frame from which column names are to be retrieved

Value

column names of m

Examples

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:3))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

getcolnames_byname(m)
This also works for lists
getcolnames_byname(list(m,m))
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
getcolnames_byname(DF$m)

30 hadamardproduct_byname

getrownames_byname Gets row names

Description

Gets row names in a way that is amenable to use in chaining operations in a functional programming
way

Usage

getrownames_byname(a)

Arguments

a The matrix or data frame on which row names are to be retrieved

Value

row names of a

Examples

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:3))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

getrownames_byname(m)
This also works for lists
getrownames_byname(list(m,m))
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
getrownames_byname(DF$m)

hadamardproduct_byname

Name-wise matrix Hadamard multiplication

Description

Performs a union and sorting of names of rows and columns for both multiplicand and multiplier for
each sequential multiplication step. Zeroes are inserted for missing matrix elements. Doing so en-
sures that the dimensions of the multiplicand and multiplier are be conformable for each sequential
multiplication.

Usage

hadamardproduct_byname(...)

hatinv_byname 31

Arguments

... operands; constants, matrices, or lists of matrices

Details

The Hadamard product is also known as the entrywise product.

Value

name-wise element product of operands

Examples

library(dplyr)
hadamardproduct_byname(2, 2)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
G <- matrix(1:4, ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
U * G # Not what is desired, because names aren't aligned
hadamardproduct_byname(U, G)
hadamardproduct_byname(U, G, G)
hadamardproduct_byname(U, 0)
hadamardproduct_byname(0, G)
This also works with lists
hadamardproduct_byname(list(U, U), list(G, G))
DF <- data.frame(U = I(list()), G = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"G"]] <- G
DF[[2,"G"]] <- G
hadamardproduct_byname(DFU, DFG)
DF %>% mutate(entrywiseprods = hadamardproduct_byname(U, G))

hatinv_byname Hatize and invert a vector

Description

When dividing rows or columns of a matrix by elements of a vector, the vector elements are placed
on the diagonal of a new matrix, the diagonal matrix is inverted, and the result is pre- or post-
multiplied into the matrix. This function performs the hatizing and inverting of vector v in one step
and takes advantage of computational efficiencies to achieve the desired result. The computational
shortcut is apparent when one observes that the matrix produced by hatizing and inverting a vector is
a diagonal matrix whose non-zero elements are the numerical inverses of the individual elements of
v. So this function first inverts each element of v then places the inverted elements on the diagonal
of a diagonal matrix.

32 hatinv_byname

Usage

hatinv_byname(v, inf_becomes = .Machine$double.xmax)

Arguments

v the vector to be hatized and inverted

inf_becomes a value to be substitute for any Inf produced by the inversion process. Default is
.Machine$double.xmax. If FALSE (the default), Inf is not handled differently.
If TRUE, Inf values in the resulting matrix are converted to zeroes.

Details

Note that this function gives the same result as invert_byname(hatize_byname(v)), except that
invert_byname(hatize_byname(v)) fails due to a singular matrix error when any of the elements
of v are zero. This function will give inf_becomes on the diagonal of the result for each zero
element of v, arguably a better answer. The sign of Inf is preserved in the substitution. The
default value of inf_becomes is .Machine$double.xmax. Set inf_becomes to NULL to disable this
behavior.

The default behavior is helpful for cases when the result of hatinv_byname is later multiplied by 0
to obtain 0. Multiplying Inf by 0 gives NaN which would effectively end the stream of calculations.

Value

a square diagonal matrix with inverted elements of v on the diagonal

Examples

v <- matrix(1:10, ncol = 1, dimnames = list(c(paste0("i", 1:10)), c("c1"))) %>%
setrowtype("Industries") %>% setcoltype(NA)

r <- matrix(1:5, nrow = 1, dimnames = list(c("r1"), c(paste0("c", 1:5)))) %>%
setrowtype(NA) %>% setcoltype("Commodities")

hatinv_byname(v)
hatinv_byname(r)
This function also works with lists.
hatinv_byname(list(v, v))
Watch out for 0 values
v2 <- matrix(0:1, ncol = 1, dimnames = list(c(paste0("i", 0:1)), c("p1"))) %>%

setrowtype("Industries") %>% setcoltype(NA)
Produces singular matrix error
Not run: v2 %>% hatize_byname() %>% invert_byname
Handles 0 values well
hatinv_byname(v2)
hatinv_byname(v2, inf_becomes = 42)
hatinv_byname(v2, inf_becomes = NULL)

hatize_byname 33

hatize_byname Creates a diagonal "hat" matrix from a vector

Description

A "hat" matrix is one in which the only non-zero elements are stored on the diagonal. To "hatize" a
vector is to place its elements on the diagonal of an otherwise-zero square matrix. v must be a matrix
object with one of its two dimensions of length 1 (i.e., a vector). The names of both dimensions of
the hatized matrix are the same and taken from v. Note that the vector names are sorted prior to
forming the "hat" matrix.

Usage

hatize_byname(v)

Arguments

v The vector from which a "hat" matrix is to be created.

Value

A square "hat" matrix with size equal to the length of v.

Examples

v <- matrix(1:10, ncol = 1, dimnames = list(c(paste0("i", 1:10)), c("c1"))) %>%
setrowtype("Industries") %>% setcoltype(NA)

r <- matrix(1:5, nrow = 1, dimnames = list(c("r1"), c(paste0("c", 1:5)))) %>%
setrowtype(NA) %>% setcoltype("Commodities")

hatize_byname(v)
hatize_byname(r)
This also works with lists.
hatize_byname(list(v, v))

identical_byname Compare two matrices "by name" for exact equality

Description

If operands are matrices, they are completed and sorted relative to one another prior to comparison.

Usage

identical_byname(...)

34 identize_byname

Arguments

... operands to be compared

Details

Comparisons are made by identical(a,b) so that variations among numbers within the computa-
tional precision will return FALSE.

If fuzzy comparison is needed, use equal_byname, which compares using isTRUE(all.equal(a,b)).

Value

TRUE iff all information is identical, including row and column types and row and column names
and entries in the matrices.

Examples

a <- matrix(1:4, nrow = 2)
b <- matrix(1:4, nrow = 2)
identical_byname(a, b)
identical_byname(a, b + 1e-100)
a <- a %>% setrowtype("Industries") %>% setcoltype("Commodities")
identical_byname(a, b) # FALSE because a has row and column types, but b does not.
b <- b %>% setrowtype("Industries") %>% setcoltype("Commodities")
identical_byname(a, b)
dimnames(a) <- list(c("i1", "i2"), c("c1", "c2"))
dimnames(b) <- list(c("c1", "c2"), c("i1", "i2"))
identical_byname(a, b) # FALSE, because row and column names are not equal
dimnames(b) <- dimnames(a)
identical_byname(a, b)

identize_byname Named identity matrix or vector

Description

Creates an identity matrix (I) or vector (i) of same size and with same names and same row and
column types as a.

Usage

identize_byname(a, margin = c(1, 2))

Arguments

a the matrix whose names and dimensions are to be preserved in an identity matrix
or vector

margin determines whether an identity vector or matrix is returned. See details.

Iminus_byname 35

Details

Behaviour for different values of margin are as follows:

• If margin = 1, makes a column matrix filled with 1s. Row names and type are taken from row
names and type of a. Column name and type are same as column type of a.

• If margin = 2, make a row matrix filled with 1s. Column names and type are taken from
column name and type of a. Row name and type are same as row type of a.

• If list(c(1,2)) (the default), make an identity matrix with 1s on the diagonal. Row and
column names are sorted on output.

Value

An identity matrix or vector.

Examples

M <- matrix(1:16, ncol = 4, dimnames=list(c(paste0("i", 1:4)), paste0("c", 1:4))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

identize_byname(M)
identize_byname(M, margin = c(1,2))
identize_byname(M, margin = 1)
identize_byname(M, margin = 2)
N <- matrix(c(-21, -12, -21, -10), ncol = 2, dimnames = list(c("b", "a"), c("b", "a"))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
identize_byname(N)
This also works with lists
identize_byname(list(M, M))

Iminus_byname Subtract a matrix with named rows and columns from a suitably named
and sized identity matrix (I)

Description

The order of rows and columns of m may change before subtracting from I, because the rows and
columns are sorted by name prior to subtracting from I. Furthermore, if m is not square, it will be
made square before subtracting from I by calling complete_and_sort.

