Package 'mable'

March 21, 2020
Title Maximum Approximate Bernstein/Beta Likelihood Estimation
Version 2.1.1
Date 2020-03-20
Author Zhong Guan [aut, cre]
Maintainer Zhong Guan zguan@iusb.edu
Depends R (>= 3.5.0)
Description Fit data from a continuous population with a smooth density on finite interval by an approximate Bernstein polynomial model which is a mixture of certain beta distributions and find maximum approximate Bernstein likelihood estimator of the unknown coefficients. Consequently, maximum likelihood estimates of the unknown density, distribution functions, and more can be obtained. If the support of the density is not the unit interval then transformation can be applied. This is an implementation of the methods proposed by the author of this package published in the Journal of Nonparametric Statistics: Guan (2016) doi:10.1080/10485252.2016.1163349 and Guan (2017) doi:10.1080/10485252.2017.1374384. For c variates, under some semiparametric regression models such as Cox proportional hazards model and the accelerated failure time model, the baseline survival function can be estimated smoothly based on general interval censored data.

License LGPL (>=2.0, < 3)
LazyData true
Encoding UTF-8
Imports survival, graphics, stats, icenReg, aftgee
Suggests mixtools, ICsurv, interval, knitr, rmarkdown
BuildVignettes true
VignetteBuilder knitr
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-03-21 17:00:08 UTC

R topics documented:

chicken.embryo 2
dmixbeta 3
dmixmvbeta 4
mable 5
mable.aft 8
mable.ctrl 11
mable.decon 11
mable.group 13
mable.ic 16
mable.mvar 18
mable.ph 19
mable.reg 22
maple.aft 23
maple.ph 25
optim.gcp 28
plot.mable 29
plot.mable_reg 29
summary.mable 30
Vaal.Flow 31
Index 32
chicken.embryo Chicken Embryo Data

Description

The chicken embryo dataset which contains day, number of days, and $n T$, the corresponding frequencies.

Usage

data(chicken.embryo)

Format

The format is: List of 2: day: int [1:21] $12345678910 \ldots ;$ nT : int [1:21] $65112230000 \ldots$

Source

Jassim, E. W., Grossman, M., Koops, W. J. And Luykx, R. A. J. (1996). Multi-phasic analysis of embryonic mortality in chickens. Poultry Sci. 75, 464-71.

References

Kuurman, W. W., Bailey, B. A., Koops, W. J. And Grossman, M. (2003). A model for failure of a chicken embryo to survive incubation. Poultry Sci. 82, 214-22.
Guan, Z. (2017) Bernstein polynomial model for grouped continuous data. Journal of Nonparametric Statistics, 29(4):831-848.

Examples

data(chicken.embryo)
dmixbeta Mixture Beta Distribution

Description

Density, distribution function, quantile function and pseudorandom number generation for the Bernstein polynomial model, mixture of beta distributions, with shapes $(i+1, m-i+1), i=0, \ldots, m$, given mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ and support interval.

Usage

```
dmixbeta(x, p, interval = c(0, 1))
pmixbeta(x, p, interval = c(0, 1))
qmixbeta(u, p, interval = c(0, 1))
rmixbeta(n, p, interval = c(0, 1))
```


Arguments

x
$p \quad$ a vector of $m+1$ values. The $m+1$ components of p must be nonnegative and sum to one for mixture beta distribution. See 'Details'.
interval support/truncation interval [a,b].
$u \quad a$ vector of probabilities
$\mathrm{n} \quad$ sample size

Details

The density of the mixture beta distribution on an interval $[a, b]$ can be written as a Bernstein polynomial $f_{m}(x ; p)=\sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right), p_{i} \geq 0$, $\sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. The cumulative distribution function is $F_{m}(x ; p)=\sum_{i=0}^{m} p_{i} B_{m i}[(x-$ $a) /(b-a)]$, where $B_{m i}(u), i=0,1, \ldots, m$, is the beta cumulative distribution function with shapes
$(i+1, m-i+1)$. If $\pi=\sum_{i=0}^{m} p_{i}<1$, then f_{m} / π is a truncated desity on $[a, b]$ with cumulative distribution function F_{m} / π. The argument p may be any numeric vector of $\mathrm{m}+1$ values when pmixbeta() and and qmixbeta() return the integral function $F_{m}(x ; p)$ and its inverse, respectively, and dmixbeta() returns a Bernstein polynomial $f_{m}(x ; p)$.

Value

A vector of $f_{m}(x ; p)$ or $F_{m}(x ; p)$ values at x. dmixbeta returns the density, pmixbeta returns the cumulative distribution function, qmixbeta returns the quantile function, and rmixbeta generates pseudo random numbers.

Author(s)

Zhong Guan zguan@iusb.edu

References

Bernstein, S.N. (1912), Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilities, Communications of the Kharkov Mathematical Society, 13, 1-2.
Guan, Z. (2016) Efficient and robust density estimation using Bernstein type polynomials. Journal of Nonparametric Statistics, 28(2):250-271.
Guan, Z. (2017) Bernstein polynomial model for grouped continuous data. Journal of Nonparametric Statistics, 29(4):831-848.

See Also

mable

Examples

```
# classical Bernstein polynomial approximation
a<--4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)),
    expression(B^{f}*(x))))
```


Description

Density, distribution function, and pseudorandom number generation for the multivariate Bernstein polynomial model, mixture of multivariate beta distributions, with given mixture proportions $p=$ $\left(p_{0}, \ldots, p_{K-1}\right)$, given degrees $m=\left(m_{1}, \ldots, m_{d}\right)$, and support interval.

