
Package ‘margins’
May 23, 2018

Type Package

Title Marginal Effects for Model Objects

Description An R port of Stata's 'margins' command, which can be used to
calculate marginal (or partial) effects from model objects.

License MIT + file LICENSE

Version 0.3.23

Date 2018-05-22

URL https://github.com/leeper/margins

BugReports https://github.com/leeper/margins/issues

Imports utils, stats, prediction (>= 0.3.6), data.table, graphics,
grDevices, MASS

Suggests methods, knitr, rmarkdown, testthat, ggplot2, gapminder,
sandwich, stargazer, lme4

Enhances AER, betareg, nnet, ordinal, survey

ByteCompile true

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Thomas J. Leeper [aut, cre] (<https://orcid.org/0000-0003-4097-6326>),
Jeffrey Arnold [ctb],
Vincent Arel-Bundock [ctb]

Maintainer Thomas J. Leeper <thosjleeper@gmail.com>

Repository CRAN

Date/Publication 2018-05-22 19:57:57

R topics documented:
alexseev . 2
cplot . 3

1

https://github.com/leeper/margins
https://github.com/leeper/margins/issues

2 alexseev

dydx . 9
image.lm . 11
marginal_effects . 15
margins . 18
plot.margins . 23

Index 25

alexseev Example Data

Description

Xenophobic Vote Share in 2003 Russian Duma Elections

Usage

alexseev

Format

Data frame with 72 observations and 11 variables.

region Region

xenovote ldpr all vote 03

slavicshare percent population slav, 1989

slavicshare_changeonslav percentage-point change of the proportion non-slavic

inc9903 average income, change from 1999 to 2003

eduhi02 higher education, 2002

unemp02 unemployment, 2002

apt9200 privatized apartments from 1992 to 2003

vsall03 vote "against all" in 2003

brdcont location along russia’s borders with disputed areas

Source

http://mattgolder.com/files/research/jop2.zip

http://mattgolder.com/files/research/jop2.zip

cplot 3

cplot Conditional predicted value and average marginal effect plots for
models

Description

Draw one or more conditioanl effects plots reflecting predictions or marginal effects from a model,
conditional on a covariate. Currently methods exist for “lm”, “glm”, “loess” class models.

Usage

cplot(object, ...)

S3 method for class 'lm'
cplot(object, x = attributes(terms(object))[["term.labels"]][1L],
dx = x, what = c("prediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L,
xvals = prediction::seq_range(data[[x]], n = n), level = 0.95,
draw = TRUE, xlab = x, ylab = if (match.arg(what) == "prediction")
paste0("Predicted value") else paste0("Marginal effect of ", dx),
xlim = NULL, ylim = NULL, lwd = 1L, col = "black", lty = 1L,
se.type = c("shade", "lines", "none"), se.col = "black",
se.fill = grDevices::gray(0.5, 0.5), se.lwd = lwd, se.lty = if
(match.arg(se.type) == "lines") 1L else 0L, factor.lty = 0L,
factor.pch = 19L, factor.col = se.col, factor.fill = factor.col,
factor.cex = 1L, xaxs = "i", yaxs = xaxs, las = 1L, scatter = FALSE,
scatter.pch = 19L, scatter.col = se.col, scatter.bg = scatter.col,
scatter.cex = 0.5, rug = TRUE, rug.col = col, rug.size = -0.02, ...)

S3 method for class 'clm'
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L, xvals = seq_range(data[[x]], n
= n), level = 0.95, draw = TRUE, xlab = x, ylab = if (match.arg(what)
== "effect") paste0("Marginal effect of ", dx) else paste0("Predicted value"),
xlim = NULL, ylim = if (match.arg(what) %in% c("prediction",
"stackedprediction")) c(0, 1.04) else NULL, lwd = 1L, col = "black",
lty = 1L, factor.lty = 1L, factor.pch = 19L, factor.col = col,
factor.fill = factor.col, factor.cex = 1L, xaxs = "i", yaxs = xaxs,
las = 1L, scatter = FALSE, scatter.pch = 19L,
scatter.col = factor.col, scatter.bg = scatter.col, scatter.cex = 0.5,
rug = TRUE, rug.col = col, rug.size = -0.02, ...)

S3 method for class 'glm'

4 cplot

cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "effect"), data = prediction::find_data(object),
type = c("response", "link"), vcov = stats::vcov(object), at, n = 25L,
xvals = prediction::seq_range(data[[x]], n = n), level = 0.95,
draw = TRUE, xlab = x, ylab = if (match.arg(what) == "prediction")
paste0("Predicted value") else paste0("Marginal effect of ", dx),
xlim = NULL, ylim = NULL, lwd = 1L, col = "black", lty = 1L,
se.type = c("shade", "lines", "none"), se.col = "black",
se.fill = grDevices::gray(0.5, 0.5), se.lwd = lwd, se.lty = if
(match.arg(se.type) == "lines") 1L else 0L, factor.lty = 0L,
factor.pch = 19L, factor.col = se.col, factor.fill = factor.col,
factor.cex = 1L, xaxs = "i", yaxs = xaxs, las = 1L, scatter = FALSE,
scatter.pch = 19L, scatter.col = se.col, scatter.bg = scatter.col,
scatter.cex = 0.5, rug = TRUE, rug.col = col, rug.size = -0.02, ...)

S3 method for class 'loess'
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "effect"), data = prediction::find_data(object),
type = c("response", "link"), vcov = stats::vcov(object), at, n = 25L,
xvals = prediction::seq_range(data[[x]], n = n), level = 0.95,
draw = TRUE, xlab = x, ylab = if (match.arg(what) == "prediction")
paste0("Predicted value") else paste0("Marginal effect of ", dx),
xlim = NULL, ylim = NULL, lwd = 1L, col = "black", lty = 1L,
se.type = c("shade", "lines", "none"), se.col = "black",
se.fill = grDevices::gray(0.5, 0.5), se.lwd = lwd, se.lty = if
(match.arg(se.type) == "lines") 1L else 0L, factor.lty = 0L,
factor.pch = 19L, factor.col = se.col, factor.fill = factor.col,
factor.cex = 1L, xaxs = "i", yaxs = xaxs, las = 1L, scatter = FALSE,
scatter.pch = 19L, scatter.col = se.col, scatter.bg = scatter.col,
scatter.cex = 0.5, rug = TRUE, rug.col = col, rug.size = -0.02, ...)