Usage

Iminus_byname(a)

Arguments

a the matrix to be subtracted from I

36 invert_byname

Value

The difference between an identity matrix (I) and m (whose rows and columns have been completed
and sorted)

Examples

m <- matrix(c(-21, -12, -21, -10), ncol = 2, dimnames = list(c("b", "a"), c("b", "a"))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

Rows and columns are unsorted
diag(1, nrow = 2) - m
Rows and columns are sorted prior to subtracting from the identity matrix
Iminus_byname(m)
This also works with lists
Iminus_byname(list(m,m))
If the m is not square before subtracting from I,
it will be made square by the function complete_and_sort.
m2 <- matrix(c(1,2,3,4,5,6), ncol = 2, dimnames = list(c("a", "b", "c"), c("a", "b"))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
Iminus_byname(m2)

invert_byname Invert a matrix

Description

This function transposes row and column names as well as row and column types. Rows and
columns of a are sorted prior to inverting.

Usage

invert_byname(a)

Arguments

a the matrix to be inverted. a must be square.

Value

the inversion of a

Examples

m <- matrix(c(10,0,0,100), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:2))) %>%
setrowtype("Industry") %>% setcoltype("Commodity")

invert_byname(m)
matrixproduct_byname(m, invert_byname(m))
matrixproduct_byname(invert_byname(m), m)
invert_byname(list(m,m))

iszero_byname 37

iszero_byname Test whether this is the zero matrix

Description

Note that this function tests whether the elements of abs(a) are <= tol. So, you can set tol = 0 to
discover if a is EXACTLY the zero matrix.

Usage

iszero_byname(a, tol = 1e-06)

Arguments

a a matrix of list of matrices

tol the allowable deviation from 0 for any element

Value

TRUE iff this is the zero matrix within tol.

Examples

zero <- matrix(0, nrow = 50, ncol = 50)
iszero_byname(zero)
nonzero <- matrix(1:4, nrow = 2)
iszero_byname(nonzero)
Also works for lists
iszero_byname(list(zero, nonzero))
And it works for data frames
DF <- data.frame(A = I(list()), B = I(list()))
DF[[1,"A"]] <- zero
DF[[2,"A"]] <- nonzero
DF[[1,"B"]] <- nonzero
DF[[2,"B"]] <- zero
iszero_byname(DF$A)
iszero_byname(DF$B)
iszero_byname(matrix(1e-10, nrow = 2))
iszero_byname(matrix(1e-10, nrow = 2), tol = 1e-11)

38 logarithmicmean_byname

list_of_rows_or_cols Named list of rows or columns of matrices

Description

This function takes matrix m and converts it to a list of single-row (if margin == 1) or single-
column(if margin == 2) matrices. Each item in the list is named for its row (if margin == 1) or
column (if margin == 2).

Usage

list_of_rows_or_cols(a, margin)

Arguments

a a matrix or list of matrices (say, from a column of a data frame)

margin the margin of the matrices to be extracted (1 for rows, 2 for columns)

Details

Note that the result provides column vectors, regardless of the value of margin.

Value

a named list of rows or columns extracted from m

Examples

m <- matrix(data = c(1:6),
nrow = 2, ncol = 3,
dimnames = list(c("p1", "p2"), c("i1", "i2", "i3"))) %>%

setrowtype(rowtype = "Products") %>% setcoltype(coltype = "Industries")
list_of_rows_or_cols(m, margin = 1)
list_of_rows_or_cols(m, margin = 2)

logarithmicmean_byname

Name- and element-wise logarithmic mean of matrices

Description

The logarithmic mean of corresponding entries of a and b is 0 if a = 0 or b = 0, a if a = b, or (b -a)
/ (log(b) -log(a)) otherwise.

Usage

logarithmicmean_byname(a, b, base = exp(1))

logmean 39

Arguments

a first operand (a matrix or constant value or lists of same).

b second operand (a matrix or constant value or lists of same).

base the base of the logarithm used when computing the logarithmic mean. (Default
is base = exp(1).)

Details

This function performs a union and sorting of row and column names prior to performing logarith-
mic mean. Zeroes are inserted for missing matrix elements.

Internally, the third condition is implemented as (b -a) / log(b/a).

Note that (b -a) / log(b/a) = (a -b) / log(a/b), so logarithmic mean is commutative; the order
of arguments a and b does not change the result.

Value

A matrix representing the name-wise logarithmic mean of a and b.

Examples

library(dplyr)
m1 <- matrix(c(1:6), nrow = 3, ncol = 2) %>%

setrownames_byname(c("r1", "r2", "r3")) %>% setcolnames_byname(c("c1", "c2")) %>%
setrowtype("row") %>% setcoltype("col")

m2 <- matrix(c(7:12), nrow = 3, ncol = 2) %>%
setrownames_byname(c("r2", "r3", "r4")) %>% setcolnames_byname(c("c2", "c3")) %>%
setrowtype("row") %>% setcoltype("col")

logarithmicmean_byname(m1, m2)
This also works with lists
logarithmicmean_byname(list(m1, m1), list(m2, m2))
DF <- data.frame(m1 = I(list()), m2 = I(list()))
DF[[1,"m1"]] <- m1
DF[[2,"m1"]] <- m1
DF[[1,"m2"]] <- m2
DF[[2,"m2"]] <- m2
logarithmicmean_byname(DF$m1, DF$m2)
DF %>% mutate(logmeans = logarithmicmean_byname(m1, m2))

logmean Logarithmic mean of two numbers

Description

Calculates the logarithmic mean of two numbers.

Usage

logmean(a, b, base = exp(1))

40 log_byname

Arguments

a the first operand (must be non-negative)

b the second operand (must be non-negative)

base the base of the logarithm used in this calculation. (Default is exp(1).)

Details

This is an internal helper function for logarithmicmean_byname.

Value

0 if a = 0 or b = 0; x1 if a == b; and (a -b) / log(a/b,base = base) for all other values of a and b

Examples

matsbyname:::logmean(0, 0) # 0
matsbyname:::logmean(0, 1) # 0
matsbyname:::logmean(1, 0) # 0
matsbyname:::logmean(1, 1) # 1
matsbyname:::logmean(2, 1)
matsbyname:::logmean(1, 2) # commutative
matsbyname:::logmean(1, 10) # base = exp(1), the default
matsbyname:::logmean(1, 10, base = 10)

log_byname Logarithm of matrix elements

Description

Specify the base of the log with base argument.

Usage

log_byname(a, base = exp(1))

Arguments

a a matrix or list of matrices

base the base of the logarithm (default is exp(1), giving the natural logarithm)

Value

M with each element replaced by its base base logarithm

make_list 41

Examples

log_byname(exp(1))
m <- matrix(c(10,1,1,100), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:2))) %>%

setrowtype("Industry") %>% setcoltype("Commodity")
log_byname(m)
log_byname(m, base = 10)

make_list Makes a list of items in x, regardless of x’s type

Description

Repeats x as necessary to make n of them. Does not try to simplify x.

Usage

make_list(x, n, lenx = ifelse(is.vector(x), length(x), 1))

Arguments

x the object to be duplicated

n the number of times to be duplicated

lenx the length of item x. Normally lenx is taken to be length(x), but if x is itself
a list, you may wish for the list to be duplicated several times. In that case,
set lenx = 1.

Value

a list of x duplicated n times

Examples

m <- matrix(c(1:6), nrow=3, dimnames = list(c("r1", "r2", "r3"), c("c2", "c1")))
make_list(m, n = 1)
make_list(m, n = 2)
make_list(m, n = 5)
make_list(list(c(1,2), c(1,2)), n = 4)
m <- matrix(1:4, nrow = 2)
l <- list(m, m+100)
make_list(l, n = 4)
make_list(l, n = 1) # Warning because l is trimmed.
make_list(l, n = 5) # Warning because length(l) (i.e., 2) not evenly divisible by 5
make_list(list(c("r10", "r11"), c("c10", "c11")), n = 2) # Confused by x being a list
make_list(list(c("r10", "r11"), c("c10", "c11")), n = 2, lenx = 1) # Fix by setting lenx = 1

42 make_pattern

make_pattern Create regex patterns for row and column selection by name

Description

This function is intended for use with the select_rows_byname and select_cols_byname func-
tions. make_pattern correctly escapes special characters in row_col_names, such as (and), as
needed. Thus, it is highly recommended that make_pattern be used when constructing patterns for
row and column selections with select_rows_byname and select_cols_byname.