Usage

```
dmixmvbeta(x, p, m, interval \(=\) NULL)
pmixmvbeta(x, p, m, interval \(=\) NULL)
rmixmvbeta(n, p, m, interval \(=\) NULL)
```


Arguments

$x \quad$ a matrix with d columns or a vector of length d within support hyperrectangle $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$
$p \quad a$ vector of K values. All components of p must be nonnegative and sum to one for the mixture multivariate beta distribution. See 'Details'.
$\mathrm{m} \quad$ a vector of degrees, $\left(m_{1}, \ldots, m_{d}\right)$
interval a vector of two endpoints or a d x 2 matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the i-th row is assigned as $c(\min (x[, i]), \max (x[, i]))$.
$\mathrm{n} \quad$ sample size

Details

dmixmvbeta() returns a linear combination f_{m} of d-variate beta densities on $[a, b], \beta_{m j}(x)=$ $\prod_{i=1}^{d} \beta_{m_{i}, j_{i}}\left[\left(x_{i}-a_{i}\right) /\left(b_{i}-a_{i}\right)\right] /\left(b_{i}-a_{i}\right)$, with coefficients $p\left(j_{1}, \ldots, j_{d}\right), 0 \leq j_{i} \leq m_{i}, i=$ $1, \ldots, d$, where $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ is a hyperrectangle, and the coefficients are arranged in the column-major order of $j=\left(j_{1}, \ldots, j_{d}\right), p_{0}, \ldots, p_{K-1}$, where $K=\prod_{i=1}^{d}\left(m_{i}+1\right)$. pmixmvbeta() returns a linear combination F_{m} of the distribution functions of d-variate beta distribution.

If all p_{i} 's are nonnegative and sum to one, then p are the mixture proportions of the mixture multivariate beta distribution.

```
mable
```

Mable fit of one-sample raw data with an optimal or given degree.

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample raw data with an optimal selected by the change-point method among $\mathrm{m} 0: \mathrm{m} 1$ or a preselected model degree m .

Usage

```
    mable(x, M, interval = c(0, 1), IC = c("none", "aic", "hqic", "all"),
```

 controls \(=\) mable.ctrl(), progress = TRUE)

Arguments

x	a (non-empty) numeric vector of data values.
M	a positive integer or a vector ($m 0, m 1$). If $M=m$ or $m 0=m 1=m$, then m is a prese- lected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $m 0: m 1$ for searching an optimal degree, where $m 1-m 0>3$.
interval	a vector containing the endpoints of supporting/truncation interval IC
information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han- nan-Quinn information criterion).	
controls	Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.
progress	if TRUE a text progressbar is displayed

Details

Any continuous density function f on a known closed supporting interval $[a, b]$ can be estimated by Bernstein polynomial $f_{m}(x ; p)=\sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right)$, $p_{i} \geq 0, \sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. For each m , the MABLE of the coefficients p , the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate m stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than eps or the maximum number of iterations maxit is reached.
If $\mathrm{m} 0<\mathrm{m} 1$, an optimal model degree is selected as the change-point of the increments of log-likelihood, log likelihood ratios, for $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. The search for optimal degree m is stoped if either $m 1$ is reached with a warning or the test for changepoint results in a p-value pval smaller than sig. level. The BIC for a given degree m is calculated as in Schwarz (1978) where the dimension of the model is $d=\#\left\{i: \hat{p}_{i} \geq \epsilon, i=0, \ldots, m\right\}-1$ and a default ϵ is chosen as .Machine\$double.eps.

Value

A list with components

- m the selected/given optimal degree by methods of change-point
- \mathbf{p} the estimated vector of mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ with the selected/given optimal degree m
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- convergence An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in M). Possible error codes are
- 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
-2 , the search did not finish before m 1 .
- delta the convergence criterion delta value
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Note

Since the Bernstein polynomial model of degree m is nested in the model of degree $m+1$, the maximum likelihood is increasing in m. The change-point method is used to choose an optimal degree m.

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2016) Efficient and robust density estimation using Bernstein type polynomials. Journal of Nonparametric Statistics, 28(2):250-271.

Examples

```
# Vaal Rive Flow Data
    data(Vaal.Flow)
    x<-Vaal.Flow$Flow
    res<-mable(x, M = c(2,100), interval = c(0, 3000), controls =
        mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-9))
    op<-par(mfrow = c(1,2),lwd = 2)
    layout(rbind(c(1, 2), c(3, 3)))
    plot(res, which = "likelihood", cex = .5)
    plot(res, which = c("change-point"), lgd.x = "topright")
    hist(x, prob = TRUE, xlim = c(0,3000), ylim = c(0,.0022), breaks = 100*(0:30),
    main = "Histogram and Densities of the Annual Flow of Vaal River",
    border = "dark grey",lwd = 1,xlab = "x", ylab = "f(x)", col = "light grey")
    lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4)
    lines(y<-\operatorname{seq}(0, 3000, length = 100), dlnorm(y, mean(log(x)),
                                    sqrt(var(log(x)))), lty = 2, col = 2)
    plot(res, which = "density", add = TRUE)
    legend("top", lty = c(1, 2, 4), col = c(1, 2, 4), bty = "n",
    c(expression(paste("MABLE: ",hat(f)[B])),
            expression(paste("Log-Normal: ",hat(f)[P])),
                expression(paste("KDE: ",hat(f)[K]))))
    par(op)
```

```
# Old Faithful Data
    library(mixtools)
    x<-faithful$eruptions
    a<-0; b<-7
    v<-seq(a, b,len = 512)
    mu<-c(2,4.5); sig<-c(1,1)
    pmix<-normalmixEM(x,.5, mu, sig)
    lam<-pmix$lambda; mu<-pmix$mu; sig<-pmix$sigma
    y1<-lam[1]*dnorm(v,mu[1], sig[1])+lam[2]*dnorm(v, mu[2], sig[2])
    res<-mable(x, M = c(2,300), interval = c(a,b), controls =
        mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-7))
    op<-par(mfrow = c(1,2),lwd = 2)
    layout(rbind(c(1, 2), c(3, 3)))
    plot(res, which = "likelihood")
    plot(res, which = "change-point")
    hist(x, breaks = seq(0,7.5,len = 20), xlim = c(0,7), ylim = c(0,.7),
        prob = TRUE,xlab = "t", ylab = "f(t)", col = "light grey",
        main = "Histogram and Density of
            Duration of Eruptions of Old Faithful")
    lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4, lwd = 2)
    plot(res, which = "density", add = TRUE)
    lines(v, y1, lty = 2, col = 2, lwd = 2)
    legend("topright", lty = c(1,2,4), col = c(1,2,4), lwd = 2, bty = "n",
        c(expression(paste("MABLE: ", hat(f)[B](x))),
            expression(paste("Mixture: ",hat(f)[P](t))),
            expression(paste("KDE: ",hat(f)[K](t)))))
    par(op)
```

mable.aft Mable fit of Accelerated Failure Time Model

Description

Maximum approximate Bernstein/Beta likelihood estimation for accelerated failure time model based on interval censored data.