S3 method for class 'polr'
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L, xvals = seq_range(data[[x]], n
= n), level = 0.95, draw = TRUE, xlab = x, ylab = if (match.arg(what)
== "effect") paste0("Marginal effect of ", dx) else paste0("Predicted value"),
xlim = NULL, ylim = if (match.arg(what) %in% c("prediction",
"stackedprediction")) c(0, 1.04) else NULL, lwd = 1L, col = "black",
lty = 1L, factor.lty = 1L, factor.pch = 19L, factor.col = col,
factor.fill = factor.col, factor.cex = 1L, xaxs = "i", yaxs = xaxs,
las = 1L, scatter = FALSE, scatter.pch = 19L,
scatter.col = factor.col, scatter.bg = scatter.col, scatter.cex = 0.5,
rug = TRUE, rug.col = col, rug.size = -0.02, ...)

cplot 5

S3 method for class 'multinom'
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L, xvals = seq_range(data[[x]], n
= n), level = 0.95, draw = TRUE, xlab = x, ylab = if (match.arg(what)
== "effect") paste0("Marginal effect of ", dx) else paste0("Predicted value"),
xlim = NULL, ylim = if (match.arg(what) %in% c("prediction",
"stackedprediction")) c(0, 1.04) else NULL, lwd = 1L, col = "black",
lty = 1L, factor.lty = 1L, factor.pch = 19L, factor.col = col,
factor.fill = factor.col, factor.cex = 1L, xaxs = "i", yaxs = xaxs,
las = 1L, scatter = FALSE, scatter.pch = 19L,
scatter.col = factor.col, scatter.bg = scatter.col, scatter.cex = 0.5,
rug = TRUE, rug.col = col, rug.size = -0.02, ...)

Arguments

object A model object.

... Additional arguments passed to plot.

x A character string specifying the name of variable to use as the x-axis dimension
in the plot.

dx If what = "effect", the variable whose conditional marginal effect should be
displayed. By default it is x (so the plot displays the marginal effect of x across
values of x); ignored otherwise. If dx is a factor with more than 2 levels, an error
will be issued.

what A character string specifying whether to draw a “prediction” (fitted values from
the model, calculated using predict) or an “effect” (average marginal effect of
dx conditional on x, using margins). Methods for classes other than “lm” or
“glm” may provided additional options (e.g., cplot.polr() provides “stacked-
prediction” and “class” alternatives).

data A data frame to override the default value offered in object[["model"]].

type A character string specifying whether to calculate predictions on the response
scale (default) or link (only relevant for non-linear models).

vcov A matrix containing the variance-covariance matrix for estimated model coeffi-
cients, or a function to perform the estimation with model as its only argument.

at Currently ignored.

n An integer specifying the number of points across x at which to calculate the
predicted value or marginal effect, when x is numeric. Ignored otherwise.

xvals A numeric vector of values at which to calculate predictions or marginal effects,
if x is numeric. By default, it is calculated from the data using seq_range. If x
is a factor, this is ignored, as is n.

level The confidence level required (used to draw uncertainty bounds).

6 cplot

draw A logical (default TRUE), specifying whether to draw the plot. If FALSE, the data
used in drawing are returned as a list of data.frames. This might be useful if you
want to plot using an alternative plotting package (e.g., ggplot2). Also, if set to
value “add”, then the resulting data is added to the existing plot.

xlab A character string specifying the value of xlab in plot.

ylab A character string specifying the value of ylab in plot.

xlim A two-element numeric vector specifying the x-axis limits. Set automatically if
missing.

ylim A two-element numeric vector specifying the y-axis limits. Set automatically if
missing.

lwd An integer specifying the width of the prediction or marginal effect line. See
lines. If x is a factor variable in the model, this is used to set the line width of
the error bars.

col A character string specifying the color of the prediction or marginal effect line.
If x is a factor variable in the model, this is used to set the color of the error bars.

lty An integer specifying the “line type” of the prediction or marginal effect line.
See par. If x is a factor variable in the model, this is used to set the line type of
the error bars.

se.type A character string specifying whether to draw the confidence interval as “lines”
(the default, using lines) or a “shade” (using polygon).

se.col If se.type = "lines", a character string specifying the color of the confidence
interval lines. If se.type = "shade", the color of the shaded region border.

se.fill If se.type = "shade", the color of the shaded region. Ignored otherwise.

se.lwd If se.type = "lines", the width of the confidence interval lines. See lines.

se.lty If se.type = "lines", an integer specifying the “line type” of the confidence
interval lines; if se.type = "shade", the line type of the shaded polygon
border. See par.

factor.lty If x is a factor variable in the model, this is used to set the line type of an
optional line connecting predictions across factor levels. If factor.lty = 0L
(the default), no line is drawn.. See par.

factor.pch If x is a factor variable in the model, the shape to use when drawing points. See
points.

factor.col If x is a factor variable in the model, the color to use for the border of the points.
See points.

factor.fill If x is a factor variable in the model, the color to use for the fill of the points.
See points.

factor.cex If x is a factor variable in the model, the “expansion factor” to use for the point
size. See points.

xaxs A character string specifying xaxs. See par.

yaxs A character string specifying xaxs. See par.

las An integer string specifying las. See par.

scatter A logical indicating whether to plot the observed data in data as a scatterplot.

cplot 7

scatter.pch If scatter = TRUE, an integer specifying a shape to use for plotting the data.
See points.

scatter.col If scatter = TRUE, a character string specifying a color to use for plotting the
data. See points.

scatter.bg If scatter = TRUE, a character string specifying a color to use for plotting the
data. See points.

scatter.cex If scatter = TRUE, an integer specifying the size of the points. See points.

rug A logical specifying whether to include an x-axis “rug” (see rug).

rug.col A character string specifying col to rug.

rug.size A numeric value specifying ticksize to rug.

