Package 'ludic'

December 4, 2019

Type Package
Title Linkage Using Diagnosis Codes
Version 0.1.8
Date 2019-12-04
LinkingTo Rcpp, RcppArmadillo
Depends R (>= 3.0.0), Rcpp (>= 0.12.11),
Imports fGarch, landpred, Matrix, methods
Suggests testthat
Description Probabilistic record linkage without direct identifiers using only diagnosis codes. Method is detailed in: Hejblum, Weber, Liao, Palmer, Churchill, Szolovits, Murphy, Kohane & Cai (2019) <doi: 10.1038/sdata.2018.298>.
BugReports https://github.com/borishejblum/ludic/issues
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 6.1.1

NeedsCompilation yes

Repository CRAN

Tianxi Cai [aut]

Author Boris P Hejblum [aut, cre],

Date/Publication 2019-12-04 10:00:03 UTC

Maintainer Boris P Hejblum <boris.hejblum@u-bordeaux.fr>

 R topics documented:
 2

 ludic-package
 2

 agree_C
 2

 comb_pvals
 3

 em_winkler
 4

 loglikC_bin
 5

 matchingScore_C
 6

matchProbs_rank_full_C	7
pval_zscore	7
RA	8
recordLink	9
test_combine	11
	- 14

Index

ludic-package *ludic*

Description

Linkage Using Diagnosis Codes

Details

This package implements probabilistic record linkage methods that relies on the use of diagnosis codes only, in the absence of direct identifiers .

Package:	ludic
Type:	Package
Version:	ludic 0.1.7
Date:	2019-08-20
License:	The "MIT License" (MIT)

The main function of ludic is recordLink.

Author(s)

Boris P. Hejblum, Tianxi Cai — Maintainer: Boris P. Hejblum

References

Hejblum BP, Weber G, Liao KP, Palmer N, Churchill S, Szolovits P, Murphy S, Kohane I, Cai T Probabilistic Record Linkage of De-Identified Research Datasets Using Diagnosis Codes, *submitted*, 2017.

agree_C

Fast C++ implementation of agreement vector for the element-wise comparison of 2 matrices

Description

agree_C_sparse uses sparse matrices.

comb_pvals

Usage

agree_C(mat_A, mat_B)

agree_C_sparse(mat_A, mat_B)

Arguments

mat_A	a nB x K matrix of the observations to be matched. Must be integers.
mat_B	a nA x K matrix of the database into which a match is looked for. Must be inte-
	gers.

Examples

comb_pvals	Fisher's rule for combining several p-values
------------	--

Description

Compute the negative of the log-sum for a vector of p-values.

Usage

```
comb_pvals(pv)
```

Arguments

```
pv
```

the vector of p-values to be combined together

Details

According to Fisher's rule, if the p-values are correlated, then this does not follow a simple chisquare mixture under the null.

Value

the Fisher combination of the p-values. See Details.

em_winkler

Description

em_winkler_big implements the same method when the data are too big to compute the agreement matrix. Agreement is then recomputed on the fly each time it is needed. The EM steps are completely done in C++. This decreases the RAM usage (still important though), at the cost of increasing computational time.

Usage

```
em_winkler(data1, data2, tol = 0.001, maxit = 500, do_plot = TRUE,
oneone = FALSE, verbose = FALSE)
```

Arguments

data1	either a binary (1 or 0 values only) matrix or binary data frame of dimension n1 x K whose rownames are the observation identifiers.
data2	either a binary (1 or 0 values only) matrix or a binary data frame of dimension $n2 \times K$ whose rownames are the observation identifiers.
tol	tolerance for the EM algorithm convergence.
maxit	maximum number of iterations for the EM algorithm.
do_plot	a logical flag indicating whether a plot should be drawn for the EM convergence. Default is TRUE.
oneone	a logical flag indicating whether 1-1 matching should be enforced. If TRUE, then returned matchingScores are only kept for the maximum score per column while lower scores are replace by threshold-1. Default is FALSE in which case original matchingScores are returned.
verbose	a logical flag indicating whether intermediate values from the EM algorithm should be printed. Useful for debugging. Default is FALSE.

Value

a list containing:

- matchingScore a matrix of size n1 x n2 with the matching score for each n1*n2 pair.
- threshold_ms threshold value for the matching scores above which pairs are considered true matches.
- estim_nbmatch an estimation of the number of true matches (N pairs considered multiplied by p the estimated proportion of true matches from the EM algorithm)
- convergence_status a logical flag indicating whether the EM algorithm converged

loglikC_bin

References

Winkler WE. Using the EM Algorithm for Weight Computation in the Fellegi-Sunter Model of Record Linkage. *Proc Sect Surv Res Methods*, Am Stat Assoc 1988: 667-71.

Grannis SJ, Overhage JM, Hui S, *et al.* Analysis of a probabilistic record linkage technique without human review. *AMIA 2003 Symp Proc* 2003: 259-63.