Usage

make_pattern(
row_col_names,
pattern_type = c("exact", "leading", "trailing", "anywhere")

)

Arguments

row_col_names a vector of row and column names

pattern_type one of exact, leading, trailing, or anywhere. Default is "exact".

Details

pattern_type controls the type of pattern created:

• exact produces a pattern that selects row or column names by exact match.

• leading produces a pattern that selects row or column names if the item in row_col_names
matches the beginnings of row or column names.

• trailing produces a pattern that selects row or column names if the item in row_col_names
matches the ends of row or column names.

• anywhere produces a pattern that selects row or column names if the item in row_col_names
matches any substring of row or column names.

Value

an extended regex pattern suitable for use with select_rows_byname or select_cols_byname.

Examples

make_pattern(row_col_names = c("a", "b"), pattern_type = "exact")

matricize_byname 43

matricize_byname Matricize a vector

Description

Converts a vector with rows or columns named according to notation into a matrix.

Usage

matricize_byname(a, notation)

Arguments

a a row (column) vector to be converted to a matrix based on its row (column)
names.

notation a string vector created by notation_vec() that identifies the notation for row
or column names.

Value

a matrix created from vector a.

Examples

v <- matrix(c(1,
2,
3,
4),

nrow = 4, ncol = 1, dimnames = list(c("p1 -> i1",
"p2 -> i1",
"p1 -> i2",
"p2 -> i2"))) %>%

setrowtype("Products -> Industries")
Default separator is " -> ".
matricize_byname(v, notation = arrow_notation())

matrixproduct_byname Name-wise matrix multiplication

Description

Name-wise matrix multiplication

Usage

matrixproduct_byname(...)

44 mean_byname

Arguments

... operands; constants, matrices, or lists of matrices
Multiplies operands from left to right. Performs a union and sorting of multipli-
cand rows and multiplier columns by name prior to multiplication. Zeroes are
inserted for missing matrix elements. Doing so ensures that the dimensions of
multiplicand and multiplier matrices will be conformable. I.e., the number of
columns in multiplicand will equal the number of rows in multiplier, so long as
the column names of multiplicand are unique and the row names of multiplier
are unique. If column type of the multiplicand is not same as row type of the
multiplier on any step of the multiplication, the function will fail. The result is
matrix product with row names from the first multiplicand and column names
from the last multiplier.

Value

A matrix representing the name-wise product of operands

Examples

library(dplyr)
V <- matrix(1:6, ncol = 3, dimnames = list(c("i1", "i2"), c("c1", "c2", "c3"))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
G <- matrix(1:4, ncol = 2, dimnames = list(c("c2", "c1"), c("i2", "i1"))) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
Z <- matrix(11:14, ncol = 2, dimnames = list(c("i1", "i2"), c("s1", "s2"))) %>%

setrowtype("Industries") %>% setcoltype("Sectors")
Succeeds because G is completed to include a row named c3 (that contains zeroes).
matrixproduct_byname(V, G)
Not run: V %*% G # Fails because E lacks a row named c3.
matrixproduct_byname(V, G, Z)
This also works with lists
matrixproduct_byname(list(V,V), list(G,G))
DF <- data.frame(V = I(list()), G = I(list()))
DF[[1,"V"]] <- V
DF[[2,"V"]] <- V
DF[[1,"G"]] <- G
DF[[2,"G"]] <- G
matrixproduct_byname(DFV, DFG)
DF %>% mutate(matprods = matrixproduct_byname(V, G))

mean_byname Name- and element-wise arithmetic mean of matrices

Description

Gives the arithmetic mean of operands in

mean_byname 45

Usage

mean_byname(...)

Arguments

... operands: constants, matrices, or lists of matrices

Details

This function performs a union and sorting of row and column names prior to performing arithmetic
mean. Zeroes are inserted for missing matrix elements.

Value

name-wise arithmetic mean of operands.

Examples

library(dplyr)
mean_byname(100, 50)
mean_byname(10, 20, 30)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
(U + G) / 2 # Non-sensical. Row and column names not respected.
mean_byname(U, G) # Row and column names respected! Should be 1, 2, 3, and 4.
mean_byname(U, G, G)
mean_byname(100, U)
mean_byname(100, 50, U)
mean_byname(10, G)
This also works with lists
mean_byname(list(100, 100), list(50, 50))
mean_byname(list(U,U), list(G,G))
DF <- data.frame(U = I(list()), G = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"G"]] <- G
DF[[2,"G"]] <- G
mean_byname(DFU, DFG)
DF %>% mutate(means = mean_byname(U, G))

46 naryapplylogical_byname

naryapplylogical_byname

Apply a function logically to numbers, matrices, or lists of numbers or
matrices

Description

Operands should be logical, although numerical operands are accepted. Numerical operands are
interpreted as 0 is FALSE, and any other number is TRUE.

Usage

naryapplylogical_byname(
FUN,
...,
.FUNdots = NULL,
match_type = c("all", "matmult", "none"),
set_rowcoltypes = TRUE,
.organize = TRUE

)

Arguments

FUN a binary function (that returns logical values) to be applied over operands

... operands; constants, matrices, or lists of matrices

.FUNdots a list of additional named arguments passed to FUN.

match_type one of "all", "matmult", or "none". When ... are matrices, "all" (the default)
indicates that rowtypes of all ... matrices must match and coltypes of all ...
matrices must match. If "matmult", the coltype of the first operand must match
the rowtype of the second operand for every sequential invocation of FUN. If
"none", neither coltypes nor rowtypes are checked by naryapply_byname().

set_rowcoltypes

tells whether to apply row and column types from operands in ... to the output
of each sequential invocation of FUN. Set TRUE (the default) to apply row and
column types. Set FALSE, to not apply row and column types to the output.

.organize a boolean that tells whether or not to automatically complete operands in ...
relative to each other and sort the rows and columns of the completed matrices.
This organizing is done on each sequential invocation of FUN. Normally, this
should be TRUE (the default). However, if FUN takes over this responsibility, set
to FALSE.

Details

This function is not exported, thereby retaining the right to future changes.

naryapply_byname 47

Value

the result of FUN applied logically to ...

Examples

matsbyname:::naryapplylogical_byname(`&`, TRUE, TRUE, TRUE)
matsbyname:::naryapplylogical_byname(`&`, TRUE, TRUE, FALSE)

naryapply_byname Apply a function "by name" to any number of operands

Description

Applies FUN to all operands in Other arguments have similar meaning as binaryapply_byname().
See details for more information.

Usage

naryapply_byname(
FUN,
...,
.FUNdots = NULL,
match_type = c("all", "matmult", "none"),
set_rowcoltypes = TRUE,
.organize = TRUE

)

Arguments

FUN a binary function to be applied "by name" to all operands in

... the operands for FUN.

.FUNdots a list of additional named arguments passed to FUN.

match_type one of "all", "matmult", or "none". When ... are matrices, "all" (the default)
indicates that rowtypes of all ... matrices must match and coltypes of all ...
matrices must match. If "matmult", the coltype of the first operand must match
the rowtype of the second operand for every sequential invocation of FUN. If
"none", neither coltypes nor rowtypes are checked by naryapply_byname().

set_rowcoltypes

tells whether to apply row and column types from operands in ... to the output
of each sequential invocation of FUN. Set TRUE (the default) to apply row and
column types. Set FALSE, to not apply row and column types to the output.

.organize a boolean that tells whether or not to automatically complete operands in ...
relative to each other and sort the rows and columns of the completed matrices.
This organizing is done on each sequential invocation of FUN. Normally, this
should be TRUE (the default). However, if FUN takes over this responsibility, set
to FALSE.