Details

Note that when what = "prediction", the plots show predictions holding values of the data at
their mean or mode, whereas when what = "effect" average marginal effects (i.e., at observed
values) are shown.

The overall aesthetic is somewhat similar to to the output produced by the marginalModelPlot()
function in the car package.

Value

A tidy data frame containing the data used to draw the plot. Use draw = FALSE to simply generate
the data structure for use elsewhere.

See Also

plot.margins, persp.lm

Examples

Not run:
require('datasets')
prediction from several angles
m <- lm(Sepal.Length ~ Sepal.Width, data = iris)
cplot(m)

more complex model
m <- lm(Sepal.Length ~ Sepal.Width * Petal.Width * I(Petal.Width ^ 2),

data = head(iris, 50))
marginal effect of 'Petal.Width' across 'Petal.Width'
cplot(m, x = "Petal.Width", what = "effect", n = 10)

factor independent variables
mtcars[["am"]] <- factor(mtcars[["am"]])
m <- lm(mpg ~ am * wt, data = mtcars)
predicted values for each factor level
cplot(m, x = "am")
marginal effect of each factor level across numeric variable
cplot(m, x = "wt", dx = "am", what = "effect")

https://cran.r-project.org/package=car

8 cplot

marginal effect of 'Petal.Width' across 'Sepal.Width'
without drawing the plot
this might be useful for using, e.g., ggplot2 for plotting
tmp <- cplot(m, x = "Sepal.Width", dx = "Petal.Width",

what = "effect", n = 10, draw = FALSE)
if (require("ggplot2")) {

use ggplot2 instead of base graphics
ggplot(tmp, aes(x = Petal.Width, y = "effect")) +

geom_line(lwd = 2) +
geom_line(aes(y = effect + 1.96*se.effect)) +
geom_line(aes(y = effect - 1.96*se.effect))

}
a non-linear model
m <- glm(am ~ wt*drat, data = mtcars, family = binomial)
cplot(m, x = "wt") # prediction

effects on linear predictor and outcome
cplot(m, x = "drat", dx = "wt", what = "effect", type = "link")
cplot(m, x = "drat", dx = "wt", what = "effect", type = "response")

plot conditional predictions across a third factor
local({

iris$long <- rbinom(nrow(iris), 1, 0.6)
x <- glm(long ~ Sepal.Width*Species, data = iris)
cplot(x, x = "Sepal.Width", data = iris[iris$Species == "setosa",],

ylim = c(0,1), col = "red", se.fill = rgb(1,0,0,.5), xlim = c(2,4.5))
cplot(x, x = "Sepal.Width", data = iris[iris$Species == "versicolor",],

draw = "add", col = "blue", se.fill = rgb(0,1,0,.5))
cplot(x, x = "Sepal.Width", data = iris[iris$Species == "virginica",],

draw = "add", col = "green", se.fill = rgb(0,0,1,.5))
})

ordinal outcome
if (require("MASS")) {

x is a factor variable
house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq,

data = housing)
predicted probabilities
cplot(house.plr)
cumulative predicted probabilities
cplot(house.plr, what = "stacked")
ggplot2 example
if (require("ggplot2")) {
ggplot(cplot(house.plr), aes(x = xvals, y = yvals, group = level)) +

geom_line(aes(color = level))
}

x is continuous
cyl.plr <- polr(factor(cyl) ~ wt, data = mtcars)
cplot(cyl.plr, col = c("red", "purple", "blue"), what = "stacked")
cplot(cyl.plr, what = "class")

}

dydx 9

End(Not run)

dydx Marginal Effect of a Given Variable

Description

Differentiate an Estimated Model Function with Respect to One Variable, or calculate a discrete
difference (“first difference”) as appropriate.

Usage

dydx(data, model, variable, ...)

Default S3 method:
dydx(data, model, variable, type = c("response", "link"),

change = c("dydx", "minmax", "iqr", "sd"), eps = 1e-07,
as.data.frame = TRUE, ...)

S3 method for class 'factor'
dydx(data, model, variable, type = c("response", "link"),
fwrap = FALSE, as.data.frame = TRUE, ...)

S3 method for class 'ordered'
dydx(data, model, variable, type = c("response", "link"),
fwrap = FALSE, as.data.frame = TRUE, ...)

S3 method for class 'logical'
dydx(data, model, variable, type = c("response", "link"),
as.data.frame = TRUE, ...)

Arguments

data The dataset on which to to calculate ŷ.

model The model object to pass to prediction.

variable A character string specifying the variable to calculate the derivative or discrete
change for.

... Ignored.

type The type of prediction. Default is “response”.

change For numeric variables, a character string specifying the type of change to ex-
press. The default is the numerical approximation of the derivative. Alternative
values are occasionally desired quantities: “minmax” (the discrete change mov-
ing from min(x) to max(x)), “iqr” (the move from the 1st quartile to 3rd quartile
of x), or “sd” (the change from mean(x) - sd(x) to mean(x) + sd(x)), or

10 dydx

a two-element numeric vector expressing values of the variable to calculate the
prediction for (and difference the associated predictions).

eps If change == "dydx" (the default), the value of the step ε to use in calculation
of the numerical derivative for numeric variables.

as.data.frame A logical indicating whether to return a data frame (the default) or a matrix.

fwrap A logical specifying how to name factor columns in the response.

Details

These functions provide a simple interface to the calculation of marginal effects for specific vari-
ables used in a model, and are the workhorse functions called internally by marginal_effects.

dydx is an S3 generic with classes implemented for specific variable types. S3 method dispatch,
somewhat atypically, is based upon the class of data[[variable]].

