Package ‘magrittr’

August 29, 2016

Type Package

Title A Forward-Pipe Operator for R

Version 1.5

Author Stefan Milton Bache <stefan@stefanbache.dk> and
Hadley Wickham <h.wickham@gmail.com>

Maintainer Stefan Milton Bache <stefan@stefanbache. dk>

Description Provides a mechanism for chaining commands with a
new forward-pipe operator, %>%. This operator will forward a
value, or the result of an expression, into the next function
call/expression. There is flexible support for the type
of right-hand side expressions. For more information, see
package vignette.

To quote Rene Magritte, “~Ceci n'est pas un pipe."

Suggests testthat, knitr
VignetteBuilder knitr

License MIT + file LICENSE
ByteCompile Yes

NeedsCompilation no

Repository CRAN

Date/Publication 2014-11-22 19:15:57

R topics documented:

debug fseq e
debug pipe e
EXIaCt L e e e e e e e e e
freduce L
functions
MAGLittr L e e e e e e e e e e e
print.fseq
[[fseq . . . o o o e

2 debug_pipe

DoSTo . . . o e 8
Do>% . . . e e 8
DoT>% . . . e e 11
Index 12
debug_fseq Debugging function for functional sequences.
Description

This is a utility function for marking functions in a functional sequence for debbuging.

Usage
debug_fseq(fseq, ...)

undebug_fseq(fseq)

Arguments
fseq a functional sequence.
indices of functions to debug.
Value
invisible(NULL).
debug_pipe Debugging function for magrittr pipelines.
Description

This function is a wrapper around browser, which makes it easier to debug at certain places in a
magrittr pipe chain.

Usage
debug_pipe(x)

Arguments

X a value

Value

extract

extract

Aliases

Description

magrittr provides a series of aliases which can be more pleasant to use when composing chains

using the %>% operator.

Details

Currently implemented aliases are

Examples

iris %>%
extract(, 1:4) %>%
head

good. times <-
Sys.Date() %>%
as.POSIXct %>%

extract

extract?2

inset

inset2

use_series

add

subtract
multiply_by
raise_to_power
multiply_by_matrix
divide_by
divide_by_int

mod

is_in

and

or

equals
is_greater_than
is_weakly_greater_than
is_less_than
is_weakly_less_than
not (‘n’est pas‘)
set_colnames
set_rownames
set_names

l[(
&I:[(
‘[<-¢
‘[[<-¢
t$l
[

C_ ¢

K*(

CAC

t%*%t

(/(

%/ %"

&%%(

“%in%*

t&l

(ll

l::‘

&>(

l>:(

l<l

t<:(

"(
‘colnames<-*
‘rownames<-"*
‘names<-*

4 functions

seq(by = "15 mins"”, length.out = 100) %>%
data.frame(timestamp = .)

good. times$quarter <-
good.times %>%
use_series(timestamp) %>%
format("%M") %>%
as.numeric %>%
divide_by_int(15) %>%
add(1)

freduce Apply a list of functions sequentially

Description
This function applies the first function to value, then the next function to the result of the previous
function call, etc.

Usage

freduce(value, function_list)

Arguments

value initial value.

function_list alist of functions.

Value

The result after applying each function in turn.

functions Extract the function list from a functional sequence.

Description
This can be used to extract the list of functions inside a functional sequence created with a chain
like . %>% foo %>% bar.

Usage

functions(fseq)

Arguments

fseq A functional sequence ala magrittr.

magrittr 5

Value

a list of functions

magrittr magrittr - Ceci n’est pas un pipe

Description

The magrittr package offers a set of operators which promote semantics that will improve your code
by

* structuring sequences of data operations left-to-right (as opposed to from the inside and out),
* avoiding nested function calls,

* minimizing the need for local variables and function definitions, and

* making it easy to add steps anywhere in the sequence of operations.

The operators pipe their left-hand side values forward into expressions that appear on the right-hand
side, i.e. one can replace f(x) with x %>% f, where %>% is the (main) pipe-operator.

Consider the example below. Four operations are performed to arrive at the desired data set, and
they are written in a natural order: the same as the order of execution. Also, no temporary variables
are needed. If yet another operation is required, it is straight-forward to add to the sequence of
operations whereever it may be needed.

For a more detailed introduction see the vignette (vignette(”"magrittr”)) or the documentation
pages for the available operators:

%>% forward-pipe operator.

%T>% tee operator.