Usage

mable.aft(formula, data, $\mathrm{M}, \mathrm{g}=\mathrm{NULL}, \operatorname{tau}=1, \mathrm{x} 0=\mathrm{NULL}$, controls $=$ mable.ctrl(), progress = TRUE)

Arguments

formula	regression formula. Response must be cbind. See 'Details'.
data	a dataset

M	a positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	initial guess of d-vector of regression coefficients. See 'Details'.
tau	a finite truncation time greater than the maximum observed time τ. See 'Details'.
x0	a working baseline covariate x_{0}. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \exp \left(-\gamma^{\prime}\left(x-x_{0}\right)\right) \mid x_{0}\right)$, where x_{0} is a baseline covariate. Let $f(t \mid x)$ and $F(t \mid x)=$ $1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on a truncation interval $[0, \tau]$ can be approximated by $f_{m}\left(t \mid x_{0} ; p\right)=$ $\tau^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}(t / \tau)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=1, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ is larger than the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $[0, \tau]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m} p_{i} \bar{B}_{m i}(t / \tau)$, where $\bar{B}_{m i}(u)$ is the beta survival function with shapes $i+1$ and $m-i+1$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if $1=0$. The truncation time tau and the baseline x 0 should chosen so that $S(t \mid x)=S\left(t \exp \left(-\gamma^{\prime}(x-\right.\right.$ $\left.\left.\left.x_{0}\right)\right) \mid x_{0}\right)$ on $[\tau, \infty)$ is negligible for all the observed x.
The missing g is imputed by the rank estimate aftsrr() of package aftgee for right-censored data. For general interval censored observations, we keep the right-censored but replace the finite interval with its midpoint and fit the data by aftsrr () as a right-censored data.

The search for optimal degree m is stoped if either $m 1$ is reached or the test for change-point results in a p-value pval smaller than sig.level.

Value

A list with components

- m the given or selected optimal degree m
- p the estimate of $p=\left(p _0, \ldots, p _m\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the estimated regression coefficients of the AFT model
- SE the standard errors of the estimated regression coefficients
- z the z-scores of the estimated regression coefficients
- mloglik the maximum log-likelihood at an optimal degree m
- tau.n maximum observed time τ_{n}
- tau right endpoint of trucation interval $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- delta the final delta if $m 0=m 1$ or the final pval of the change-point for searching the optimal degree m;
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Likelihood Estimation in Accelerated Failure Time Model for Interval-Censored Data, arXiv:1911.07087.

See Also

```
maple.aft
```


Examples

```
## Breast Cosmesis Data
    require(interval)
    data(bcos)
    bcos2<-data.frame(b\operatorname{cos[,1:2], x=1*(bcos$treatment=="RadChem"))}
    g<--0.41 #Hanson and Johnson 2004, JCGS
    aft.res<-mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), g, tau=100, x0=1)
    op<-par(mfrow=c(1,2), lwd=1.5)
    plot(x=aft.res, which="likelihood")
    plot(x=aft.res, y=data.frame(x=0), which="survival", model='aft', type="l", col=1,
            add=FALSE, main="Survival Function")
    plot(x=aft.res, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
    legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
    par(op)
```

```
mable.ctrl Control parameters for mable fit
```


Description

Control parameters for mable fit

Usage

mable.ctrl(sig.level $=1 \mathrm{e}-04$, eps $=1 \mathrm{e}-07$, maxit $=5000$, eps.em $=1 \mathrm{e}-07$, maxit.em $=5000$, eps.nt $=1 \mathrm{e}-07$, maxit. $\mathrm{nt}=1000$, tini $=1 \mathrm{e}-04$)

Arguments

sig.level	the sigificance level for change-point method of choosing optimal model degree
eps	convergence criterion for iteration involves EM like and Newton-Raphson iter- ations
maxit	maximum number of iterations involve EM like and Newton-Raphson iterations
eps.em	convergence criterion for EM like iteration
maxit.em	maximum number of EM like iterations
eps.nt	convergence criterion for Newton-Raphson iteration
maxit.nt	maximum number of Newton-Raphson iterations
tini	a small positive number used to make sure p is in the interior of the simplex

Value

a list of the arguments' values

Author(s)
Zhong Guan zguan@iusb.edu
mable. decon Mable deconvolution with a known error density

Description

Maximum approximate Bernstein/Beta likelihood estimation in additive density deconvolution model with a known error density.

Usage

```
mable.decon(y, gn, ..., M, interval = c(0, 1), IC = c("none", "aic",
    "hqic", "all"), controls = mable.ctrl(maxit = 50000, eps = 1e-07),
    progress = TRUE)
```


Arguments

y	vector of observed data values
gn	error density function
	additional arguments to be passed to gn
M	a vector ($\mathrm{m} 0, \mathrm{~m} 1$) specifies the set of consective candidate model degrees, $\mathrm{M}=$ $\mathrm{m} 0: \mathrm{m} 1$.
interval	a finite vector containing the endpoints of supporting/truncation interval
IC	information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han-nan-Quinn information criterion).
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider the additive measurement error model $Y=X+\epsilon$, where X has an unknown distribution F, ϵ has a known distribution G, and X and ϵ are independent. We want to estimate density $f=F^{\prime}$ based on independent observations, $y_{i}=x_{i}+\epsilon_{i}, i=1, \ldots, n$, of Y.