For numeric (and integer) variables, the method calculates an instantaneous marginal effect using a
simple “central difference” numerical differentiation:

f(x+ 1
2h)− f(x−

1
2h)

dh

, where (h = max(|x|, 1)
√
ε and the value of ε is given by argument eps. This procedure is subject

to change in the future.

For factor variables (or character variables, which are implicitly coerced to factors by modelling
functions), discrete first-differences in predicted outcomes are reported instead (i.e., change in pre-
dicted outcome when factor is set to a given level minus the predicted outcome when the factor is
set to its baseline level). These are sometimes called “partial effects”. If you want to use numeri-
cal differentiation for factor variables (which you probably do not want to do), enter them into the
original modelling function as numeric values rather than factors.

For ordered factor variables, the same approach as factors is used. This may contradict the output of
modelling function summaries, which rely on options("contrasts") to determine the contrasts
to use (the default being contr.poly rather than contr.treatment, the latter being used normally
for unordered factors).

For logical variables, the same approach as factors is used, but always moving from FALSE to TRUE.

Value

A data frame, typically with one column unless the variable is a factor with more than two lev-
els. The names of the marginal effect columns begin with “dydx_” to distinguish them from the
substantive variables of the same names.

References

Miranda, Mario J. and Paul L. Fackler. 2002. Applied Computational Economics and Finance. p.
103.

Greene, William H. 2012. Econometric Analysis. 7th edition. pp. 733–741.

Cameron, A. Colin and Pravin K. Trivedi. 2010. Microeconometric Using Stata. Revised edition.
pp. 106–108, 343–356, 476–478.

image.lm 11

See Also

marginal_effects, margins

Examples

require("datasets")
x <- lm(mpg ~ cyl * hp + wt, data = head(mtcars))
marginal effect (numerical derivative)
dydx(head(mtcars), x, "hp")

other discrete differences
change from min(mtcars$hp) to max(mtcars$hp)
dydx(head(mtcars), x, "hp", change = "minmax")
change from 1st quartile to 3rd quartile
dydx(head(mtcars), x, "hp", change = "iqr")
change from mean(mtcars$hp) +/- sd(mtcars$hp)
dydx(head(mtcars), x, "hp", change = "sd")
change between arbitrary values of mtcars$hp
dydx(head(mtcars), x, "hp", change = c(75,150))

factor variables
mtcars[["cyl"]] <- factor(mtcars$cyl)
x <- lm(mpg ~ cyl, data = head(mtcars))
dydx(head(mtcars), x, "cyl")

image.lm Perspective and heatmap/contour plots for models

Description

Draw one or more perspectives plots reflecting predictions or marginal effects from a model, or the
same using a flat heatmap or “filled contour” (image) representation. Currently methods exist for
“lm”, “glm”, and “loess” models.

Usage

S3 method for class 'lm'
image(x, xvar = attributes(terms(x))[["term.labels"]][1],
yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar,
what = c("prediction", "effect"), type = c("response", "link"),
vcov = stats::vcov(x), nx = 25L, ny = nx, nz = 20, xlab = xvar,
ylab = yvar, xaxs = "i", yaxs = xaxs, bty = "o",
col = gray(seq(0.05, 0.95, length.out = nz), alpha = 0.75),
contour = TRUE, contour.labels = NULL, contour.drawlabels = TRUE,
contour.cex = 0.6, contour.col = "black", contour.lty = 1,
contour.lwd = 1, ...)

12 image.lm

S3 method for class 'glm'
image(x, xvar = attributes(terms(x))[["term.labels"]][1],
yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar,
what = c("prediction", "effect"), type = c("response", "link"),
vcov = stats::vcov(x), nx = 25L, ny = nx, nz = 20, xlab = xvar,
ylab = yvar, xaxs = "i", yaxs = xaxs, bty = "o",
col = gray(seq(0.05, 0.95, length.out = nz), alpha = 0.75),
contour = TRUE, contour.labels = NULL, contour.drawlabels = TRUE,
contour.cex = 0.6, contour.col = "black", contour.lty = 1,
contour.lwd = 1, ...)

S3 method for class 'loess'
image(x, xvar = attributes(terms(x))[["term.labels"]][1],
yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar,
what = c("prediction", "effect"), type = c("response", "link"),
vcov = stats::vcov(x), nx = 25L, ny = nx, nz = 20, xlab = xvar,
ylab = yvar, xaxs = "i", yaxs = xaxs, bty = "o",
col = gray(seq(0.05, 0.95, length.out = nz), alpha = 0.75),
contour = TRUE, contour.labels = NULL, contour.drawlabels = TRUE,
contour.cex = 0.6, contour.col = "black", contour.lty = 1,
contour.lwd = 1, ...)

S3 method for class 'lm'
persp(x, xvar = attributes(terms(x))[["term.labels"]][1],
yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar,
what = c("prediction", "effect"), type = c("response", "link"),
vcov = stats::vcov(x), nx = 25L, ny = nx, theta = 45, phi = 10,
shade = 0.75, xlab = xvar, ylab = yvar, zlab = if (match.arg(what) ==
"prediction") "Predicted value" else paste0("Marginal effect of ", dx),
ticktype = c("detailed", "simple"), ...)

S3 method for class 'glm'
persp(x, xvar = attributes(terms(x))[["term.labels"]][1],
yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar,
what = c("prediction", "effect"), type = c("response", "link"),
vcov = stats::vcov(x), nx = 25L, ny = nx, theta = 45, phi = 10,
shade = 0.75, xlab = xvar, ylab = yvar, zlab = if (match.arg(what) ==
"prediction") "Predicted value" else paste0("Marginal effect of ", dx),
ticktype = c("detailed", "simple"), ...)

