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1 Introduction

Any continuous density function f on a known closed interval [a,b] can be approximated by Bernstein
polynomial f,(z;p) = (b — a)™' Y 1"y piBmil(x — a)/(b — a)], where p; > 0, 7" (p; = 1 and B, (u) =
(m+1)(T)u (L —u)™ % i=0,1,...,m, is the beta density with shapes (i +1,m — i+ 1). This provides a
way to approximately model the unknwon underlying density with a mixture beta model with an appropriate
model degree m and solve a nonparametric or semiparametric statistical problem “parametrically” using
the maximum likelihood method. For instance, based on one-sample data, x1,...,x,, one can estimate a
nonparametric density f parametrically by maximizing the approximate likelihood ¢(p) = Z?:O log fin(xj;p)
with respect to p (Guan 2016).

Since the Bernstein polynomial model of degree m is nested in the model of degree m + 1, the maximum
likelihood is increasing in m. The increase is negligible when the model becomes overfitting. Therefore
an optimal degree can be chosen as the change-point of the log likelihood ratios over a set of consecutive
candidate model degrees.

This approach works surprisingly well for even more complicated models and data. With an estimate
p = (Po,...,Pm) of p one can estimate the cumulative distribution function F' by ﬁ‘(ac) = Fo(x;p) =
St PiBmil(z — a)/(b — a)], where Bpi(u) = [i Bmj(t)dt, i = 0,...,m, is the beta distribution function
with shapes (i + 1,m — ¢ + 1). This manual will illustrate the use of the R package mable for obtaining
not only smooth estimates of density, cumulative distribution, and survival functions but also estimates of

parameters such as regression coefficients.



2 One-sample Problems

2.1 Raw Data

Let x1,...,x, be a sample from a population with cumulative distribution function F' and density function
[ on [a,b]. If [a,b] is unknown we choose [a,b] D [2(1), Z(n)], Where z(;) and z(,) are the minimum and
maximum statistics, respectively.

2.1.1 Example: Vaal River Annual Flow Data

For the annual flow data of Vaal River at Standerton as given by Table 1.1 of Linhart and Zucchini (1986)
give the flow in millions of cubic metres,

data(Vaal.Flow)
head(Vaal.Flow, 3)

## Year Flow
## 1 1905 222
## 2 1906 1094
## 3 1907 452

we want to estimate the density and the distribution functions of annual flow

vaal<-mable(Vaal.Flow$Flow, M = c(2,100), interval = c(0, 3000), IC = "all",
controls = mable.ctrl(sig.level = le-8, maxit = 2000, eps = 1.0e-9))

Here we truncate the density by interval=c(0, 3000) and choose an optimal degree m among the candidate
degrees M[1]:M[2] using the method of change-point. The maximum number of iterations is maxit and the
convergence criterion is eps for each m of M[1]:M[2]. The search of an optimal degree stops when the p-value
pval of change-point test falls below the specified significance level sig.level or the largest degree, M[2],
has been reached. If the latter occurs a warning message shows up. In this case we should check the last value
of pval. In the above example, we got warning message and the last pval, 1.3396916 x 10~8, which is small
enough. The selected optimal degree is m = 19. One can also look at the Bayesian information criteria, BIC,
and other information criteria, Akaike information criterion AIC and Hannan—Quinn information criterion
QHC, at each candidate degree. These information criteria are not reliable due to the difficulty of determining
the model dimension. The plot method for mable class object can visualize some of the results.