48 organize_args

Details

If only one ... argument is supplied, FUN must be capable of handling one argument, and the call
is routed to unaryapply_byname(). When set_rowcoltypes is TRUE, the rowcoltypes argument
of unaryapply_byname() is set to "all", but when set_rowcoltypes is FALSE, the rowcoltypes
argument of unaryapply_byname() is set to "none". If finer control is desired, the caller should
use unaryapply_byname() directly. If more than one argument is passed in ..., FUN must be
a binary function, but its use in by naryapply_byname() is "n-ary." Arguments match_type,
set_rowcoltypes, and .organize have same meaning as for binaryapply_byname(). Thus, all
of the operands in ... must obey the rules of type matching when match_type is TRUE.

naryapply_byname() and cumapply_byname() are similar. Their differences can be described by
considering a data frame. naryapply_byname() applies FUN to several columns (variables) of the
data frame. For example, sum_byname() applied to several variables gives another column con-
taining the sums across each row of the data frame. cumapply_byname() applies FUN to successive
entries in a single column. For example sum_byname() applied to a single column gives the sum of
all numbers in that column.

Value

the result of applying FUN to all operands in ...

Examples

naryapply_byname(FUN = sum_byname, 2, 3)
naryapply_byname(FUN = sum_byname, 2, 3, 4, -4, -3, -2)
Routes to unaryapply_byname
naryapply_byname(FUN = `^`, list(1,2,3), .FUNdots = list(2))

organize_args Organize binary arguments

Description

Organizes arguments of binary (2 arguments) _byname functions. Actions performed are:

• if only one argument is a list, make the other argument also a list of equal length.

• if both arguments are lists, ensure that they are same length.

• if one argument is a matrix and the other is a constant, make the constant into a matrix.

• ensures that row and column types match for typematch_margins.

• ensures that list item names match if both a and b are lists; no complaints are made if neither
a nor b has names.

• completes and sorts the matrices.

Usage

organize_args(a, b, match_type = "all", fill)

pow_byname 49

Arguments

a the first argument to be organized
b the second argument to be organized
match_type one of "all", "matmult", "none". When both a and b are matrices, "all" (the

default) indicates that rowtypes of a must match rowtypes of b and coltypes of
a must match coltypes of b. If "matmult", coltypes of a must match rowtypes
of b.

fill a replacement value for a or b if either is missing or NULL.

Value

a list with two elements (named a and b) containing organized versions of the arguments

pow_byname Powers of matrix elements

Description

Gives the result of raising all elements of a matrix or list of matrices to a power.

Usage

pow_byname(a, pow)

Arguments

a a matrix of list of matrices
pow the power to which elements of a will be raised

Value

a with each element raised to pow

Examples

library(dplyr)
pow_byname(2, 3)
m <- matrix(2, nrow = 2, ncol = 3, dimnames = list(paste0("r", 1:2), paste0("c", 1:3))) %>%

setrowtype("rows") %>% setcoltype("cols")
pow_byname(m, 2)
DF <- data.frame(m = I(list()), pow = I(list()))
DF[[1, "m"]] <- m
DF[[2, "m"]] <- m
DF[[1, "pow"]] <- 0.5
DF[[2, "pow"]] <- -1
DF %>% mutate(

sqrtm = pow_byname(m, 0.5),
mtopow = pow_byname(m, pow)

)

50 prepare_.FUNdots

prepare_.FUNdots Prepare the .FUNdots argument for *apply_byname functions.

Description

This is a helper function for the various *apply_byname functions.

Usage

prepare_.FUNdots(a, .FUNdots)

Arguments

a the main argument to an *apply_byname function.

.FUNdots a list of additional arguments to be applied to FUN in one of the *apply_byname
functions.

Details

We have four cases between a and any single item of .FUNdots:

• both a and the item of .FUNdots are lists

– if the item of .FUNdots (a list itself) has length different from 1 or length(a), throw an
error

– if the item of .FUNdots (a list itself) has length 1, replicate the single item to be a list of
length = length(a)

– if the item of .FUNdots (a list itself) has length = length(a), use the item of .FUNdots as
is

• a is a list but the item (argument) of .FUNdots is NOT a list

– if the item of .FUNdots (which is not a list) has length != 1, throw an error, because there
is ambiguity how the item of .FUNdots should be treated.

– if the item of .FUNdots (which is not a list) has length = 1, replicate that single item to be
a list of length = length(a)

• a is NOT a list, but the item of .FUNdots IS a list

– pass the argument along and hope for the best. This situation is probably an error. If so,
it will become apparent soon.

• neither a nor the item of .FUNdots is a list

– a should have length = 1, but a single matrix reports its length as the number of elements
of the matrix. So, we can’t check length in this situation.

– the item of .FUNdots is assumed to have length 1 and passed along

prep_vector_arg 51

Value

a reconfigured version of .FUNdots, ready for use by an *apply_byname function.

• both a and the item of .FUNdots are lists

– if the item of .FUNdots (a list itself) has length different from 1 or length(a), throw an
error

– if the item of .FUNdots (a list itself) has length 1, replicate the single item to be a list of
length = length(a)

– if the item of .FUNdots (a list itself) has length = length(a), use the item of .FUNdots as
is

• a is NOT a list, but the item of .FUNdots IS a list

– pass the argument along and hope for the best. This situation is probably an error. If so,
it will become apparent soon.

• a is a list but the item (argument) of .FUNdots is NOT a list This situation could be ambiguous.
Let’s say the list of a values has length 2, and an argument margin = c(1,2). Should margin =
1 be applied to a[[1]] and margin = 2 be applied to a[[2]]? Or should margin = c(1,2) be
applied to both a[[1]] and a[[2]]? This ambiguity should be handled by using the function
prep_vector_arg() within the function that calls unaryapply_byname(). For an example,
see identize_byname(). When the arguments are coming in from a data frame, there will be
no ambiguity, but the information will not be coming .FUNdots[[i]] as a list. Optimizing
for the data frame case, this function allows vectors of length equal to the length of the list
a, interpreting such vectors as applying in sequence to each a in turn. So the algorithm is as
follows:

– if a non-NULL item of .FUNdots (which is not a list) has length other than 1 or length(a),
throw an error.

– if a non-NULL item of .FUNdots (which is not a list) has length = 1, replicate that single
item to be a list of length = length(a).

– if a non-NULL item of .FUNdots (which is not a list) has length = length(a), leave it as-is.

• neither a nor the item of .FUNdots is a list

– a should have length = 1, but a single matrix reports its length as the number of elements
of the matrix. So, we can’t check length in this situation.

– the item of .FUNdots is assumed to have length 1 and passed along

prep_vector_arg Prepare a vector argument

Description

This is a helper function for many *_byname functions.

Usage

prep_vector_arg(a, vector_arg)

52 prodall_byname

Arguments

a a matrix or list of matrices

vector_arg the vector argument over which to apply a calculation

Details

It is potentially ambiguous to specify a vector or matrix argument, say, margin = c(1,2) when ap-
plying the *_byname functions to unary list of a. Rather, one should specify, say, margin = list(c(1, 2)
to avoid ambiguity. If a is a list, vector_arg is not a list and has length > 1 and length not equal to
the length of a, this function returns a list value for vector_arg. If a is not a list and vector_arg
is a list, this function returns an un-recursive, unlisted version of vector_arg.

Note that if vector_arg is a single matrix, it is automatically enclosed by a list when a is a list.

Value

vector_arg, possibly modified when a is a list

Examples

m <- matrix(c(2, 2))
matsbyname:::prep_vector_arg(list(m, m), vector_arg = c(1,2))

prodall_byname Product of all elements in a matrix

Description

This function is equivalent to a %>% rowprods_byname() %>% colprods_byname(), but returns a
single numeric value instead of a 1x1 matrix.

Usage

prodall_byname(a)

Arguments

a the matrix whose elements are to be multiplied

Value

the product of all elements in a as a numeric.

quotient_byname 53

Examples

library(dplyr)
M <- matrix(2, nrow=2, ncol=2, dimnames = list(paste0("i", 1:2), paste0("c", 1:2))) %>%

setrowtype("Industry") %>% setcoltype("Product")
prodall_byname(M)
rowprods_byname(M) %>% colprods_byname
Also works for lists
prodall_byname(list(M,M))
DF <- data.frame(M = I(list()))
DF[[1,"M"]] <- M
DF[[2,"M"]] <- M
prodall_byname(DF$M[[1]])
prodall_byname(DF$M)
res <- DF %>% mutate(

prods = prodall_byname(M)
)
res$prods

quotient_byname Name-wise matrix element division

Description

Element-wise division of two matrices.

Usage

quotient_byname(dividend, divisor)

Arguments

dividend Dividend matrix or constant

divisor Divisor matrix or constant

Details

Performs a union and sorting of names of rows and columns for both dividend and divisor prior
to element division. Zeroes are inserted for missing matrix elements. Doing so ensures that the
dimensions of the dividend and divisor will be conformable.