S3 method for class 'loess'
persp(x, xvar = attributes(terms(x))[["term.labels"]][1],
yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar,
what = c("prediction", "effect"), type = c("response", "link"),
vcov = stats::vcov(x), nx = 25L, ny = nx, theta = 45, phi = 10,
shade = 0.75, xlab = xvar, ylab = yvar, zlab = if (match.arg(what) ==
"prediction") "Predicted value" else paste0("Marginal effect of ", dx),
ticktype = c("detailed", "simple"), ...)

image.lm 13

Arguments

x A model object.

xvar A character string specifying the name of variable to use as the ‘x’ dimension in
the plot. See persp for details.

yvar A character string specifying the name of variable to use as the ‘y’ dimension in
the plot. See persp for details.

dx A character string specifying the name of the variable for which the conditional
average marginal effect is desired when what = "effect". By default this is
xvar.

what A character string specifying whether to draw “prediction” (fitted values from
the model, calculated using predict) or “effect” (marginal effect of dx, using
margins).

type A character string specifying whether to calculate predictions on the response
scale (default) or link (only relevant for non-linear models).

vcov A matrix containing the variance-covariance matrix for estimated model coeffi-
cients, or a function to perform the estimation with model as its only argument.

nx An integer specifying the number of points across x at which to calculate the
predicted value or marginal effect.

ny An integer specifying the number of points across y at which to calculate the
predicted value or marginal effect.

nz An integer specifying, for image, the number of breakpoints to use when color-
ing the plot.

xlab A character string specifying the value of xlab in persp or image.

ylab A character string specifying the value of ylab in persp or image.

xaxs A character string specifying the x-axis type (see par).

yaxs A character string specifying the y-axis type (see par).

bty A character string specifying the box type (see par).

col A character vector specifying colors to use when coloring the contour plot.

contour For image, a logical specifying whether to overlay contour lines onto the heatmap
using contour.

contour.labels For image, if contour = TRUE a logical specifying whether to overlay contour
lines onto the heatmap.

contour.drawlabels

For image, if contour = TRUE a logical specifying whether to overlay contour
lines onto the heatmap.

contour.cex For image, if contour = TRUE and contour.drawlabels = TRUE a numeric
specifying the label size for contour line labels (see par).

contour.col For image, if contour = TRUE a character string specifying a color for contour
lines.

contour.lty For image, if contour = TRUE an integer specifying a line type for contour lines
(see par).

14 image.lm

contour.lwd For image, if contour = TRUE an integer specifying a line width for contour
lines (see par).

... Additional arguments passed to persp or image.

theta For persp, an integer vector specifying the value of theta in persp. If length
greater than 1, multiple subplots are drawn with different rotations.

phi For persp, an integer vector specifying the value of phi in persp. If length
greater than 1, multiple subplots are drawn with different rotations.

shade For persp, an integer vector specifying the value of shade in persp.

zlab A character string specifying the value of zlab (vertical axis label) in persp.

ticktype A character string specifying one of: “detailed” (the default) or “simple”. See
persp.

See Also

plot.margins, cplot

Examples

Not run:
require('datasets')
prediction from several angles
m <- lm(mpg ~ wt*drat, data = mtcars)
persp(m, theta = c(45, 135, 225, 315))

flat/heatmap representation
image(m)

marginal effect of 'drat' across drat and wt
m <- lm(mpg ~ wt*drat*I(drat^2), data = mtcars)
persp(m, xvar = "drat", yvar = "wt", what = "effect",

nx = 10, ny = 10, ticktype = "detailed")

a non-linear model
m <- glm(am ~ wt*drat, data = mtcars, family = binomial)
persp(m, theta = c(30, 60)) # prediction
flat/heatmap representation
image(m)

effects on linear predictor and outcome
persp(m, xvar = "drat", yvar = "wt", what = "effect", type = "link")
persp(m, xvar = "drat", yvar = "wt", what = "effect", type = "response")

End(Not run)

marginal_effects 15

marginal_effects Differentiate a Model Object with Respect to All (or Specified) Vari-
ables

Description

Extract marginal effects from a model object, conditional on data, using dydx.

Usage

marginal_effects(model, data, variables = NULL, ...)

S3 method for class 'margins'
marginal_effects(model, data, variables = NULL, ...)

Default S3 method:
marginal_effects(model, data = find_data(model,
parent.frame()), variables = NULL, type = c("response", "link"),
eps = 1e-07, as.data.frame = TRUE, varslist = NULL, ...)

S3 method for class 'glm'
marginal_effects(model, data = find_data(model, parent.frame()),
variables = NULL, type = c("response", "link"), eps = 1e-07,
as.data.frame = TRUE, varslist = NULL, ...)

S3 method for class 'lm'
marginal_effects(model, data = find_data(model, parent.frame()),
variables = NULL, type = c("response", "link"), eps = 1e-07,
as.data.frame = TRUE, varslist = NULL, ...)

S3 method for class 'loess'
marginal_effects(model, data = find_data(model,
parent.frame()), variables = NULL, type = c("response", "link"),
eps = 1e-07, as.data.frame = TRUE, varslist = NULL, ...)

S3 method for class 'merMod'
marginal_effects(model, data = find_data(model),
variables = NULL, type = c("response", "link"), eps = 1e-07,
as.data.frame = TRUE, varslist = NULL, ...)

S3 method for class 'lmerMod'
marginal_effects(model, data = find_data(model),
variables = NULL, type = c("response", "link"), eps = 1e-07,
as.data.frame = TRUE, varslist = NULL, ...)

S3 method for class 'nnet'
marginal_effects(model, data = find_data(model,

16 marginal_effects

parent.frame()), variables = NULL, eps = 1e-07, varslist = NULL,
as.data.frame = TRUE, ...)

S3 method for class 'polr'
marginal_effects(model, data = find_data(model,
parent.frame()), variables = NULL, eps = 1e-07, varslist = NULL,
as.data.frame = TRUE, ...)

Arguments

model A model object, perhaps returned by lm or glm

data A data.frame over which to calculate marginal effects. This is optional, but may
be required when the underlying modelling function sets model = FALSE.

variables A character vector with the names of variables for which to compute the marginal
effects. The default (NULL) returns marginal effects for all variables.