Value

A mable class object with components

- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where $m 1$ is the last candidate degree when the search stoped
- m the selected optimal degree m
- p the estimate of $p=\left(p_{-} 0, \ldots, p_{-} m\right)$, the coefficients of Bernstein polynomial of degree m
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- convergence An integer code. 0 indicates an optimal degree is successfully selected in M. 1 indicates that the search stoped at m 1 .
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu
mable.group

References

Guan, Z., (2019) Fast Nonparametric Maximum Likelihood Density Deconvolution Using Bernstein Polynomials, Statistica Sinica, doi:10.5705/ss.202018.0173

Examples

```
# A simulated normal dataset
set.seed(123)
mu<-1; sig<-2; a<-mu-sig*5; b<-mu+sig*5;
gn<-function(x) dnorm(x, 0, 1)
n<-50;
x<-rnorm(n, mu, sig); e<-rnorm(n); y<-x+e;
res<-mable.decon(y, gn, interval = c(a, b), M = c(5, 50))
op<-par(mfrow = c(2, 2),lwd = 2)
plot(res, which="likelihood")
plot(res, which="change-point", lgd.x="topright")
plot(xx<-seq(a, b, length=100), yy<-dnorm(xx, mu, sig), type="l", xlab="x",
    ylab="Density", ylim=c(0, max(yy)*1.1))
plot(res, which="density", types=c(2,3), colors=c(2,3))
# kernel density based on pure data
lines(density(x), lty=4, col=4)
legend("topright", bty="n", lty=1:4, col=1:4,
c(expression(f), expression(hat(f)[cp]), expression(hat(f)[bic]), expression(tilde(f)[K])))
plot(xx, yy<-pnorm(xx, mu, sig), type="l", xlab="x", ylab="Distribution Function")
plot(res, which="cumulative", types=c(2,3), colors=c(2,3))
legend("bottomright", bty="n", lty=1:3, col=1:3,
    c(expression(F), expression(hat(F)[cp]), expression(hat(F)[bic])))
par(op)
```

mable.group

Mable fit of one-sample grouped data by an optimal or a preselected model degree

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample grouped data with an optimal selected by the change-point method among $\mathrm{m} 0: \mathrm{m} 1$ or a preselected model degree m.

Usage

mable.group(x, breaks, M, interval $=c(0,1), I C=c(" n o n e ", ~ " a i c "$, "hqic", "all"), controls = mable.ctrl(), progress = TRUE)

Arguments

interval a vector containing the endpoints of support/truncation interval
controls Object of class mable.ctrl() specifying iteration limit and the convergence

X
breaks
M

IC
progress
vector of frequencies
class interval end points
a positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han-nan-Quinn information criterion). criterion eps. Default is mable.ctrl. See Details.

Details

Any continuous density function f on a known closed supporting interval $[a, b]$ can be estimated by Bernstein polynomial $f_{m}(x ; p)=\sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right)$, $p_{i} \geq 0, \sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. For each m , the MABLE of the coefficients p , the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate m stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than eps or the maximum number of iterations maxit is reached.
If $\mathrm{m} 0<\mathrm{m} 1$, an optimal model degree is selected as the change-point of the increments of log-likelihood, \log likelihood ratios, for $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. The search for optimal degree m is stoped if either $m 1$ is reached with a warning or the test for changepoint results in a p-value pval smaller than sig. level. The BIC for a given degree m is calculated as in Schwarz (1978) where the dimension of the model is $d=\#\left\{i: \hat{p}_{i} \geq \epsilon, i=0, \ldots, m\right\}-1$ and a default ϵ is chosen as .Machine\$double.eps.

Value

A list with components

- m the given/selected optimal degree by the method of change-point
- p the estimated p with degree m
- mloglik the maximum log-likelihood at degree m
- interval supporting interval (a,b)
- convergence An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in M). Possible error codes are
- 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
-2 , the search did not finish before m 1 .
- delta the convergence criterion delta value
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2017) Bernstein polynomial model for grouped continuous data. Journal of Nonparametric Statistics, 29(4):831-848.

See Also

```
mable.ic
```


Examples

```
## Chicken Embryo Data
    data(chicken.embryo)
    a<-0; b<-21
    day<-chicken.embryo$day
    nT<-chicken.embryo$nT
    Day<-rep(day,nT)
    res<-mable.group(x=nT, breaks=a:b, M=c(2,100), interval=c(a, b), IC="aic",
        controls=mable.ctrl(sig.level=1e-6, maxit=2000, eps=1.0e-7))
    op<-par(mfrow=c(1,2), lwd=2)
    layout(rbind(c(1, 2), c(3, 3)))
    plot(res, which="likelihood")
    plot(res, which="change-point")
    fk<-density(x=rep((0:20)+.5, nT), bw="sj", n=101, from=a, to=b)
    hist(Day, breaks=seq(a,b, length=12), freq=FALSE, col="grey",
        border="white", main="Histogram and Density Estimates")
    plot(res, which="density",types=1:2, colors=1:2)
    lines(fk, lty=2, col=2)
    legend("topright", lty=c(1:2), c("MABLE", "Kernel"), bty="n", col=c(1:2))
    par(op)
```


Description

Maximum approximate Bernstein/Beta likelihood estimation of density and cumulative/survival distributions functions based on interal censored event time data.

Usage

mable.ic(data, M, pi0 = NULL, tau = Inf, IC = c("none", "aic", "hqic", "all"), controls = mable.ctrl(), progress = TRUE)

Arguments

data a dataset either data. frame or an $\mathrm{n} \times 2$ matrix.
M an positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
pi0 Initial guess of $\pi=F\left(\tau_{n}\right)$. Without right censored data, pi $0=1$. See 'Details'.
tau right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time

IC information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han-nan-Quinn information criterion).
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Details

Let $f(t)$ and $F(t)=1-S(t)$ be the density and cumulative distribution functions of the event time, respectively. Then $f(t)$ on $\left[0, \tau_{n}\right]$ can be approximated by $f_{m}(t ; p)=\tau_{n}^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}\left(t / \tau_{n}\right)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=1-p_{m+1}, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ_{n} is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S(t)$ on $[0, \tau]$ by $S_{m}(t ; p)=\sum_{i=0}^{m+1} p_{i} \bar{B}_{m i}(t / \tau)$, where $\bar{B}_{m i}(u), i=0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1, \bar{B}_{m, m+1}(t)=1, p_{m+1}=1-\pi$, and $\pi=F\left(\tau_{n}\right)$. For data without right-censored time, $p_{m+1}=1-\pi=0$. The search for optimal degree m is stoped if either m 1 is reached or the test for change-point results in a p-value pval smaller than sig.level.