%<>% compound assignment pipe-operator.
%$% exposition pipe-operator.

Examples

Not run:

the_data <-
read.csv('/path/to/data/file.csv') %>%
subset(variable_a > x) %>%
transform(variable_c = variable_a/veraiable_b) %>%
head(100)

End(Not run)

6 [[.fseq

print.fseq Print method for functional sequence.

Description

Print method for functional sequence.

Usage
S3 method for class 'fseq'
print(x, ...)

Arguments

X A functional sequence object

not used.

Value

[[.fseq Extract function(s) from a functional sequence.

Description

Functional sequences can be subset using single or double brackets. A single-bracket subset results
in a new functional sequence, and a double-bracket subset results in a single function.

Usage

S3 method for class 'fseq'

x[L...]]

S3 method for class 'fseq'

x[...]
Arguments

X A functional sequence

index/indices. For double brackets, the index must be of length 1.

Value

A function or functional sequence.

%<>% 7

%<>% magrittr compound assignment pipe-operator

Description
Pipe an object forward into a function or call expression and update the 1hs object with the resulting
value.

Usage
lhs %<>% rhs

Arguments
lhs An object which serves both as the initial value and as target.
rhs a function call using the magrittr semantics.

Details

The compound assignment pipe-operator, %<>%, is used to update a value by first piping it into
one or more rhs expressions, and then assigning the result. For example, some_object %<>%
foo %>% bar is equivalent to some_object <- some_object %>% foo %>% bar. It must be the
first pipe-operator in a chain, but otherwise it works like %>%.

See Also
%>%, BT>%, %%
Examples
iris$Sepal.Length %<>% sqrt
X <= rnorm(100)
X %<>% abs %>% sort
is_weekend <- function(day)
{
day could be e.g. character a valid representation
day %<>% as.Date
result <- day %>% format("%u") %>% as.numeric %>% is_greater_than(5)
if (result)
message(day %>% paste("is a weekend!"))
else

message(day %>% paste("is not a weekend!"))

invisible(result)

8 %>%

%$% magrittr exposition pipe-operator

Description

Expose the names in 1hs to the rhs expression. This is useful when functions do not have a built-in
data argument.

Usage
lhs %$% rhs

Arguments

lhs A list, environment, or a data.frame.

rhs An expression where the names in lhs is available.
Details

Some functions, e.g. 1m and aggregate, have a data argument, which allows the direct use of names
inside the data as part of the call. This operator exposes the contents of the left-hand side object to
the expression on the right to give a similar benefit, see the examples.

See Also
%>%, h<>%, %hS%

Examples

iris %>%
subset(Sepal.Length > mean(Sepal.Length)) %$%
cor(Sepal.Length, Sepal.Width)

data.frame(z = rnorm(100)) %$%
ts.plot(z)

%>% magrittr forward-pipe operator

Description

Pipe an object forward into a function or call expression.

Usage
lhs %>% rhs

%>% 9

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Details

Using %>% with unary function calls
When functions require only one argument, x %>% f is equivalent to f(x) (not exactly equivalent;
see technical note below.)

Placing 1hs as the first argument in rhs call
The default behavior of %>% when multiple arguments are required in the rhs call, is to place lhs
as the first argument, i.e. x %>% f(y) is equivalent to f(x, y).

Placing 1hs elsewhere in rhs call

Often you will want 1lhs to the rhs call at another position than the first. For this purpose you
can use the dot (.) as placeholder. For example, y %>% f(x, .) is equivalentto f(x, y) and
z %>% f(x, y, arg = .) isequivalentto f(x, y, arg = z).

Using the dot for secondary purposes

Often, some attribute or property of lhs is desired in the rhs call in addition to the value of lhs
itself, e.g. the number of rows or columns. It is perfectly valid to use the dot placeholder several
times in the rhs call, but by design the behavior is slightly different when using it inside nested
function calls. In particular, if the placeholder is only used in a nested function call, 1hs will also
be placed as the first argument! The reason for this is that in most use-cases this produces the
most readable code. For example, iris %>% subset(1:nrow(.) %% 2 == @) is equivalent to
iris %>% subset(., T:nrow(.) %% 2 == @) but slightly more compact. It is possible to overrule
this behavior by enclosing the rhs in braces. For example, 1:10 %>% {c(min(.), max(.))}is
equivalent to c(min(1:10), max(1:10)).