... Arguments passed to methods, and onward to dydx methods and possibly further
to prediction methods. This can be useful, for example, for setting type (pre-
dicted value type), eps (precision), or category (category for multi-category
outcome models), etc.

type A character string indicating the type of marginal effects to estimate. Mostly
relevant for non-linear models, where the reasonable options are “response” (the
default) or “link” (i.e., on the scale of the linear predictor in a GLM).

eps A numeric value specifying the “step” to use when calculating numerical deriva-
tives. By default this is the smallest floating point value that can be represented
on the present architecture.

as.data.frame A logical indicating whether to return a data frame (the default) or a matrix.

varslist A list structure used internally by margins. Users should not set this.

Details

Users likely want to use the fully featured margins function rather than marginal_effects, which
merely performs estimation of the marginal effects but simply returns a data frame. margins, by
contrast, does some convenient packaging around these results and supports additional functional-
ity, like variance estimation and counterfactual estimation procedures. The methods for this func-
tion provide lower-level functionality that extracts unit-specific marginal effects from an estimated
model with respect to all variables specified in data (or the subset specified in variables) and
returns a data frame. See dydx for computational details. Note that for factor and logical class
variables, discrete changes in the outcome are reported rather than instantaneous marginal effects.

Methods are currently implemented for the following object classes:

• “betareg”, see betareg

• “glm”, see glm, glm.nb

• “ivreg”, see ivreg

• “lm”, see lm

• “loess”, see loess

marginal_effects 17

• “merMod”, see lmer, glmer

• “nnet”, see nnet

• “polr”, see polr

• “svyglm”, see svyglm

A method is also provided for the object classes “margins” to return a simplified data frame from
complete “margins” objects.

Value

An data frame with number of rows equal to nrow(data), where each row is an observation and
each column is the marginal effect of a variable used in the model formula.

See Also

dydx, margins

Examples

require("datasets")
x <- lm(mpg ~ cyl * hp + wt, data = mtcars)
marginal_effects(x)

factor variables report discrete differences
x <- lm(mpg ~ factor(cyl) * factor(am), data = mtcars)
marginal_effects(x)

get just marginal effects from "margins" object
require('datasets')
m <- margins(lm(mpg ~ hp, data = mtcars[1:10,]))
marginal_effects(m)
marginal_effects(m)

multi-category outcome
if (requireNamespace("nnet")) {

data("iris3", package = "datasets")
ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),

species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))
m <- nnet::nnet(species ~ ., data = ird, size = 2, rang = 0.1,

decay = 5e-4, maxit = 200, trace = FALSE)
marginal_effects(m) # default
marginal_effects(m, category = "v") # explicit category

}

18 margins

margins Marginal Effects Estimation

Description

This package is an R port of Stata’s ‘margins’ command, implemented as an S3 generic margins()
for model objects, like those of class “lm” and “glm”. margins() is an S3 generic function for
building a “margins” object from a model object. Methods are currently implemented for several
model classes (see Details, below).

The package also provides a low-level function, marginal_effects, to estimate those quantities
and return a data frame of unit-specific effects and another even lower-level function, dydx, to
provide variable-specific derivatives from models. Some of the underlying architecture for the
package is provided by the low-level function prediction, which provides a consistent data frame
interface to predict for a large number of model types. If a prediction method exists for a model
class, margin should work for the model class but only those classes listed here have been tested
and specifically supported.

Usage

margins(model, ...)

S3 method for class 'betareg'
margins(model, data = find_data(model, parent.frame()),
variables = NULL, at = NULL, type = c("response", "link"),
vcov = stats::vcov(model, phi = FALSE), vce = c("delta", "simulation",
"bootstrap", "none"), iterations = 50L, unit_ses = FALSE, eps = 1e-07,
...)

Default S3 method:
margins(model, data = find_data(model, parent.frame()),
variables = NULL, at = NULL, type = c("response", "link"),
vcov = stats::vcov(model), vce = c("delta", "simulation", "bootstrap",
"none"), iterations = 50L, unit_ses = FALSE, eps = 1e-07, ...)

S3 method for class 'glm'
margins(model, data = find_data(model, parent.frame()),
variables = NULL, at = NULL, type = c("response", "link"),
vcov = stats::vcov(model), vce = c("delta", "simulation", "bootstrap",
"none"), iterations = 50L, unit_ses = FALSE, eps = 1e-07, ...)

S3 method for class 'lm'
margins(model, data = find_data(model, parent.frame()),
variables = NULL, at = NULL, type = c("response", "link"),
vcov = stats::vcov(model), vce = c("delta", "simulation", "bootstrap",
"none"), iterations = 50L, unit_ses = FALSE, eps = 1e-07, ...)

margins 19

S3 method for class 'loess'
margins(model, data, variables = NULL, at = NULL,
vce = "none", eps = 1e-07, ...)

S3 method for class 'merMod'
margins(model, data = find_data(model), variables = NULL,
at = NULL, type = c("response", "link"), vcov = stats::vcov(model),
vce = c("delta", "simulation", "bootstrap", "none"), iterations = 50L,
unit_ses = FALSE, eps = 1e-07, ...)

S3 method for class 'lmerMod'
margins(model, data = find_data(model), variables = NULL,
at = NULL, type = c("response", "link"), vcov = stats::vcov(model),
vce = c("delta", "simulation", "bootstrap", "none"), iterations = 50L,
unit_ses = FALSE, eps = 1e-07, ...)

S3 method for class 'nnet'
margins(model, data = find_data(model, parent.frame()),
variables = NULL, at = NULL, vce = "none", eps = 1e-07, ...)

S3 method for class 'polr'
margins(model, data = find_data(model, parent.frame()),
variables = NULL, at = NULL, vce = "none", eps = 1e-07, ...)

S3 method for class 'svyglm'
margins(model, data = find_data(model, parent.frame()),
design, variables = NULL, at = NULL, type = c("response", "link"),
vcov = stats::vcov(model), vce = c("delta", "simulation", "bootstrap",
"none"), iterations = 50L, unit_ses = FALSE, eps = 1e-07, ...)