Value

A matrix representing the name-wise element quotient of dividend and divisor

54 rename_to_pref_suff_byname

Examples

library(dplyr)
quotient_byname(100, 50)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%

setrowtype("Commodities") %>% setcoltype("Industries")
U / G # Non-sensical. Names aren't aligned
quotient_byname(U, G)
quotient_byname(U, 10)
quotient_byname(10, G)
This also works with lists
quotient_byname(10, list(G,G))
quotient_byname(list(G,G), 10)
quotient_byname(list(U, U), list(G, G))
DF <- data.frame(U = I(list()), G = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"G"]] <- G
DF[[2,"G"]] <- G
quotient_byname(DFU, DFG)
DF %>% mutate(elementquotients = quotient_byname(U, G))

rename_to_pref_suff_byname

Rename matrix rows and columns by prefix and suffix

Description

It can be convenient to rename rows or columns of matrices based on retaining prefixes or suffixes.
This function provides that capability.

Usage

rename_to_pref_suff_byname(a, keep, margin = c(1, 2), notation)

Arguments

a a matrix or list of matrices whose rows or columns will be renamed.

keep one of "prefix" or "suffix" indicating which part of the row or column name to
retain.

margin one of 1, 2, or c(1,2) where 1 indicates rows and 2 indicates columns.

notation See notation_vec().

replaceNaN_byname 55

Details

A prefix is defined by an opening string (prefix_open) and a closing string (prefix_close). A
suffix is defined by an opening string (suffix_open) and a closing string (suffix_close). If
sep is provided and none of prefix_open, prefix_close, suffix_open, and suffix_close are
provided, default arguments become: * prefix_open: "", * prefix_close: sep, * suffix_open:
sep, and * suffix_close: "".

The keep parameter tells which portion to retain (prefixes or suffixes),

If prefixes or suffixes are not found in a row and/or column name, that name is unchanged.

Value

a with potentially different row or column names.

Examples

m <- matrix(c(1, 2,
3, 4,
5, 6), nrow = 3, byrow = TRUE,

dimnames = list(c("a -> b", "r2", "r3"), c("a -> b", "c -> d")))
m
rename_to_pref_suff_byname(m, keep = "prefix", notation = arrow_notation())
rename_to_pref_suff_byname(m, keep = "suffix", notation = arrow_notation())

replaceNaN_byname Replace NaN values with a value

Description

In a matrix or within matrices in a list, replace all NaN matrix values with val.

Usage

replaceNaN_byname(a, val = 0)

Arguments

a a matrix of list of matrices in which NaN will be replaced by val

val NaNs are replace by val

Value

a matrix or list of matrices in which all NaN are replaced by val

Examples

suppressWarnings(a <- matrix(c(1, sqrt(-1))))
replaceNaN_byname(a)
replaceNaN_byname(a, 42)

56 row-col-notation

row-col-notation Row and column notation

Description

It is often convenient to represent row and column names with notation that includes a prefix and
a suffix, with corresponding separators or start-end string sequences. There are several functions
that call notation_vec() to generate specialized versions or otherwise manipulate row and column
names on their own or as row or column names.

• notation_vec() builds a vector of notation symbols in a standard format that is used by
matsbyname in several places. By default, it builds a list of notation symbols that provides an
arrow separator (" -> ") between prefix and suffix.

• arrow_notation() builds a list of notation symbols that provides an arrow separator (" -> ")
between prefix and suffix.

• paren_notation() builds a list of notation symbols that provides parentheses around the
suffix ("prefix (suffix)").

• bracket_notation() builds a list of notation symbols that provides square brackets around
the suffix ("prefix [suffix]").

• split_pref_suff() splits prefixes from suffixes, returning each in a list with names pref
and suff. If no delimiters are found, x is returned in the pref item, unmodified.

• paste_pref_suff(() paste0’s prefixes and suffixes, the inverse of split_pref_suff().

• flip_pref_suff() switches the location of prefix and suffix, such that the prefix becomes the
suffix, and the suffix becomes the prefix. E.g., "a -> b" becomes "b -> a" or "a [b]" becomes
"b [a]".

• switch_notation() switches from one type of notation to another based on the from and to
arguments. Optionally, prefix and suffix can be flipped.

• switch_notation_byname() switches matrix row and/or column names from one type of
notation to another based on the from and to arguments. Optionally, prefix and suffix can be
flipped.

If sep only is specified (default is " -> "), pref_start, pref_end, suff_start, and suff_end are
set appropriately.

None of the strings in a notation vector are considered part of the prefix or suffix. E.g., "a -> b" in
arrow notation means that "a" is the prefix and "b" is the suffix.

Usage

notation_vec(
sep = " -> ",
pref_start = "",
pref_end = "",
suff_start = "",
suff_end = ""

)

row-col-notation 57

arrow_notation()

paren_notation(suff_start = " (", suff_end = ")")

bracket_notation(suff_start = " [", suff_end = "]")

split_pref_suff(x, notation = arrow_notation())

paste_pref_suff(
ps = list(pref = pref, suff = suff),
pref = NULL,
suff = NULL,
notation = arrow_notation()

)

flip_pref_suff(x, notation = arrow_notation())

switch_notation(x, from, to, flip = FALSE)

switch_notation_byname(a, margin = c(1, 2), from, to, flip = FALSE)

Arguments

sep a string separator between prefix and suffix. Default is " -> ".

pref_start a string indicating the start of a prefix. Default is NULL.

pref_end a string indicating the end of a prefix. Default is the value of sep.

suff_start a string indicating the start of a suffix. Default is the value of sep.

suff_end a string indicating the end of a suffix. Default is NULL.

x a string or list of strings to be operated upon.

notation a notation vector generated by one of the *_notation() functions, such as notation_vec(),
arrow_notation(), or bracket_notation(). Default is arrow_notation().

ps a list of prefixes and suffixes in which each item of the list is itself a list with
two items named pref and suff.

pref a string or list of strings that are prefixes. Default is NULL.

suff a string of list of strings that are suffixes. Default is NULL.

from the notation to switch away from.

to the notation to switch to.

flip a boolean that tells whether to also flip the notation. Default is FALSE.

a a matrix or list of matrices whose row and/or column notation is to be changed.

margin 1 for rows, 2 for columns, or c(1,2) for both rows and columns. Default is
c(1,2).

58 rowprods_byname

Value

for notation_vec(), arrow_notation(), and bracket_notation(), a string vector with named
items pref_start, pref_end, suff_start, and suff_end; for split_pref_suff(), a string list
with named items pref and suff; for paste_pref_suff(), slip_pref_suff(), and switch_notation(),
a string list in notation format specified by various notation arguments, including from, and to,
for switch_row_col_notation_byname(), matrices with row and column names with switched
notation, per arguments.

Examples

notation_vec()
arrow_notation()
bracket_notation()
split_pref_suff("a -> b", notation = arrow_notation())
flip_pref_suff("a [b]", notation = bracket_notation())
switch_notation("a -> b", from = arrow_notation(), to = bracket_notation())
switch_notation("a -> b", from = arrow_notation(), to = bracket_notation(),

flip = TRUE)
m <- matrix(c(1, 2,

3, 4), nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("b [a]", "d [c]"), c("f [e]", "h [g]"))) %>%

setrowtype("Products [Industries]") %>% setcoltype("Industries [Products]")
m
switch_notation_byname(m, from = bracket_notation(), to = arrow_notation(),

flip = TRUE)
Also works for lists.
Note that margin must be specified as a list here.
switch_notation_byname(list(m, m), margin = list(c(1, 2)),

from = bracket_notation(),
to = arrow_notation(), flip = TRUE)

rowprods_byname Row products, sorted by name

Description

Calculates row products (the product of all elements in a row) for a matrix. An optional colname
for the resulting column vector can be supplied. If colname is NULL or NA (the default), the column
name is set to the column type as given by coltype(a).