Each row of data, (l, u), is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if $l=0$.
mable.ic

Value

a class 'mable' object with components

- p the estimated p with degree m selected by the change-point method
- mloglik the maximum log-likelihood at an optimal degree m
- interval support/truncation interval $(0, b)$
- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate when the search stoped
- m the selected optimal degree by the method of change-point
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- tau.n maximum observed time τ_{n}
- tau right endpoint of support $[0, \tau)$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees
- convergence an integer code. 0 indicates successful completion(the iteration is convergent). 1 indicates that the maximum candidate degree had been reached in the calculation;
- delta the final pval of the change-point for selecting the optimal degree m;

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data, arXiv:1906.08882 .

See Also

mable.group

Examples

```
library(interval)
data(bcos)
bc.res0<-mable.ic(bcos[bcos$treatment=="Rad",1:2], M=c(1,50), IC="none")
bc.res1<-mable.ic(bcos[bcos$treatment=="RadChem",1:2], M=c(1,50), IC="none")
op<-par(mfrow=c(2,2),lwd=2)
plot(bc.res0, which="change-point", lgd.x="right")
plot(bc.res1, which="change-point", lgd.x="right")
plot(bc.res0, which="survival", add=FALSE, xlab="Months", ylim=c(0,1), main="Radiation Only")
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]),
    expression(hat(S)[BIC])))
plot(bc.res1, which="survival", add=FALSE, xlab="Months", main="Radiation and Chemotherapy")
```

```
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]),
            expression(hat(S)[BIC])))
par(op)
```

mable.mvar
Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Description

Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Usage

mable.mvar(x, M, search = TRUE, interval = NULL, controls = mable.ctrl(), progress = TRUE)

Arguments

x
M a positive integer or a vector of d positive integers specify the maximum candidate or the given model degrees for the joint density.
search logical, whether to search optimal degrees using M as maximum candidate degrees or not but use M as the given model degrees for the joint density.
interval a vector of two endpoints or a $d \times 2$ matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the i-th row is assigned as $c(\min (x[, i]), \max (x[, i]))$.
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.
progress if TRUE a text progressbar is displayed

Details

A d-variate density f on a hyperrectangle $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ can be approximated by a mixture of d-variate beta densities on $[a, b], \beta_{m j}(x)=\prod_{i=1}^{d} \beta_{m_{i}, j_{i}}\left[\left(x_{i}-a_{i}\right) /\left(b_{i}-a_{i}\right)\right] /\left(b_{i}-\right.$ a_{i}), with proportion $p\left(j_{1}, \ldots, j_{d}\right), 0 \leq j_{i} \leq m_{i}, i=1, \ldots, d$. If search=TRUE, we start with $M_{0}=\operatorname{rep}(2, \mathrm{~d})$ and select M_{1} which maximizes the likelohood with degrees $M_{1}=M_{0}+e_{i}$, where $e_{i}, i=1, \ldots, d$, form the basis of R^{n}. The above procedure are repeated at least four times to M_{s} and \log likelihood $\ell_{s}, s=0,1, \ldots, k$, and stop whenever the p -value of the change point of $\ell_{s+1}-\ell_{s}$ is small or a component of M_{k} reached its maximum value specified by M. For each $M_{s}+e_{i}$ the data are fitted using EM algorithm and the multivariate Bernstein polynomial model with a vector of the mixture proportions $p\left(j_{1}, \ldots, j_{d}\right)$, arranged in the column-major order of $j=\left(j_{1}, \ldots, j_{d}\right)$, p_{0}, \ldots, p_{K-1}, where $K=\prod_{i=1}^{d}\left(m_{i}+1\right)$, to obtain likelihood.

Value

A list with components

- dim the dimension d of the data
- ma vector of the selected optimal degrees by the method of change-point
- p a vector of the mixture proportions $p\left(j_{1}, \ldots, j_{d}\right)$, arranged in the column-major order of $j=\left(j_{1}, \ldots, j_{d}\right), 0 \leq j_{i} \leq m_{i}, i=1, \ldots, d$.
- mloglik the maximum log-likelihood at an optimal degree m
- pval the p-values of change-points for choosing the optimal degrees for the marginal densities
- M the vector ($\mathrm{m} 1, \mathrm{~m} 2, \ldots, \mathrm{md}$), where mi is the largest candidate degree when the search stoped for the i-th marginal density
- interval support hyperrectangle $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$
- convergence An integer code. 0 indicates successful completion(the EM iteration is convergent). 1 indicates that the iteration limit maxit had been reached in the EM iteration;

Author(s)

Zhong Guan zguan@iusb.edu

References

Wang, T. and Guan, Z.,(2019) Bernstein Polynomial Model for Nonparametric Multivariate Density, Statistics, Vol. 53, no. 2, 321-338

Examples

```
## Old Faithful Data
    a<-c(0, 40); b<-c(7, 110)
    #ans<-mable.mvar(faithful, M = c(100, 100), interval = cbind(a, b))
    ans<- mable.mvar(faithful, M = c(46,19), search =FALSE, interval = cbind(a,b))
    plot(ans, which="density")
    plot(ans, which="cumulative")
```

mable.ph

Description

Maximum approximate Bernstein/Beta likelihood estimation in Cox's proportional hazards regression model based on interal censored event time data.