Arguments

model A model object. See Details for supported model classes.

... Arguments passed to methods, and onward to dydx methods and possibly further
to prediction methods. This can be useful, for example, for setting type (pre-
dicted value type), eps (precision), or category (category for multi-category
outcome models), etc.

data A data frame containing the data at which to evaluate the marginal effects, as in
predict. This is optional, but may be required when the underlying modelling
function sets model = FALSE.

variables A character vector with the names of variables for which to compute the marginal
effects. The default (NULL) returns marginal effects for all variables.

at A list of one or more named vectors, specifically values at which to calculate the
marginal effects. This is an analogue of Stata’s , at() option. The specified
values are fully combined (i.e., a cartesian product) to find AMEs for all com-
binations of specified variable values. Rather than a list, this can also be a data
frame of combination levels if only a subset of combinations are desired. These
are used to modify the value of data when calculating AMEs across specified

20 margins

values (see build_datalist for details on use). Note: This does not calculate
AMEs for subgroups but rather for counterfactual datasets where all observaa-
tions take the specified values; to obtain subgroup effects, subset data directly.

type A character string indicating the type of marginal effects to estimate. Mostly
relevant for non-linear models, where the reasonable options are “response” (the
default) or “link” (i.e., on the scale of the linear predictor in a GLM).

vcov A matrix containing the variance-covariance matrix for estimated model coeffi-
cients, or a function to perform the estimation with model as its only argument.

vce A character string indicating the type of estimation procedure to use for esti-
mating variances. The default (“delta”) uses the delta method. Alternatives are
“bootstrap”, which uses bootstrap estimation, or “simulation”, which averages
across simulations drawn from the joint sampling distribution of model coeffi-
cients. The latter two are extremely time intensive.

iterations If vce = "bootstrap", the number of bootstrap iterations. If vce = "simulation",
the number of simulated effects to draw. Ignored otherwise.

unit_ses If vce = "delta", a logical specifying whether to calculate and return unit-
specific marginal effect variances. This calculation is time consuming and the
information is often not needed, so this is set to FALSE by default.

eps A numeric value specifying the “step” to use when calculating numerical deriva-
tives.

design Only for models estimated using svyglm, the “survey.design” object used to
estimate the model. This is required.

Details

Methods for this generic return a “margins” object, which is a data frame consisting of the original
data, predicted values and standard errors thereof, estimated marginal effects from the model model
(for all variables used in the model, or the subset specified by variables), along with attributes
describing various features of the marginal effects estimates. The default print method is concise; a
more useful summary method provides additional details.

Methods are currently implemented for the following object classes:

• “betareg”, see betareg

• “glm”, see glm, glm.nb

• “ivreg”, see ivreg

• “lm”, see lm

• “loess”, see loess

• “merMod”, see lmer, glmer

• “nnet”, see nnet

• “polr”, see polr

• “svyglm”, see svyglm

The margins methods simply construct a list of data frames based upon the values of at (using
build_datalist), calculate marginal effects for each data frame (via marginal_effects and, in

margins 21

turn, dydx and prediction), stacks the results together, and provides variance estimates. Alter-
natively, you can use marginal_effects directly to only retrieve a data frame of marginal effects
without constructing a “margins” object or variance estimates. That can be efficient for plotting,
etc., given the time-consuming nature of variance estimation.

See dydx for details on estimation of marginal effects.

The choice of vce may be important. The default variance-covariance estimation procedure (vce = "delta")
uses the delta method to estimate marginal effect variances. This is the fastest method. When
vce = "simulation", coefficient estimates are repeatedly drawn from the asymptotic (multivari-
ate normal) distribution of the model coefficients and each draw is used to estimate marginal effects,
with the variance based upon the dispersion of those simulated effects. The number of iterations
used is given by iterations. For vce = "bootstrap", the bootstrap is used to repeatedly sub-
sample data and the variance of marginal effects is estimated from the variance of the bootstrap
distribution. This method is markedly slower than the other two procedures. Again, iterations
regulates the number of bootstrap subsamples to draw. Some model classes (notably “loess”) fix
vce ="none".

Value

A data frame of class “margins” containing the contents of data, predicted values from model for
data, the standard errors of the predictions, and any estimated marginal effects. If at = NULL
(the default), then the data frame will have a number of rows equal to nrow(data). Otherwise,
the number of rows will be a multiple thereof based upon the number of combinations of val-
ues specified in at. Columns containing marginal effects are distinguished by their name (pre-
fixed by dydx_). These columns can be extracted from a “margins” object using, for example,
marginal_effects(margins(model)). Columns prefixed by Var_ specify the variances of the
average marginal effects, whereas (optional) columns prefixed by SE_ contain observation-specific
standard errors. A special column, _at_number, specifies which at combination a given row cor-
responds to; the data frame carries an attribute “at” that specifies which combination of values this
index represents. The summary.margins() method provides for pretty printing of the results, par-
ticularly in cases where at is specified. A variance-covariance matrix for the average marginal
effects is returned as an attribute (though behavior when at is non-NULL is unspecified).

Author(s)

Thomas J. Leeper

References

Greene, W.H. 2012. Econometric Analysis, 7th Ed. Boston: Pearson.

Stata manual: margins. Retrieved 2014-12-15 from http://www.stata.com/manuals13/rmargins.
pdf.