Usage

rowprods_byname(a, colname = NA)

Arguments

a a matrix or list of matrices from which row products are desired.

colname name of the output column containing row products

rowsums_byname 59

Value

a column vector of type matrix containing the row products of a

Examples

library(dplyr)
M <- matrix(c(1:6), ncol = 2, dimnames = list(paste0("i", 3:1), paste0("c", 1:2))) %>%

setrowtype("Industries") %>% setcoltype("Products")
rowprods_byname(M)
rowprods_byname(M, "E.ktoe")
This also works with lists
rowprods_byname(list(M, M))
rowprods_byname(list(M, M), "E.ktoe")
rowprods_byname(list(M, M), NA)
rowprods_byname(list(M, M), NULL)
DF <- data.frame(M = I(list()))
DF[[1,"M"]] <- M
DF[[2,"M"]] <- M
rowprods_byname(DF$M[[1]])
rowprods_byname(DF$M)
ans <- DF %>% mutate(rs = rowprods_byname(M))
ans
ans$rs[[1]]
Nonsensical
Not run: rowprods_byname(NULL)

rowsums_byname Row sums, sorted by name

Description

Calculates row sums for a matrix by post-multiplying by an identity vector (containing all 1’s). In
contrast to rowSums (which returns a numeric result), the return value from rowsums_byname is a
matrix. An optional colname for the resulting column vector can be supplied. If colname is NULL
or NA (the default), the column name is set to the column type as given by coltype(a).

Usage

rowsums_byname(a, colname = NA)

Arguments

a a matrix or list of matrices from which row sums are desired.

colname name of the output column containing row sums

Value

a column vector of type matrix containing the row sums of m

60 rowtype

Examples

library(dplyr)
m <- matrix(c(1:6), ncol = 2, dimnames = list(paste0("i", 3:1), paste0("c", 1:2))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
rowsums_byname(m)
rowsums_byname(m, "E.ktoe")
This also works with lists
rowsums_byname(list(m, m))
rowsums_byname(list(m, m), "E.ktoe")
rowsums_byname(list(m, m), NA)
rowsums_byname(list(m, m), NULL)
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
rowsums_byname(DF$m[[1]])
rowsums_byname(DF$m)
ans <- DF %>% mutate(rs = rowsums_byname(m))
ans
ans$rs[[1]]
Nonsensical
Not run: rowsums_byname(NULL)

rowtype Row type

Description

Extracts row type of a.

Usage

rowtype(a)

Arguments

a the object from which you want to extract row types

Value

the row type of a

Examples

library(dplyr)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%

setrowtype(rowtype = "Commodities") %>% setcoltype("Industries")
rowtype(U)
This also works for lists
rowtype(list(U,U))

samestructure_byname 61

samestructure_byname Test whether matrices or lists of matrices have same structure

Description

Matrices are said to have the same structure if row and column types are identical and if row and
column names are identical. Values can be different.

Usage

samestructure_byname(...)

Arguments

... operands to be compared

Value

TRUE if all operands have the same structure, FALSE otherwise.

Examples

samestructure_byname(2, 2)
productnames <- c("p1", "p2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%

setrowtype("Products") %>% setcoltype("Industries")
samestructure_byname(U, U)
samestructure_byname(U, U %>% setrowtype("row"))
samestructure_byname(U %>% setcoltype("col"), U)
Also works with lists
samestructure_byname(list(U, U), list(U, U))

select_cols_byname Select columns of a matrix (or list of matrices) by name

Description

Arguments indicate which columns are to be retained and which are to be removed. For maximum
flexibility, arguments are extended regex patterns that are matched against column names.

Usage

select_cols_byname(a, retain_pattern = "$^", remove_pattern = "$^")

62 select_cols_byname

Arguments

a a matrix or a list of matrices

retain_pattern an extended regex or list of extended regular expressions that specifies which
columns of m to retain. Default pattern ($^) retains nothing.

remove_pattern an extended regex or list of extended regular expressions that specifies which
columns of m to remove Default pattern ($^) removes nothing.

Details

If a is NULL, NULL is returned.

Patterns are compared against column names using extended regex. If no column names of a match
the retain_pattern, NULL is returned. If no column names of a match the remove_pattern, a is
returned.

Retaining columns takes precedence over removing columns, always.

Some typical patterns are:

• ^Electricity$|^Oil$: column names that are EXACTLY Electricity or Oil.

• ^Electricity|^Oil: column names that START WITH Electricity or Oil.

• Electricity|Oil: column names that CONTAIN Electricity or Oil anywhere within
them.

Given a list of column names, a pattern can be constructed easily using the make_pattern function.

make_pattern escapes regex strings using escapeRegex. This function assumes that retain_pattern
and remove_pattern have already been suitably escaped.

Note that the default retain_pattern and remove_pattern ($^) retain nothing and remove noth-
ing.

Note that if all columns are removed from a, NULL is returned.

Value

a matrix that is a subset of a with columns selected by retain_pattern and remove_pattern.

Examples

m <- matrix(1:16, ncol = 4, dimnames=list(c(paste0("i", 1:4)), paste0("p", 1:4))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

select_cols_byname(m, retain_pattern = make_pattern(c("p1", "p4"), pattern_type = "exact"))
select_cols_byname(m, remove_pattern = make_pattern(c("p1", "p3"), pattern_type = "exact"))
Also works for lists and data frames
select_cols_byname(list(m,m), retain_pattern = "^p1$|^p4$")

select_rows_byname 63

select_rows_byname Select (or de-select) rows of a matrix (or list of matrices) by name

Description

Arguments indicate which rows are to be retained and which are to be removed. For maximum
flexibility, arguments are extended regex patterns that are matched against row names.

Usage

select_rows_byname(a, retain_pattern = "$^", remove_pattern = "$^")

Arguments

a a matrix or a list of matrices

retain_pattern an extended regex or list of extended regular expressions that specifies which
rows of m to retain. Default pattern ($^) retains nothing.

remove_pattern an extended regex or list of extended regular expressions that specifies which
rows of m to remove Default pattern ($^) removes nothing.

Details

If a is NULL, NULL is returned.

Patterns are compared against row names using extended regex. If no row names of m match the
retain_pattern, NULL is returned. If no row names of m match the remove_pattern, m is returned.
Note that the default retain_pattern and remove_pattern ($^) retain nothing and remove noth-
ing.

Retaining rows takes precedence over removing rows, always.

Some typical patterns are:

• ^Electricity$|^Oil$: row names that are EXACTLY Electricity or EXACTLY Oil.

• ^Electricity|^Oil: row names that START WITH Electricity or START WITH Oil.

• Electricity|Oil: row names that CONTAIN Electricity or CONTAIN Oil anywhere
within them.

Given a list of row names, a pattern can be constructed easily using the make_pattern function.
make_pattern escapes regex strings using Hmisc::escapeRegex(). This function assumes that
retain_pattern and remove_pattern have already been suitably escaped.

Note that if all rows are removed from a, NULL is returned.

Value

a matrix that is a subset of m with rows selected by retain_pattern and remove_pattern.

64 setcolnames_byname

Examples

m <- matrix(1:16, ncol = 4, dimnames=list(c(paste0("i", 1:4)), paste0("p", 1:4))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

select_rows_byname(m, retain_pattern = make_pattern(c("i1", "i4"), pattern_type = "exact"))
select_rows_byname(m, remove_pattern = make_pattern(c("i1", "i3"), pattern_type = "exact"))
Also works for lists and data frames
select_rows_byname(list(m,m), retain_pattern = "^i1$|^i4$")

setcolnames_byname Sets column names

Description

Sets column names in a way that is amenable to use in piping operations in a functional program-
ming way. if a is NULL, NULL is returned. If a is a constant, it is converted to a matrix and colnames
are applied. If a is a matrix, colnames should be a vector of new column names that is as long as
the number of columns in a. If a is a list of matrices, colnames can also be a list, and it should be as
long as a. Or colnames can be a vector of column names which will be applied to every matrix in
the list of a. Each item in the list should be a vector containing column names for the corresponding
matrix in a.

Usage

setcolnames_byname(a, colnames)

Arguments

a A matrix or a list of matrices in which column names are to be set

colnames A vector of new column names or a list of vectors of new column names

Value

a copy of a with new column names

Examples

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:3))) %>%
setrowtype("Industries") %>% setcoltype("Commodities")

setcolnames_byname(m, c("a", "b", "c"))

setcoltype 65

setcoltype Sets column type for a matrix or a list of matrices

Description

This function is a wrapper for attr so that setting can be accomplished by the pipe operator (%>%).
Column types are strings stored in the coltype attribute.