Usage

mable.ph(formula, data, $\mathrm{M}, \mathrm{g}=\mathrm{NULL}, \mathrm{pi} 0=$ NULL, tau $=\mathrm{Inf}$, $\mathrm{x} 0=\mathrm{NULL}$, controls = mable.ctrl(), progress = TRUE)

Arguments

formula data	regression formula. Response must be cbind. See 'Details'. a dataset
M	a positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	initial guess of d-vector of regression coefficients. See 'Details'.
pio	Initial guess of $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. Without right censored data, pi $0=1$. See 'Details'.
tau	right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time
x0	a working baseline covariate. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider Cox's PH model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \mid x_{0}\right)^{\exp \left(\gamma^{\prime}\left(x-x_{0}\right)\right)}$, where x_{0} satisfies $\gamma^{\prime}\left(x-x_{0}\right) \geq 0$. Let $f(t \mid x)$ and $F(t \mid x)=1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ can be approximated by $f_{m}\left(t \mid x_{0}, p\right)=\tau_{n}^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}\left(t / \tau_{n}\right)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=$ $1-p_{m+1}, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ_{n} is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m+1} p_{i} \bar{B}_{m i}\left(t / \tau_{n}\right)$, where $\bar{B}_{m i}(u), i=0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1$, $\bar{B}_{m, m+1}(t)=1, p_{m+1}=1-\pi\left(x_{0}\right)$, and $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. For data without right-censored time, $p_{m+1}=1-\pi\left(x_{0}\right)=0$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if 1 $=0$. The associated covariate contains d columns. The baseline x 0 should chosen so that $\gamma^{\prime}\left(x-x_{0}\right)$ is nonnegative for all the observed x and all γ in a neighborhood of its true value.
A missing initial value of g is imputed by ic_sp() of package icenReg.
The search for optimal degree m is stoped if either $m 1$ is reached or the test for change-point results in a p-value pval smaller than sig. level. This process takes longer than maple.ph to select an optimal degree.

Value

A list with components

- m the selected/preselected optimal degree m
- p the estimate of $p=\left(p_{0}, \ldots, p_{m}, p_{m+1}\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the estimated regression coefficients of the PH model
- SE the standard errors of the estimated regression coefficients
- z the z-scores of the estimated regression coefficients
- mloglik the maximum log-likelihood at an optimal degree m
- tau.n maximum observed time τ_{n}
- tau right endpoint of support $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- delta the final delta if $m 0=m 1$ or the final pval of the change-point for searching the optimal degree m;
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$ is the last candidate degree when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data, arXiv:1906.08882 .

See Also

maple.ph

Examples

```
# Ovarian Cancer Survival Data
require(survival)
futime2<-ovarian$futime
futime2[ovarian$fustat==0]<-Inf
ovarian2<-data.frame(age=ovarian$age, futime1=ovarian$futime, futime2=futime2)
ova<-mable.ph(cbind(futime1, futime2) ~ age, data = ovarian2, M=c(2,35), g=.16)
op<-par(mfrow=c (2,2))
plot(ova, which = "likelihood")
plot(ova, which = "change-point")
```

```
plot(ova, y=data.frame(c(60)), which="survival", add=FALSE, type="l",
    xlab="Days", main="Age = 60")
plot(ova, y=data.frame(c(65)), which="survival", add=FALSE, type="l",
    xlab="Days", main="Age = 65")
par(op)
```

```
mable.reg
```

Mable fit of semiparametric regression model based on interval censored data

Description

Wrapping all codemable fit of regression models in one function. Using maximum approximate Bernstein/Beta likelihood estimation to fit semiparametric regression models: Cox ph model, proportional odds(po) model, accelerated failure time model, and so on.

Usage

```
mable.reg(formula, data, model = c("ph", "aft"), M, g = NULL,
        pi0 \(=\) NULL, tau \(=\operatorname{Inf}, x 0=\) NULL, controls \(=\) mable.ctrl(),
        progress = TRUE)
```


Arguments

formula regression formula. Response must be of the form cbind (l,u). See 'Details'.
data a dataset
model the model to fit. Current options are "ph" (Cox PH) or "aft" (accelerated failure time model)
M a vector ($\mathrm{m} 0, \mathrm{~m} 1$) specifies the set of consective integers as candidate degrees
$g \quad$ an initial guess of the regression coefficients
pi0 Initial guess of $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. Without right censored data, pi $0=1$. See 'Details'.
tau right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time
$x 0 \quad$ a working baseline covariate. See 'Details'.
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Details

For "ph" model a missing initial guess of the regression coefficients g is obtained by ic_sp() of package icenReg. For "aft" model a missing g is imputed by the rank estimate aftsrr() of package aftgee for right-censored data. For general interval censored observations, we keep the right-censored but replace the finite interval with its midpoint and fit the data by aftsrr() as a right-censored data.

Value

A 'mable_reg' class object

Author(s)

Zhong Guan zguan@iusb.edu

See Also

```
mable.aft, mable.ph
```

maple.aft Mable fit of AFT model with given regression coefficients for AFT model

Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in accelerated failure time based on interal censored event time data with a given regression coefficients which are efficient estimates provided by other semiparametric methods. Select optimal degree with a given regression coefficients for AFT model.

Usage

maple.aft(formula, data, $\mathrm{M}, \mathrm{g}, \mathrm{tau}=1, \mathrm{x} 0=\mathrm{NULL}$, controls = mable.ctrl(), progress = TRUE)

Arguments

formula	regression formula. Response must be cbind. See 'Details'.
data	a dataset
M	a positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	the given d-vector of regression coefficients
tau	a truncation time greater than or equal to the maximum observed time τ. See 'Details'.
x0	a working baseline covariate x_{0}. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \exp \left(-\gamma^{\prime}\left(x-x_{0}\right)\right) \mid x_{0}\right)$, where x_{0} is a baseline covariate. Let $f(t \mid x)$ and $F(t \mid x)=$ $1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on a truncation interval $[0, \tau]$ can be approximated by $f_{m}\left(t \mid x_{0} ; p\right)=$ $\tau^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}(t / \tau)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=1, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ is larger than the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $[0, \tau]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m} p_{i} \bar{B}_{m i}(t / \tau)$, where $\bar{B}_{m i}(u)$ is the beta survival function with shapes $i+1$ and $m-i+1$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if $1=0$. The truncation time tau and the baseline x 0 should chosen so that $S(t \mid x)=S\left(t \exp \left(-\gamma^{\prime}(x-\right.\right.$ $\left.\left.\left.x_{0}\right)\right) \mid x_{0}\right)$ on $[\tau, \infty)$ is negligible for all the observed x.
The search for optimal degree m is stoped if either $m 1$ is reached or the test for change-point results in a p-value pval smaller than sig. level.