op <- par(mfrow = c(1,2))
layout (rbind(c(1, 2), c(3, 3)))
plot(vaal, which = "likelihood", cex = .5)
plot(vaal, which = "change-point", lgd.x = "topright")
hist(Vaal.Flow$Flow, prob = TRUE, xlim = c(0,3000), ylim =c(0,.0022), breaks =100%*(0:30),
main = "Histogram and Densities of the Annual Flow of Vaal River",
border = "dark grey",lwd = 1, xlab = "Flow", ylab = "Density", col ="light grey")
lines(density(x<-Vaal.Flow$Flow, bw = "nrd0", adjust = 1), 1ty = 2, col = 2,1lwd = 2)
lines(y<-seq(0, 3000, length=100), dlnorm(y, mean(log(x)), sqrt(var(log(x)))),
1ty = 4, col = 4, lwd = 2)
plot(vaal, which = "density", add = TRUE, lwd = 2)
legend("topright", 1ty = c(1, 4, 2), col = c(1, 4, 2), bty = "n",lwd = 2,
c(expression(paste("MABLE: ",hat(f)[B])), expression(paste("Log-Normal: ",hat(f)[P])),
expression(paste("KDE: " ,hat(£f)[K]))))

par (op)

In Figure 1, the unknown density f is estimated by MABLE f B using optimal degrees m = 19 selected using the
exponential change-point method, the parametric estimate using Log-Normal model and the kernel density
estimate KDE: fi.
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Figure 1: Vaal River Annual Flow Data
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Figure 2: AIC and BIC based on Vaal River Data

We can also look at the plots of AIC, BIC, and QHC, and likelihood ration(LR) of gamma change-point.

M <- vaal$M[1] :vaal$M[2]

aic <- vaal$ic$AIC

bic <- vaal$ic$BIC

ghc <- vaal$ic$QHC

vaal.gcp <- optim.gcp(vaal) # choose m by gamma change-point model

1r <- vaal.gcp$lr

plot(M, aic, cex = 0.7, col = 1, xlab = "m", ylab = "", ylim = c(ymin<-min(aic,bic,qhc,lr),
ymax<-max(aic,bic,ghc,lr)), main "AIC, BIC, QHC, and LR")

points(M, bic, pch = 2, cex = 0.7, col 2)

points(M, ghc, pch = 3, cex = 0.7, col = 3)

points(M[-1], 1lr, pch = 4, cex = 0.7, col = 4)

segments (which.max(aic)+M[1]-1->ml, ymin, ml, max(aic), lty = 2)

segments (which.max(bic)+M[1]-1->m2, ymin, m2, max(bic), lty = 2, col = 2)

segments (which.max(qhc)+M[1]-1->m3, ymin, m3, max(ghc), 1ty = 2, col = 3)

segments(which.max(1r)+M[1]->m4, ymin, m4, max(lr), 1ty = 2, col = 4)

axis(1, c(mi1,m2, m3, m4), as.character(c(ml,m2,m3,m4)), col.axis = 4)

legend("topright", pch=c(1,2,3,4), c("AIC", "BIC", "QHC", "LR"), bty="n", col=c(1,2,3,4))

From Figure 2 we see that the gamma change-point method gives the same optimal degree m = 19 as the
exponential method; BIC and QHC give the same degree m = 11; the degree m = 16 selected by AIC method
is closer to the one selected by change-point methods. From this Figure we also see that unlike the LR plot
the information criteria do not have clear peak points.

For any given degree m, one can fit the data by specifying M=m in mable() to obtain an estimate of f.

The summary method summary.mable prints and returns invisibly the summarized results.



summary (vaal)

## Call: mable() for raw data

## 0bj Class: mable

## Input Data: Vaal.Flow$Flow

## Dimension of data: 1

## Optimal degree m: 19

## P-value of Change-point: 1.339692e-08

## Maximum loglikelihood: 56.81939

## MABLE of p: can be retrieved using name 'p'

## Note: the optimal model degree is selected by the method of change-point.

The mixing proportions, the coefficients of the Bernstein polynomials, p can be obtained as either p<-vaal$p
p<-vaal$p
P

## [1] 6.663285e-142 1.049278e-01 7.594313e-01 2.309036e-08 2.508190e-16
## [6] 7.193781e-21 1.714946e-20 1.049294e-07 1.202354e-01 1.097612e-22
## [11] 3.689377e-96 2.261275e-228 0.000000e+00 0.000000e+00 0.000000e+00
## [16] 5.038406e-234 1.226874e-39 1.540542e-02 4.734984e-197 0.000000e+00

or summary(res) $p.