Usage

setcoltype(a, coltype)

Arguments

a the matrix on which column type is to be set

coltype the type of item stored in columns

Details

#’ If is.null(coltype), the coltype attribute is deleted and subsequent calls to coltype will return
NULL.

Value

a with coltype attribute set.

Examples

library(dplyr)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames))
U %>% setcoltype("Industries")
This also works for lists
setcoltype(list(U,U), coltype = "Industries")
setcoltype(list(U,U), coltype = list("Industries", "Industries"))
DF <- data.frame(U = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
setcoltype(DF$U, "Industries")
DF <- DF %>% mutate(newcol = setcoltype(U, "Industries"))
DF$newcol[[1]]
DF$newcol[[2]]

66 setrownames_byname

setrownames_byname Sets row names

Description

Sets row names in a way that is amenable to use in piping operations in a functional programming
way. If a is NULL, NULL is returned. If a is a constant, it is converted to a matrix and rownames
are applied. If a is a matrix, rownames should be a vector of new row names that is as long as the
number of rows in a. If a is a list of matrices, rownames can also be a list, and it should be as long
a. Or rownames can be a vector of row names which will be applied to every matrix in the list of a.
Each item in the list should be a vector containing row names for the corresponding matrix in a.

Usage

setrownames_byname(a, rownames)

Arguments

a A matrix or a list of matrices in which row names are to be set

rownames A vector of new row names or a list of vectors of new row names

Value

a copy of m with new row names

Examples

library(dplyr)
m <- matrix(c(1:6), nrow = 2, dimnames = list(paste0("i", 1:2), paste0("c", 1:3))) %>%

setrowtype("Industries") %>% setcoltype("Commodities")
setrownames_byname(m, c("a", "b"))
setrownames_byname(m %>% setrowtype("Industries") %>% setcoltype("Commodities"), c("c", "d"))
m %>% setrownames_byname(NULL)
m %>% setrownames_byname(c(NA, NA))
2 %>% setrownames_byname("row")
This also works for lists
setrownames_byname(list(m,m), list(c("a", "b")))
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
setrownames_byname(DF$m, list(c("r1", "r2")))
setrownames_byname(DF$m, list(c("c", "d")))
DF <- DF %>% mutate(m = setrownames_byname(m, list(c("r1", "r2"))))
DF$m[[1]]

setrowtype 67

setrowtype Sets row type for a matrix or a list of matrices

Description

This function is a wrapper for attr so that setting can be accomplished by the pipe operator (%>%).
Row types are strings stored in the rowtype attribute.

Usage

setrowtype(a, rowtype)

Arguments

a the matrix on which row type is to be set

rowtype the type of item stored in rows

Details

If is.null(rowtype), the rowtype attribute is deleted and subsequent calls to rowtype will return
NULL.

Value

a with rowtype attribute set to rowtype.

Examples

library(dplyr)
commoditynames <- c("c1", "c2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames))
U %>% setrowtype("Commodities")
This also works for lists
setrowtype(list(U,U), rowtype = "Commodities")
setrowtype(list(U,U), rowtype = list("Commodities", "Commodities"))
DF <- data.frame(U = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
setrowtype(DF$U, "Commodities")
DF <- DF %>% mutate(newcol = setrowtype(U, "Commodities"))
DF$newcol[[1]]
DF$newcol[[2]]

68 sort_rows_cols

sort_rows_cols Sorts rows and columns of a matrix

Description

Checks that row names are unique and that column names are unique. Then, sorts the rows and
columns in a way that ensures any other matrix with the same row and column names will have the
same order.

Usage

sort_rows_cols(a, margin = c(1, 2), roworder = NA, colorder = NA)

Arguments

a a matrix or data frame whose rows and columns are to be sorted

margin specifies the subscript(s) in a over which sorting will occur. margin has nearly
the same semantic meaning as in apply. For rows only, give 1; for columns
only, give 2; for both rows and columns, give c(1,2), the default value.

roworder specifies the order for rows with default sort(rownames(a)). If NA (the de-
fault), default sort order is used. Unspecified rows are removed from the output,
thus providing a way to delete rows from a. Extraneous row names (row names
in roworder that do not appear in a) are ignored.

colorder specifies the order for rows with default sort(colnames(a)). If NA (the de-
fault), default sort order is used. Unspecified columns are removed from the
output, thus providing a way to delete columns from a. Extraneous column
names (column names in colorder that do not appear in a) are ignored.

Details

Default sort order is given by base::sort() with decreasing = FALSE.

Value

A modified version of a with sorted rows and columns

Examples

m <- matrix(c(1:6), nrow=3, dimnames = list(c("r3", "r5", "r1"), c("c4", "c2")))
sort_rows_cols(m)
sort_rows_cols(t(m))
sort_rows_cols(m, margin=1) # Sorts rows
sort_rows_cols(m, margin=2) # Sorts columns
v <- matrix(c(1:5), ncol=1, dimnames=list(rev(paste0("r", 1:5)), "c1")) # Column vector
sort_rows_cols(v)
sort_rows_cols(v, margin = 1) # Sorts rows
sort_rows_cols(v, margin = 2) # No effect: only one column

sumall_byname 69

r <- matrix(c(1:4), nrow=1, dimnames=list("r1", rev(paste0("c", 1:4)))) # Row vector
sort_rows_cols(r) # Sorts columns
n <- matrix(c(1,2), nrow = 1, dimnames = list(NULL, c("c2", "c1"))) # No row name
sort_rows_cols(n) # Sorts columns, because only one row.
Also works with lists
sort_rows_cols(list(m,m)) # Sorts rows and columns for both m's.
Sort rows only for first one, sort rows and columns for second one.
Row order is applied to all m's. Column order is natural.
sort_rows_cols(a = list(m,m), margin = 1, roworder = list(c("r5", "r3", "r1")))
Columns are sorted as default, because no colorder is given.
roworder is ignored.
sort_rows_cols(a = list(m,m), margin = 2, roworder = list(c("r5", "r3", "r1")))
Both columns and rows sorted, rows by the list, columns in natural order.
sort_rows_cols(a = list(m,m), margin = c(1,2), roworder = list(c("r5", "r3", "r1")))

sumall_byname Sum of all elements in a matrix

Description

This function is equivalent to a %>% rowsums_byname() %>% colsums_byname(), but returns a sin-
gle numeric value instead of a 1x1 matrix.

Usage

sumall_byname(a)

Arguments

a the matrix whose elements are to be summed

Value

the sum of all elements in a as a numeric

Examples

library(dplyr)
m <- matrix(2, nrow=2, ncol=2, dimnames = list(paste0("i", 1:2), paste0("c", 1:2))) %>%

setrowtype("Industry") %>% setcoltype("Commodity")
sumall_byname(m)
rowsums_byname(m) %>% colsums_byname
Also works for lists
sumall_byname(list(m,m))
DF <- data.frame(m = I(list()))
DF[[1,"m"]] <- m
DF[[2,"m"]] <- m
sumall_byname(DF$m[[1]])
sumall_byname(DF$m)
res <- DF %>% mutate(

70 sum_byname

sums = sumall_byname(m)
)
res$sums

sum_byname Name-wise addition of matrices

Description

Performs a union and sorting of addend and augend row and column names prior to summation.
Zeroes are inserted for missing matrix elements. Treats missing or NULL operands as 0.

Usage

sum_byname(...)