Using %> % with call- or function-producing rhs

It is possible to force evaluation of rhs before the piping of lhs takes place. This is useful when
rhs produces the relevant call or function. To evaluate rhs first, enclose it in parentheses, i.e.
a %% (function(x) x*2), and 1:10 %>% (call(”sum")). Another example where this is
relevant is for reference class methods which are accessed using the $ operator, where one would
do x %>% (rc$f), and not x %>% rc$f.

Using lambda expressions with %>%

Each rhs is essentially a one-expression body of a unary function. Therefore defining lambdas in
magrittr is very natural, and as the definitions of regular functions: if more than a single expression
is needed one encloses the body in a pair of braces, { rhs }. However, note that within braces
there are no "first-argument rule": it will be exactly like writing a unary function where the argu-
ment name is "." (the dot).

Using the dot-place holder as lhs
When the dot is used as lhs, the result will be a functional sequence, i.e. a function which applies
the entire chain of right-hand sides in turn to its input. See the examples.

10 %>%

Technical notes

The magrittr pipe operators use non-standard evaluation. They capture their inputs and examines
them to figure out how to proceed. First a function is produced from all of the individual right-hand
side expressions, and then the result is obtained by applying this function to the left-hand side. For
most purposes, one can disregard the subtle aspects of magrittr’s evaluation, but some functions
may capture their calling environment, and thus using the operators will not be exactly equivalent
to the "standard call" without pipe-operators.

Another note is that special attention is advised when using non-magrittr operators in a pipe-chain
(+, -, $, etc.), as operator precedence will impact how the chain is evaluated. In general it is
advised to use the aliases provided by magrittr.

See Also

%<>%, hT>%, %$%

Examples

Basic use:
iris %>% head

Use with lhs as first argument
iris %>% head(10)

Using the dot place-holder
"Ceci n'est pas une pipe” %>% gsub("une”, "un", .)

When dot is nested, lhs is still placed first:
sample(1:10) %>% paste@(LETTERS[.])

This can be avoided:
rnorm(100) %>% {c(min(.), mean(.), max(.))} %>% floor

Lambda expressions:
iris %>%
{
size <- sample(1:10, size = 1)
rbind(head(., size), tail(., size))
3

renaming in lambdas:
iris %>%
{
my_data <- .
size <- sample(1:10, size = 1)
rbind(head(my_data, size), tail(my_data, size))
3

Building unary functions with %>%
trig_fest <- . %>% tan %>% cos %>% sin

%T>% 11

1:10 %>% trig_fest
trig_fest(1:10)

BT>% magrittr tee operator

Description

Pipe a value forward into a function- or call expression and return the original value instead of the
result. This is useful when an expression is used for its side-effect, say plotting or printing.

Usage
lhs %T>% rhs

Arguments
lhs A value or the magrittr placeholder.
rhs A function call using the magrittr semantics.
Details
The tee operator works like %>%, except the return value is lhs itself, and not the result of rhs
function/expression.
See Also

%>%, %<>%, %$%

Examples

rnorm(200) %>%

matrix(ncol = 2) %T>%

plot %>% # plot usually does not return anything.
colSums

Index

[.fseq(LL.fseq), 6
[[.fseq, 6
%<>%,5,17,8, 10, 11
%>%,5,7,8,8,11
%1>%,5,7,10,11
%$%, 5,7,8,8, 10, 11

add (extract), 3
and (extract), 3

debug_fseq, 2
debug_pipe, 2

divide_by (extract), 3
divide_by_int (extract), 3

equals (extract), 3
extract, 3
extract2 (extract), 3

freduce, 4
functions, 4

inset (extract), 3

inset2 (extract), 3

is_greater_than (extract), 3
is_in(extract), 3

is_less_than (extract), 3
is_weakly_greater_than (extract), 3
is_weakly_less_than (extract), 3

magrittr, 5
magrittr-package (magrittr), 5
mod (extract), 3

multiply_by (extract), 3
multiply_by_matrix (extract),3

n’est pas (extract), 3
not (extract), 3

or (extract), 3

print.fseq, 6

12

raise_to_power (extract), 3

set_colnames (extract), 3
set_names (extract), 3
set_rownames (extract), 3
subtract (extract), 3

undebug_fseq (debug_fseq), 2
use_series (extract), 3

	debug_fseq
	debug_pipe
	extract
	freduce
	functions
	magrittr
	print.fseq
	[[.fseq
	%<>%
	%$%
	%>%
	%T>%
	Index