Value

A list with components

- m the selected optimal degree m
- p the estimate of $p=\left(p_{0}, \ldots, p_{m}\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the given regression coefficients of the AFT model
- SE the standard errors of the estimated regression coefficients
- z the z-scores of the estimated regression coefficients
- mloglik the maximum log-likelihood at an optimal degree m
- tau.n maximum observed time τ_{n}
- tau right endpoint of trucation interval $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- delta the final delta if $m 0=m 1$ or the final pval of the change-point for searching the optimal degree m;
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Likelihood Estimation in Accelerated Failure Time Model for Interval-Censored Data, arXiv:1911.07087.

See Also

```
mable.aft
```


Examples

```
## Breast Cosmesis Data
    require(interval)
    data(bcos)
    bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treatment=="RadChem"))
    g<--0.41 #Hanson and Johnson 2004, JCGS,
    res1<-maple.aft(cbind(left, right)~x, data=bcos2, M=c(1,30), g, tau=100, x0=1)
    op<-par(mfrow=c(1,2), lwd=1.5)
    plot(x=res1, which="likelihood")
    plot(x=res1, y=data.frame(x=0), which="survival", model='aft', type="l", col=1,
        add=FALSE, main="Survival Function")
    plot(x=res1, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
    legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
    par(op)
```

maple.ph
Mable fit of the PH model with given regression coefficients

Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in Cox's proportional hazards regression based on interal censored event time data with a given regression coefficients which are efficient estimates provided by other semiparametric methods. Select optimal degree with a given regression coefficients.

Usage

maple.ph(formula, data, M, g, pi0 = NULL, tau $=\operatorname{Inf}, \mathrm{x} 0=$ NULL, controls $=$ mable.ctrl (), progress $=$ TRUE)

Arguments

formula data	regression formula. Response must be cbind. See 'Details'. a dataset
M	a positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	the given d-vector of regression coefficients
pio	Initial guess of $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. Without right censored data, pi $0=1$. See 'Details'.
tau	right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time
x0	a working baseline covariate. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider Cox's PH model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \mid x_{0}\right)^{\exp \left(\gamma^{\prime}\left(x-x_{0}\right)\right)}$, where x_{0} satisfies $\gamma^{\prime}\left(x-x_{0}\right) \geq 0$. Let $f(t \mid x)$ and $F(t \mid x)=1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ can be approximated by $f_{m}\left(t \mid x_{0} ; p\right)=\tau_{n}^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}\left(t / \tau_{n}\right)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=$ $1-p_{m+1}, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ_{n} is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m+1} p_{i} \bar{B}_{m i}\left(t / \tau_{n}\right)$, where $\bar{B}_{m i}(u), i=0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1$, $\bar{B}_{m, m+1}(t)=1, p_{m+1}=1-\pi\left(x_{0}\right)$, and $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. For data without right-censored time, $p_{m+1}=1-\pi\left(x_{0}\right)=0$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $1=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if 1 $=0$. The associated covariate contains d columns. The baseline x 0 should chosen so that $\gamma^{\prime}\left(x-x_{0}\right)$ is nonnegative for all the observed x.
The search for optimal degree m is stoped if either $m 1$ is reached or the test for change-point results in a p-value pval smaller than sig. level.

Value

a class 'mable_reg' object, a list with components

- M the vector ($m 0, m 1$), where $m 1$ is the last candidate degree when the search stoped
- m the selected optimal degree m
- p the estimate of $p=\left(p_{0}, \ldots, p_{m}, p_{m+1}\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the given regression coefficients of the PH model
- mloglik the maximum log-likelihood at an optimal degree m
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- tau.n maximum observed time τ_{n}
- tau right endpoint of support $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code. 0 indicates successful completion(the iteration is convergent). 1 indicates that the maximum candidate degree had been reached in the calculation;
- delta the final pval of the change-point for selecting the optimal degree m;

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data, arXiv:1906.08882 .

See Also

mable.ph

Examples

```
## Simulated Weibull data
    require(icenReg)
    set.seed(123)
    simdata<-simIC_weib(70, inspections = 5, inspectLength = 1)
    sp<-ic_sp(cbind(l, u) ~ x1 + x2, data = simdata)
    res0<-maple.ph(cbind(l, u) ~ x1 + x2, data = simdata, M=c(2, 20),
        g=sp$coefficients, tau=7)
    op<-par(mfrow=c(1,2))
    plot(res0, which=c("likelihood","change-point"))
    par(op)
    res1<-mable.ph(cbind(l, u) ~ x1 + x2, data = simdata, M=res0$m, g=c(.5,-.5), tau=7)
    op<-par(mfrow=c(1,2))
    plot(res1, y=data.frame(c(0,0)), which="density", add=FALSE, type="l",
        xlab="Time", main="Desnity Function")
    lines(xx<-seq(0, 7, len=512), dweibull(xx, 2,2), lty=2, col=2)
    legend("topright", bty="n", lty=1:2, col=1:2, c("Estimated","True"))
    plot(res1, y=data.frame(c(0,0)), which="survival", add=FALSE, type="l",
        xlab="Time", main="Survival Function")
    lines(xx, 1-pweibull(xx, 2, 2), lty=2, col=2)
    legend("topright", bty="n", lty=1:2, col=1:2, c("Estimated","True"))
    par(op)
```

optim.gcp Choosing optimal model degree by gamma change-point method

Description

Choose an optimal degree using gamma change-point model with two changing shape and scale parameters.