2.2 Grouped Data

With a grouped dataset, a frequency table of data from a continuous population, one can estimate the density
from histogram using mable.group() with an optimal degree m chosen from M[1] :M[2] or with a given
degree m using M=m (Guan 2017).

2.2.1 Example: The Chicken Embryo Data

Consider the chicken embryo data contain the number of hatched eggs on each day during the 21 days of
incubation period. The times of hatching (n = 43) are treated as grouped by intervals with equal width
of one day. The data were studied first by Jassim et al. (1996). Kuurman et al. (2003) and Lin and He
(2006) also analyzed the data using the minimum Hellinger distance estimator, in addition to other methods
assuming some parametric mixture models including Weibull model.

data(chicken.embryo)
head(chicken.embryo, 2)

## $day

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

##

## $nT

## [1] 6 511 2 2 3 0 0 0 0 1 0 O O 1 O 1 5 1 4 1

a<-0

b <- 21

day <- chicken.embryo$day

nT <- chicken.embryo$nT

embryo<-mable.group(x = nT, breaks = a:b, M=c(2,100), interval
controls = mable.ctrl(sig.level = le-6, maxit = 2000, eps

c(a, b), IC = "aic",
1.0e-7))

Day <- rep(day,nT)
op <- par(mfrow = c(1,2), lwd = 2)
layout (rbind(c(1, 2), c(3, 3)))



plot(embryo, which = "likelihood")

plot(embryo, which = "change-point")

fk <- density(x = rep((0:20)+.5, nT), bw = "sj", n = 101, from = a, to = b)

hist(Day, breaks = seq(a,b, length = 12), freq = FALSE, col = "grey", border = "white",
main = "Histogram and Density Estimates")

plot(embryo, which = "density", cex = 0.7, add = TRUE)

lines(fk, 1ty = 2, col = 2)

legend("top", 1ty = c(1:2), c("MABLE", "Kernel"), bty = "n", col = c(1:2))

par (op)

We see in Figure 4 that AIC and gamma change-point method give the same optimal degree as the one, m =
13, given by the exponential change-point method. However, BIC fails in choosing a useful model degree.

M <- embryo$M[1] :embryo$M[2]

aic <- embryo$ic$AIC

bic <- embryo$ic$BIC

res.gcp <- optim.gcp(embryo) # choose m by gamma change-point model

1r <- res.gcp$lr

plot(M, aic, cex = 0.7, col = 1, xlab = "m", ylab = "", ylim = c(ymin<-min(aic,bic,1lr),
ymax<-max(aic,bic,lr)), main = "AIC, BIC, and LR")

points(M, bic, pch = 2, cex = 0.7, col = 2)

points(M[-1], 1lr, pch = 3, cex = 0.7, col = 4)

segments (which.max(aic)+M[1]-1->m1, ymin, ml, max(aic), 1ty = 2)

segments (which.max(bic)+M[1]-1->m2, ymin, m2, max(bic), 1ty = 2, col = 2)

segments (which.max(1r)+M[1]->m3, ymin, m3, max(lr), 1ty = 2, col = 4)

axis(1, c(ml,m2, m3), as.character(c(ml,m2,m3)), col.axis = 4)

legend("right", pch = 1:3, c("AIC", "BIC", "LR"), bty = "n", col = c(1,2,4))

The results are summarized as follows.

summary (embryo)

## Call: mable.group() for grouped data

## 0Obj Class: mable

## Input Data: nT

## Dimension of data: 1

## Optimal degree m: 13

## P-value of Change-point: 9.925959e-07

## Maximum loglikelihood: -107.318

## MABLE of p: can be retrieved using name 'p'

## Note: the optimal model degree is selected by the method of change-point.

2.3 Contaminated Data—Density Deconvolution

Consider the additive measurement error model Y = X + ¢, where X has an unknown distribution F', €
has a known distribution G, and X and ¢ are independent. We want to estimate density f = F’ based on
independent observations, y; = x;+¢;,i =1,...,n, of Y, where z;’s and ¢;’s are unobservable. mable.decon()
implements the method of Guan (2019a) and gives an estimate of the density f using the approximate
Bernstein polynomial model.