See Also

marginal_effects, dydx, prediction

http://www.stata.com/manuals13/rmargins.pdf
http://www.stata.com/manuals13/rmargins.pdf

22 margins

Examples

basic example using linear model
require("datasets")
x <- lm(mpg ~ cyl * hp + wt, data = head(mtcars))
margins(x)

obtain unit-specific standard errors
Not run:

margins(x, unit_ses = TRUE)

End(Not run)

use of 'variables' argument to estimate only some MEs
summary(margins(x, variables = "hp"))

use of 'at' argument
modifying original data values
margins(x, at = list(hp = 150))
AMEs at various data values
margins(x, at = list(hp = c(95, 150), cyl = c(4,6)))

use of 'data' argument to obtain AMEs for a subset of data
margins(x, data = mtcars[mtcars[["cyl"]] == 4,])
margins(x, data = mtcars[mtcars[["cyl"]] == 6,])

return discrete differences for continuous terms
passes 'change' through '...' to dydx()
margins(x, change = "sd")

summary() method
summary(margins(x, at = list(hp = c(95, 150))))
control row order of summary() output
summary(margins(x, at = list(hp = c(95, 150))), by_factor = FALSE)

alternative 'vce' estimation
Not run:

bootstrap
margins(x, vce = "bootstrap", iterations = 100L)
simulation (ala Clarify/Zelig)
margins(x, vce = "simulation", iterations = 100L)

End(Not run)

specifying a custom `vcov` argument
if (require("sandwich")) {

x2 <- lm(Sepal.Length ~ Sepal.Width, data = head(iris))
summary(margins(x2))
heteroskedasticity-consistent covariance matrix
summary(margins(x2, vcov = vcovHC(x2)))

}

generalized linear model

plot.margins 23

x <- glm(am ~ hp, data = head(mtcars), family = binomial)
margins(x, type = "response")
margins(x, type = "link")

multi-category outcome
if (requireNamespace("nnet")) {

data("iris3", package = "datasets")
ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),

species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))
m <- nnet::nnet(species ~ ., data = ird, size = 2, rang = 0.1,

decay = 5e-4, maxit = 200, trace = FALSE)
margins(m) # default
margins(m, category = "v") # explicit category

}

plot.margins Plot Marginal Effects Estimates

Description

An implementation of Stata’s ‘marginsplot’ as an S3 generic function

Usage

S3 method for class 'margins'
plot(x, pos = seq_along(marginal_effects(x, with_at =
FALSE)), which = colnames(marginal_effects(x, with_at = FALSE)),
labels = gsub("^dydx_", "", which), horizontal = FALSE, xlab = "",
ylab = "Average Marginal Effect", level = 0.95, pch = 21,
points.col = "black", points.bg = "black", las = 1, cex = 1,
lwd = 2, zeroline = TRUE, zero.col = "gray", ...)

Arguments

x An object of class “margins”, as returned by margins.

pos A numeric vector specifying the x-positions of the estimates (or y-positions, if
horizontal = TRUE).

which A character vector specifying which marginal effect estimate to plot. Default is
all.

labels A character vector specifying the axis labels to use for the marginal effect esti-
mates. Default is the variable names from x.

horizontal A logical indicating whether to plot the estimates along the x-axis with vertical
confidence intervals (the default), or along the y-axis with horizontal confidence
intervals.

xlab A character string specifying the x-axis (or y-axis, if horizontal = TRUE)
label.

24 plot.margins

ylab A character string specifying the y-axis (or x-axis, if horizontal = TRUE)
label.

level A numeric value between 0 and 1 indicating the confidence level to use when
drawing error bars.

pch The point symbol to use for plotting marginal effect point estimates. See points
for details.

points.col The point color to use for plotting marginal effect point estimates. See points
for details.

points.bg The point color to use for plotting marginal effect point estimates. See points
for details.

las An integer value specifying the orientation of the axis labels. See par for details.

cex A numerical value giving the amount by which plotting text and symbols should
be magnified relative to the default. See par for details.

lwd A numerical value giving the width of error bars in points.

zeroline A logical indicating whether to draw a line indicating zero. Default is TRUE.

zero.col A character string indicating a color to use for the zero line if zeroline = TRUE.

... Additional arguments passed to plot.default, such as title, etc.

Details

This function is invoked for its side effect: a basic dot plot with error bars displaying marginal
effects as generated by margins, in the style of Stata’s ‘marginsplot’ command.

Value

The original “margins” object x, invisibly.

See Also

margins, persp.lm

Examples

Not run:
require("datasets")
x <- lm(mpg ~ cyl * hp + wt, data = mtcars)
mar <- margins(x)
plot(mar)

End(Not run)

Index

∗Topic datasets
alexseev, 2

∗Topic graphics
cplot, 3
image.lm, 11
plot.margins, 23

∗Topic hplot
image.lm, 11

∗Topic models
marginal_effects, 15
margins, 18

∗Topic package
margins, 18

alexseev, 2

betareg, 16, 20
build_datalist, 20

contour, 13
contr.poly, 10
contr.treatment, 10
cplot, 3, 14

dydx, 9, 15–19, 21

glm, 16, 20
glm.nb, 16, 20
glmer, 17, 20

image, 11, 13, 14
image.glm (image.lm), 11
image.lm, 11
image.loess (image.lm), 11
ivreg, 16, 20

lines, 6
lm, 16, 20
lmer, 17, 20
loess, 16, 20

marginal_effects, 10, 11, 15, 18, 20, 21
margins, 5, 11, 13, 16, 17, 18, 23, 24
margins-package (margins), 18
margins.betareg (margins), 18
margins.default (margins), 18
margins.glm (margins), 18
margins.lm (margins), 18
margins.lmerMod (margins), 18
margins.loess (margins), 18
margins.merMod (margins), 18
margins.nnet (margins), 18
margins.polr (margins), 18
margins.svyglm (margins), 18

nnet, 17, 20

par, 6, 13, 14, 24
persp, 13, 14
persp.glm (image.lm), 11
persp.lm, 7, 24
persp.lm (image.lm), 11
persp.loess (image.lm), 11
plot, 5, 6
plot.default, 24
plot.margins, 7, 14, 23
points, 6, 7, 24
polr, 17, 20
polygon, 6
predict, 5, 13, 18, 19
prediction, 9, 16, 18, 19, 21

rug, 7

seq_range, 5
svyglm, 17, 20

25

	alexseev
	cplot
	dydx
	image.lm
	marginal_effects
	margins
	plot.margins
	Index