Arguments

... operands: constants, matrices, or lists of matrices

Value

A matrix representing the name-wise sum of addend and augend

Examples

library(dplyr)
sum_byname(2, 2)
sum_byname(2, 2, 2)
sum_byname(2, 2, -2, -2)
productnames <- c("p1", "p2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%

setrowtype("Products") %>% setcoltype("Industries")
Y <- matrix(1:4, ncol = 2, dimnames = list(rev(productnames), rev(industrynames))) %>%

setrowtype("Products") %>% setcoltype("Industries")
sum_byname(U, 100)
sum_byname(200, Y)
U + Y # Non-sensical. Row and column names not respected.
sum_byname(U, U)
sum_byname(U, Y)
sum_byname(U, U, Y, Y)
V <- matrix(1:4, ncol = 2, dimnames = list(industrynames, productnames)) %>%

setrowtype("Industries") %>% setcoltype("Products")
U + V # row and column names are non-sensical and blindly taken from first argument (U)
Not run: sum_byname(U, V) # Fails, because row and column types are different
This also works with lists
sum_byname(list(U,U), list(Y,Y))
sum_byname(list(U,U), list(100,100))
sum_byname(list(U,U), as.list(rep_len(100, 2)))

transpose_byname 71

DF <- data.frame(U = I(list()), Y = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"Y"]] <- Y
DF[[2,"Y"]] <- Y
sum_byname(DFU, DFY)
DF %>% mutate(sums = sum_byname(U, Y))
sum_byname(U) # If only one argument, return it.
sum_byname(2, NULL) # Gives 2
sum_byname(2, NA) # Gives NA
sum_byname(NULL, 1) # Gives 1
sum_byname(list(NULL, 1), list(1, 1))
DF2 <- data.frame(U = I(list()), Y = I(list()))
DF2[[1,"U"]] <- NULL
DF2[[2,"U"]] <- U
DF2[[1,"Y"]] <- Y
DF2[[2,"Y"]] <- Y
sum_byname(DF2$U, DF2$Y)
DF3 <- DF2 %>% mutate(sums = sum_byname(U, Y))
DF3
DF3$sums[[1]]
DF3$sums[[2]]

transpose_byname Transpose a matrix by name

Description

Gives the transpose of a matrix or list of matrices

Usage

transpose_byname(a)

Arguments

a the matrix to be transposed

Value

the transposed matrix

Examples

m <- matrix(c(11,21,31,12,22,32), ncol = 2, dimnames = list(paste0("i", 1:3), paste0("c", 1:2))) %>%
setrowtype("Industry") %>% setcoltype("Commodity")

transpose_byname(m)
transpose_byname(list(m,m))

72 unaryapply_byname

unaryapply_byname Apply a unary function by name

Description

FUN is applied to a using additional arguments .FUNdots to FUN. If a is a list, the names of a are
applied to the output.

Usage

unaryapply_byname(
FUN,
a,
.FUNdots = NULL,
rowcoltypes = c("all", "transpose", "row", "col", "none")

)

Arguments

FUN a unary function to be applied "by name" to a.

a the argument to FUN.

.FUNdots a list of additional named arguments passed to FUN.

rowcoltypes a string that tells how to transfer row and column types of a to output. See
details.

Details

Note that .FUNdots can be a rectangular two-dimensional list of arguments to FUN. If so, .FUNdots
is interpreted as follows:

• The first dimension of .FUNdots contains named arguments to FUN.

• The second dimension of .FUNdots contains unique values of the named arguments to be
applied along the list that is a.

The length of the first dimension of .FUNdots is the number of arguments supplied to FUN. The
length of the second dimension of .FUNdots must be equal to the length of a.

See prepare_.FUNdots() for more details on the .FUNdots argument.

Options for the rowcoltypes argument are:

• "all": transfer both row and column types of a directly to output.

• "transpose": rowtype of a becomes coltype of output; coltype of a becomes rowtype of output.
"transpose" is helpful for FUNs that transpose a upon output.

• "row": rowtype of a becomes both rowtype and coltype of output.

• "col": coltype of a becomes both rowtype and coltype of output.

• "none": rowtype and coltype not set by unaryapply_byname. Rather, FUN will set rowtype
and coltype.

vectorize_byname 73

Value

the result of applying FUN "by name" to a.

Examples

productnames <- c("p1", "p2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%

setrowtype("Products") %>% setcoltype("Industries")
difference_byname(0, U)
unaryapply_byname(`-`, U)

vectorize_byname Vectorize a matrix

Description

Converts a matrix into a column vector. Each element of the matrix becomes an entry in the column
vector, with rows named via the notation argument. Callers may want to transpose the matrix first
with transpose_byname().

Usage

vectorize_byname(a, notation)

Arguments

a the matrix to be vectorized.

notation a string vector created by notation_vec().

Details

The notation argument is also applied to rowtype and coltype attributes.

Value

a column vector containing all elements of a, with row names assigned as "rowname sep colname".

Examples

m <- matrix(c(1, 5,
4, 5),

nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("p1", "p2"), c("i1", "i2"))) %>%

setrowtype("Products") %>% setcoltype("Industries")
m
vectorize_byname(m, notation = arrow_notation())
If a single number is provided, the number will be returned as a 1x1 column vector

74 vectorize_byname

with some additional attributes.
vectorize_byname(42, notation = arrow_notation())
attributes(vectorize_byname(42, notation = arrow_notation()))

Index

abs_byname, 3
aggregate_byname, 4
aggregate_to_pref_suff_byname, 5
all_byname, 6
and_byname, 7
any_byname, 8
apply, 15, 16, 68
arrow_notation (row-col-notation), 56

binaryapply_byname, 9
bracket_notation (row-col-notation), 56

clean_byname, 10
colprods_byname, 11
colsums_byname, 12
coltype, 13
compare_byname, 14
complete_and_sort, 14
complete_rows_cols, 16
count_vals_byname, 18
count_vals_incols_byname, 19
count_vals_inrows_byname, 20
cumapply_byname, 21
cumprod_byname, 22
cumsum_byname, 23

difference_byname, 24

elementapply_byname, 25
equal_byname, 26, 34
escapeRegex, 62
exp_byname, 27

flip_pref_suff (row-col-notation), 56
fractionize_byname, 27

geometricmean_byname, 28
getcolnames_byname, 29
getrownames_byname, 30

hadamardproduct_byname, 30

hatinv_byname, 31
hatize_byname, 33

identical_byname, 26, 33
identize_byname, 34
Iminus_byname, 35
invert_byname, 36
iszero_byname, 37

list_of_rows_or_cols, 38
log_byname, 40
logarithmicmean_byname, 38
logmean, 39

make_list, 41
make_pattern, 42, 62, 63
matricize_byname, 43
matrixproduct_byname, 43
mean_byname, 44

naryapply_byname, 47
naryapplylogical_byname, 46
notation_vec (row-col-notation), 56

organize_args, 48

paren_notation (row-col-notation), 56
paste_pref_suff (row-col-notation), 56
pow_byname, 49
prep_vector_arg, 51
prepare_.FUNdots, 50
prodall_byname, 52

quotient_byname, 53

rename_to_pref_suff_byname, 54
replaceNaN_byname, 55
row-col-notation, 56
rowprods_byname, 58
rowsums_byname, 59
rowtype, 60

75

76 INDEX

samestructure_byname, 61
select_cols_byname, 61
select_rows_byname, 63
setcolnames_byname, 64
setcoltype, 65
setrownames_byname, 66
setrowtype, 67
sort_rows_cols, 68
split_pref_suff (row-col-notation), 56
sum_byname, 70
sumall_byname, 69
switch_notation (row-col-notation), 56
switch_notation_byname

(row-col-notation), 56

transpose_byname, 71

unaryapply_byname, 72

vectorize_byname, 73

	abs_byname
	aggregate_byname
	aggregate_to_pref_suff_byname
	all_byname
	and_byname
	any_byname
	binaryapply_byname
	clean_byname
	colprods_byname
	colsums_byname
	coltype
	compare_byname
	complete_and_sort
	complete_rows_cols
	count_vals_byname
	count_vals_incols_byname
	count_vals_inrows_byname
	cumapply_byname
	cumprod_byname
	cumsum_byname
	difference_byname
	elementapply_byname
	equal_byname
	exp_byname
	fractionize_byname
	geometricmean_byname
	getcolnames_byname
	getrownames_byname
	hadamardproduct_byname
	hatinv_byname
	hatize_byname
	identical_byname
	identize_byname
	Iminus_byname
	invert_byname
	iszero_byname
	list_of_rows_or_cols
	logarithmicmean_byname
	logmean
	log_byname
	make_list
	make_pattern
	matricize_byname
	matrixproduct_byname
	mean_byname
	naryapplylogical_byname
	naryapply_byname
	organize_args
	pow_byname
	prepare_.FUNdots
	prep_vector_arg
	prodall_byname
	quotient_byname
	rename_to_pref_suff_byname
	replaceNaN_byname
	row-col-notation
	rowprods_byname
	rowsums_byname
	rowtype
	samestructure_byname
	select_cols_byname
	select_rows_byname
	setcolnames_byname
	setcoltype
	setrownames_byname
	setrowtype
	sort_rows_cols
	sumall_byname
	sum_byname
	transpose_byname
	unaryapply_byname
	vectorize_byname
	Index