2.3.1 Example: A Simulated Normal Dataset

set.seed(123)
mu <- 1; sig <- 2; a <- mu - sig*5; b <- mu + sig*5;
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Figure 4: AIC and BIC based on Chicken Embryo Data

gn <- function(x) dnorm(x, O, 1)

n <- 50;

x <- rnorm(n, mu, sig); e <- rnorm(n); y <- x + e;

decn <- mable.decon(y, gn, interval = c(a,b), M = c(5, 50))

op <- par(mfrow = c(2,2), lwd = 2)

plot(decn, which = "likelihood")

plot(decn, which = "change-point", lgd.x = "right")

plot(xx<-seq(a, b, length = 100), yy<-dnorm(xx, mu, sig), type = "1", xlab = "x",
ylab = "Density", ylim = c(0, max(yy)*1.1))

plot(decn, which = "density", add = TRUE, lty = 2, col = 2)

# kernel density based on pure data

lines(density(x), 1ty = 5, col = 4)

legend("topright", bty = "n", 1ty = c(1,2,5), col = c(1,2,4), c(expression(f),
expression(hat(f)), expression(tilde(f)[K])))

plot(xx, yy<-pnorm(xx, mu, sig), type = "1", xlab = "x", ylab = "Distribution Function")

plot(decn, which = "cumulative", add = TRUE, lty = 2, col = 2)

legend("bottomright", bty = "n", 1ty = c(1,2), col = c(1,2), c(expression(F),
expression(hat(F))))

par (op)

2.4 Interval Censored Data

When data are interval censored, the “interval2” type observations are of the form (I,u) which is the
interval containing the event time. Data is uncensored if | = wu, right censored if u = Inf or u = NA, and left
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censored data if [ = 0.

Let f(t) and F(t) = 1 — S(t) be the density and cumulative distribution functions of the event time,
respectively, on (0, 7), where 7 < oo. If 7 is unknown or 7 = oo, then f(¢) on [0, 7,] can be approximated
by fm(t;p) = 75t S iBmi(t/7a)s Where p; > 0,0 =0,...,my 37 py = 1 — a1, and 7, is the largest
observation, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored
time. So we can approximate S(t) on [0,7] by Sm(t; p) = S5 p; Byni(t/7), where Byni(u) = 1— [ B (t)dt,
i=0,...,m, is the beta survival function with shapes (i + 1,m —i + 1), Byyms1(t) = 1, ps1 = 1 — 7, and
m = F(7,). For data without right-censored time, p,,+1 = 1 — 7 = 0. The search for optimal degree m among
M=c(mO,m1) using the method of change-point is stopped if either m1 is reached or the test for change-point
results in a p-value pval smaller than sig.level. Guan (2019b) proposed a method, as a special case of a
semiparametric regression model, for estimating p with an optimal degree m. The method is implemented in
R function mable.ic().

2.4.1 Example: The Breast Cosmesis Data

Consider the breast cosmesis data as described in Finkelstein and Wolfe (1985) is used to study the cosmetic
effects of cancer therapy. The time-to-breast-retractions in months (7') were subject to interval censoring
and were measured for 94 women among them 46 received radiation only (X = 0) (25 right-censored, 3 left-
censored and 18 interval censored) and 48 received radiation plus chemotherapy (X = 1) (13 right-censored,
2 left-censored and 33 interval censored). The right-censored event times were for those women who did not
experienced cosmetic deterioration.