Usage

optim.gcp(obj)

Arguments

obj a class "mable" or 'mable_reg' object containig a vector $M=(m 0, m 1), l k, \log -$ likelihoods evaluated evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$

Value

a list with components

- m the selected optimal degree m
- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate when the search stoped
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Examples

```
# simulated data
p<-c(1:5,5:1)
p<-p/sum(p)
x<-rmixbeta(100, p)
res1<-mable(x, M=c(2, 50), IC="none")
m1<-res1$m[1]
res2<-optim.gcp(res1)
m2<-res2$m
op<-par(mfrow=c(1,2))
plot(res1, which="likelihood", add=FALSE)
plot(res2, which="likelihood")
#segments(m2, min(res1$lk), m2, res2$mloglik, col=4)
plot(res1, which="change-point", add=FALSE)
plot(res2, which="change-point")
```

```
par(op)
```

```
plot.mable Plot mathod for class 'mable'
```


Description

Plot mathod for class 'mable'

Usage

\#\# S3 method for class 'mable'
plot(x, which = c("density", "cumulative", "survival",
"likelihood", "change-point", "all"), add = FALSE, lgd.x = NULL, lgd. $\mathrm{y}=\mathrm{NULL}, \mathrm{nx}=512, \ldots$)

Arguments

x
Class "mable" object return by mablem, mable, mablem. group or mable.group functions which contains p, $m l o g l i k$, and $M=m 0: m 1, l k, l r$,
which indicates which graphs to plot, options are "density", "cumulative", "likelihood", "change-point", "all". If not "all", which can contain more than one options.
add logical add to an existing plot or not
lgd. x, lgd.y coordinates of position where the legend is displayed
$n x \quad$ number of evaluations of density, or cumulative distribution curve to be plotted.
... additional arguments to be passed to the base plot function
plot.mable_reg Plot mathod for class 'mable_reg'

Description

Plot mathod for class 'mable_reg'

Usage

```
## S3 method for class 'mable_reg'
plot(x, y, newdata = NULL, ntime = 512,
    xlab = "Time", which = c("survival", "likelihood", "change-point",
    "density", "all"), add = FALSE, ...)
```


Arguments

newdata a new data.frame (ignored if y is included)
ntime number of evaluations of density, survival or cumulative distribution curve to be
$x l a b \quad x$-axis label
which indicates which graphs to plot, options are "survival", "likelihood", "change-
x
y
add
...
a class 'mable_reg' object return by functions such as mable. ph which contains M, coefficients, p, m, x0, tau.n, tau lk, lr.
y a new data.frame plotted. point", "density", or "all". If not "all", which can contain more than one options.
d logical add to an existing plot or not
additional arguments to be passed to the base plot function

Author(s)

Zhong Guan zguan@iusb.edu

```
summary.mable Summary mathods for classes 'mable' and 'mable_reg'
```


Description

Produces a summary of a mable fit.

Usage

```
## S3 method for class 'mable'
summary(object, ...)
## S3 method for class 'mable_reg'
summary(object, ...)
```


Arguments

object
Class "mable" or 'mable_reg' object return by mable or mable.xxxx functions
... for future methods

Value

Invisibly returns its argument, object.

Examples

```
    # Vaal Rive Flow Data
    data(Vaal.Flow)
    res<-mable(Vaal.Flow$Flow, M = c(2,100), interval = c(0, 3000),
        controls = mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-9))
    summary(res)
## Breast Cosmesis Data
    require(interval)
    data(bcos)
    bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treatment=="RadChem"))
    aft.res<-mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), tau=100, x0=1)
    summary(aft.res)
```

Vaal.Flow Vaal River Annual Flow Data

Description

The annual flow data of Vaal River at Standerton as given by Table 1.1 of Linhart and Zucchini (1986) give the flow in millions of cubic metres.

Usage

data(Vaal.Flow)

Format

The format is: int [1:65] 22210944521298882988276216103490 ...

References

Linhart, H., and Zucchini, W., Model Selection, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, New York: John Wiley
\& Sons Inc, 1986.

Examples

data(Vaal.Flow)

Index

*Topic datasets
chicken.embryo, 2
Vaal.Flow, 31
*Topic distribution
dmixbeta, 3
mable, 5
mable.aft, 8
mable.group, 13
mable.mvar, 18
mable.ph, 19
mable.reg, 22
maple.aft, 23
maple.ph, 25
*Topic models
dmixbeta, 3
mable, 5
mable.aft, 8
mable.group, 13
mable.ph, 19
mable.reg, 22
maple.aft, 23
maple.ph, 25
*Topic multivariate
mable.mvar, 18
*Topic nonparametric
dmi xbeta, 3
mable, 5
mable.aft, 8
mable.group, 13
mable.mvar, 18
mable.ph, 19
mable.reg, 22
maple.aft, 23
maple.ph, 25
*Topic regression
mable.aft, 8
mable.ph, 19
mable.reg, 22
maple.aft, 23
maple.ph, 25
*Topic smooth
dmixbeta, 3
mable, 5
mable.aft, 8
mable.group, 13
mable. ph, 19
mable.reg, 22
maple.aft, 23
maple.ph, 25
$*$ Topic survival
mable.aft, 8
mable.ph, 19
mable.reg, 22
maple.aft, 23
maple.ph, 25
$*$ Topic univar
mable, 5
mable.group, 13
chicken.embryo, 2
dmixbeta, 3
dmixmvbeta, 4
mable, 4, 5
mable.aft, 8, 23, 25
mable.ctrl, 6, 9, 11, 12, 14, 16, 18, 20, 22,
23, 26
mable.decon, 11
mable.group, 13, 17
mable.ic, 15, 16
mable.mvar, 18
mable.ph, 19, 23, 27
mable.reg, 22
maple.aft, 10, 23
maple.ph, 20, 21, 25
optim.gcp, 28
plot.mable, 29
plot.mable_reg, 29
pmixbeta (dmixbeta), 3
pmixmvbeta (dmixmvbeta), 4
qmixbeta (dmixbeta), 3
rmixbeta (dmixbeta), 3
rmixmvbeta (dmixmvbeta), 4
summary.mable, 30
summary.mable_reg (summary.mable), 30
Vaal.Flow, 31