Load package interval to access Breast Cosmesis Data. We fit the two-sample data separately.

library(interval)

## Loading required package: survival
## Loading required package: perm
## Loading required package: Icens

## Loading required package: MLEcens

data(bcos)
head(bcos, 3)

##  left right treatment

## 1 45 Inf Rad

## 2 6 10 Rad

## 3 0 7 Rad

bc.res0 <- mable.ic(bcos[bcos$treatment == "Rad",1:2], M = c(1,50), IC = "none")
bc.resl <- mable.ic(bcos[bcos$treatment == "RadChem",1:2], M = ¢c(1,50), IC = "none")

As the warning message suggested, we check the pval. The pval when the search stopped is 0.0452.

op <- par(mfrow = c(2,2),lwd = 2)

plot(bc.res0, which = "change-point", lgd.x = "right")
plot(bc.resl, which "change-point", lgd.x = "right")
plot(bc.res0, which = "survival", xlab = "Months", ylim
plot(bc.resl, which = "survival", xlab = "Months", main

c(0,1), main = "Radiation Only")
"Radiation and Chemotherapy")

par (op)

10
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2.5 Multivariate Data

A d-variate density f on a hyperrectangle [a,b] = [a1,b1] X « - - X [aq, bg] can be approximated by a mixture of
d-variate beta densities on [a,b], Bm;(z;a,b) = Hle B (X — a;)/(bi — ai)]/(b; — a;), with proportions
p(J1s---57d), 0 <j; <my,i=1,...,d. Because all the marginal densities can be approximated by Bernstein
polynomials, we can choose optimal degree m,; based on observations of the i-th component of x. For the i-th
marginal density, an optimal degree is selected using mable(). Then fit the data using EM algorithm with
the selected optimal degrees m = (mq,...,my) to obtain a vector p of the mixture proportions p(j1, ..., jd),
arranged in the lexicographical order of j = (j1,...,74), (Po,...,PK—1), where K = H?Zl(mi +1). The
proposed method of Wang and Guan (2019) is implemented by function mable.mvar().

2.5.1 Example: The Old Faithful Data

data(faithful)
head(faithful, 3)

##  eruptions waiting

## 1 3.600 79
## 2 1.800 54
## 3 3.333 74

a <- c(0, 40); b <= c(7, 110)
#faith2 <- mable.mvar(faithful, M = c(70,50), interval = cbind(a,b))
faith2 <- mable.mvar(faithful, M = c(46,19), search =F, interval = cbind(a,b))

plot(faith2, which = "density")

The density surface for two-dimensional data can be plot using the plot method (see Figure7). The
summarized results are given below.

summary (faith2)

## Call: mable.mvar() for multivariate data
## 0Obj Class: mable

## Input Data: eruptions waiting

## Dimension of data: 2

## Optimal degrees:

##  eruptions waiting

## m 46 19

## P-value of Change-point: O

## Maximum loglikelihood:

## MABLE of p: can be retrieved using name 'p'
## Note: the optimal model degree is selected by the method of change-point.

3 Event Time Data with Covariates

Let T be an event time and X be an associated d-dimensional covariate with distribution H(x) on X. We denote
the marginal and the conditional survival functions of T, respectively, by S(t) = F(t) = 1 — F(t) = Pr(T > t)
and S(t|r) = F(t|z) = 1—F(t|z) = Pr(T > t|X = x). Let f(t|z) denote the conditional density of a continuous
T given X = z. The conditional cumulative hazard function and odds ratio, respectively, A(t|z) = — log S(t|x)
and O(t|z) = S(t|z)/[1 — S(t|x)]. We will consider the general situation where the event time is subject to
interval censoring. The observed data are (X,Y’), where Y = (¥1,Y2], 0 < Y7 < Y3 < co. The reader is
referred to Huang and Wellner (1997) for a review and more references about interval censoring. Special

cases are right-censoring Y5 = oo, left-censoring Y7 = 0, and current status data.

12
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3.1 Cox Proportional Hazards Model
Consider the Cox proportional hazard regression model (Cox 1972)

S(tlz) = S(tlws 7, fo) = So(t)™" D), (1)
where v € G C RY, & = z — @, 0 is any fixed covariate value, fo(-) = f(:|7¢) is the unknown baseline

density and So(t) = [~ fo(s)ds. Define 7 = inf{t : F(t|zo) = 1}. It is true that 7 is independent of o,
0 <7 < o0, and f(t|x) have the same support [0, 7] for all x € X. Let (z;,v:) = (24, (Yi1,yj2]), 1 =1,...,n,

be independent observations of (X,Y’) and 7, > y,) = max{yi1,yj2 : yj2 < 00; 4,5 = 1,...,n}. Given any
70, denote ™ = 7w(x9) = 1 — Sp(7,). For integer m > 1 we define S,, = {(ug,...,un)’ € R™HL :y; >
0,> " yu; = 1.}. Guan (2019b) propose to approximate fo(t) on [0,7,] by fim(t;p) = 7t Yoieo PiBmi(t/Tn),
where p = p(xo) = (po, - - - , Pm+1) are subject to constraints p € S,,11 and p,,+1 = 1 —7. Here the dependence

of m and p on z¢ will be suppressed. If 7 < 1, although we cannot estimate the values of fy(¢) on (7, 0),
we can put an arbitrary guess on them such as f,,(t;p) = pmira(t — 1), t € (7n,00), where a(-) is a
density on [0,00) such that (1 — m)a(0) = (m + 1)pm /7, so that fp,(¢;p) is continuous at t = 7,, e.g.,
a(t) = a(0) exp[—a(0)t]. If 7 is finite and known we choose 7, = 7 and specify p,,+1 = 0. Otherwise, we
choose 7, = y(y). For data without right-censoring or covariate we also have to specify p,,11 = 0 due to its
unidentifiability.

The above method is implemented in function mable.ph() which returns maximum approximate Bernstein
likelihood estimates of (v, p) with an optimal model degree m and a prespecified m, respectively. With a
efficient estimate of v obtained using other method, maple.ph() can be used to get an optimal degree m and
a mable of p.

The plot method plot.mable_reg() for class mable_reg object returned by all the above functions produces
graphs of the loglikelihoods at m in a set M[1] :M[2] of consecutive candidate model degrees, the likelihood
ratios of change-point at m in (M[1]1+1) :M[2], estimated density and survival function on the truncated
support=[0, 7).

3.1.1 Example: Ovarian Cancer Survival Data

The Ovarian Cancer Survival Data is included in package interval.

library(interval)

futime2 <- ovarian$futime

futime2[ovarian$fustat==0] <- Inf

ovarian2 <- data.frame(age = ovarian$age, futimel = ovarian$futime, futime2 = futime2)
head(ovarian2, 3)

## age futimel futime2
## 1 72.3315 59 59
## 2 74.4932 115 115
## 3 66.4658 156 156

ova<-mable.ph(cbind(futimel, futime2) ~ age, data = ovarian2, M = c(2,35), g = .16)
summary (ova)

## Call: mable.ph(cbind(futimel, futime2) ~ age)
## Data: ovarian2

## 0Obj Class: mable_reg

## Dimension of respomse: 1

## Dimension of covariate: 1

## Optimal degree m: 23

## P-value: 0.008884947

## Maximum loglikelihood: -0.3875965

## MABLE of p: can be retrieved using name 'p'
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##

## Estimate Std.Err Z value Baseline x0
## age 0.17665 0.01218 14.50256 38.893
##

## Note: the optimal model degree is selected by the method of change-point.

op <- par(mfrow = c(2,2))

plot(ova, which = "likelihood")

plot(ova, which = "change-point")

plot(ova, y=data.frame(c(60)), which="survival", type="1", xlab="Days", main="Age = 60")
plot(ova, y=data.frame(c(65)), which="survival", type="1", xlab="Days", main="Age = 65")

par (op)

Alternatively we can use mable.reg().

oval <- mable.reg(cbind(futimel, futime2) ~ age, data = ovarian2, M = c(2,35))

3.2 Accelerated Failure Time Model
The AFT model can be specified as
F @) = f(t|aiy) = e (2T [0), £ € [0,00), (2)
where v € G C R%. Let 79 € G be the true value of v. The AFT model (2) is equivalent to
S(t]ay) =Ste *10), tel0,00).

Thus this is actually a scale regression model. The AFT model can also be written as linear regression
log(T) = vT& +¢. Tt is clear that one can choose any zg in X as baseline by transform & = x — zo. If f(¢ | 0)
has support [0,79), 7o < 0o, then f(¢ | x) has support [O,Toe“’f)T"”). We define 7 = max{Toe%Tl cx e X} if
79 < 00 and 7 = oo otherwise. The above AFT model can also be written as

F(t [ w5y) = e fo(te™ ), S(t|w57) = Solte™ "),
where fo(t) = f(¢|0) and So(¢t) = S(¢t|0) = ftoo foluw)du.

As in Cox PH model, we choose 7, > y@,) = max{y;1,¥2 : yj2 < 00; 4,5 = 1,...,n} so that S(r,) and
maxgex S(7, | ) are believed very small. Then we approximate fo(¢) and Sy(t) on [0, 7,], respectively, by
t
Tn

fo(t) = fm(t;p) = Ti ZPjﬁm( ), t €0, 7];

SO(t) ~ Sm(t;p) = ijij (%)7 te [OanL
3=0 "

where Sy, (00;p) = 0, and p = (po, - --,Pm)’ € Sp. Then f(t | z;7) and S(t | z;7) can be approximated,
respectively, by

T T
Jm(t | 2;v,p) =€ " f (te‘” w;p)

_~T m
e v

Tyt T,
D;iBmj (e v —), te0,me” “; (3)
™ = n

Sm(t | z;7,p) = Sm (te‘”T“”;p)

- t

=2 piBng(e7 ) tE D™, @)
i=0 n

Guan (2019c¢)’s proposal is implemented by functions mable.aft() and maple.aft().
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Figure 8: Ovarian Cancer Data
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3.2.1 Example: Breast Cosmesis Data
library(interval)

data(bcos)
bcos2 <- data.frame(bcos[,1:2], x = 1*(bcos$treatment == "RadChem"))

g <- -0.41 # Hanson and Johnson 2004, JCGS
aft.res<-mable.aft(cbind(left, right) ~ x, data = bcos2, M =c(1, 30), g, tau =100, x0=1)

## Warning in mable.aft(cbind(left, right) ~ x, data = bcos2, M = c(1, 30),
## The maximum candidate degree has been reached
## with a p-value of the change-point 0.000380.

summary (aft.res)

## Call: mable.aft(cbind(left, right) ~ x)
## Data: bcos2

## Obj Class: mable_reg

## Dimension of response: 1

## Dimension of covariate: 1

## Optimal degree m: 5

## P-value: 0.0003802489

## Maximum loglikelihood: -144.4767

## MABLE of p: can be retrieved using name 'p'
##
#i#t Estimate Std.Err Z value Baseline x0
## x -0.381874 0.094206 -4.053588 1
##

## Note: the optimal model degree is selected by the method of change-point.

op <- par(mfrow = c(1,2), lwd = 1.5)
plot(x = aft.res, which = "likelihood")
plot(x = aft.res, y = data.frame(x = 0), which = "survival", type = "1", col = 1,
main = "Survival Function")
plot(x = aft.res, y = data.frame(x = 1), which = "survival", 1ty = 2, col = 1, add = TRUE)
legend("bottomleft", bty = "n", 1ty = 1:2, col 1, c("Radiation Only",
"Radiation and Chemotherapy"), cex = .7)

par (op)

Alternatively we can use mable.reg().

aft.resl <- mable.reg(cbind(left, right) ~ x, data = bcos2, 'aft', M = c(1, 30),
tau=100, x0=1)

## Warning in mable.aft(formula, data, M, g, tau, x0, controls, progress):
## The maximum candidate degree has been reached
## with a p-value of the change-point 0.000380.
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