Examples

loglikC_bin

C++ *implementation of the pseudo-likelihood computation*

Description

loglikC_bin implements an even faster C++ implementation of the pseudo-likelihood computation for binary variables

loglikC_bin_wDates implements a C++ implementation of the pseudo-likelihood computation for binary variables with dates

Usage

loglikC_bin(Bmat, Amat, eps_p, eps_n, piA, piB)

loglikC_bin_wDates(Bmat, Amat, Bdates, Adates, eps_p, eps_n, piA, piB)

loglikratioC_diff_arbitrary(Bmat, Amat, d_max, cost)

Arguments

Bmat	K x nB matrix of the observations to be matched.
Amat	nA x K matrix the database into which a match is looked for.
eps_p	a vector of length K giving the prior discrepancy rate expected from A to B for the positives, for each variable.
eps_n	a vector of length K giving the prior discrepancy rate expected from A to B for the negatives, for each variable.

piA	a vector of length K giving the prior probabilities of observing each variable in A.
piB	a vector of length K giving the prior probabilities of observing each variable in B.
Bdates	nB x K matrix of the dates for each observations to be matched.
Adates	nA x K matrix of the dates for database into which a match is looked for.
d_max	a numeric vector of length K giving the minimum difference from which it is considered a discrepancy.
cost	a numeric vector of length K giving the arbitrary cost of discrepancy.

<pre>matchingScore_C</pre>	Fast C++ computation of the final posterior probabilities in the E-M
	Winkler's method

Description

matchingScore_C_sparse_big implements a version using sparse matrices. It has a better management of memory but is a little bit slower (indicated for big matrices)

Usage

```
matchingScore_C(agreemat, m, u, nA, nB)
```

```
matchingScore_C_sparse_big(mat_A, mat_B, m, u)
```

Arguments

agreemat	binary sparse matrix of dimensions $N \propto K$ containing the agreement rows for each pair of potential matches.
m	vector of length K containing the agreement weights.
u	vector of length K containing the disagreement weights.
nA	integer indicating the number of observations to be matched.
nB	integer indicating the number of observations to be matched with.
mat_A	a nB x K matrix of the observations to be matched.
mat_B	a nA x K matrix of the database into which a match is looked for.

matchProbs_rank_full_C

Compute the matching probabilities for each pair of observations

Description

C++ version: for each observations in (1:n), all the matching probabilities are computed for the p possible pairs.

Usage

```
matchProbs_rank_full_C(computed_dist, prop_match)
```

Arguments

computed_dist	a n x p matrix of computed distances used for ranking.
prop_match	a priori proportion of matches ("rho_1")

Value

a n x p matrix containing the matching probabilities for each pair

pval_zscore	<i>Compute p-values for a Z-score</i>

Description

Compute p-values for a Z-score assuming normal distribution of the z-score under the null Hypothesis H0

Usage

```
pval_zscore(beta, sigma)
```

Arguments

beta	the estimate
sigma	estimate's estimated variance

Value

the p-value

RA

Description

An anonymized version of the binarized diagnosis code data from the RA1 and RA2 datasets, over both 6-year and 11-year time span.

Usage

data(RA)

Format

5 objects

- RA1_6y: an integer matrix of 0s and 1s containing 4,936 renamed diagnosis codes for 26,681 patients from the dataset RA1 recorded over a 6-year time span.
- RA2_6y: an integer matrix of 0s and 1s containing 4,936 renamed diagnosis codes for 5,707 patients from the dataset RA2 recorded over a 6-year time span.
- RA1_11y: an integer matrix of 0s and 1s containing 5,593 renamed diagnosis codes for 26,687 patients from the dataset RA1 recorded over a 11-year time span.
- RA2_11y: an integer matrix of 0s and 1s containing 5,593 renamed diagnosis codes for 6,394 patients from the dataset RA2 recorded over a 11-year time span.
- silverstandard_truematches: a character matrix with two columns containing the identifiers of the 3,831 pairs of silver-standard matches.

Details

The ICD-9 diagnosis codes have also been masked and randomly reordered, replaced by meaningless names. Finally, the silver-standard matching pairs are also provided to allow the benchmarking of methods for probabilistic record linkage using diagnosis codes.

References

Hejblum, B. P. et al. Probabilistic Record Linkage of De-Identified Research Datasets with Discrepancies Using Diagnosis Codes. *submitted*.

Liao, K. P. et al. Electronic medical records for discovery research in rheumatoid arthritis. *Arthritis Care & Research* 62, 1120-1127 (2010). 10.1002/acr.20184

Liao, K. P. et al. Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. *PLoS ONE* 10, e0136651 (2015). 10.1371/journal.pone.0136651

RA

recordLink

Examples

```
if(interactive()){
rm(list=ls())
library(ludic)
data(RA)
res_match_6y <- recordLink(data1 = RA1_6y, data2 = RA2_6y,</pre>
                           eps_plus = 0.01, eps_minus = 0.01,
                           aggreg_2ways ="mean",
                           min_prev = 0,
                           use_diff = FALSE)
res_match_11y <- recordLink(data1 = RA1_11y, data2 = RA2_11y,</pre>
                            eps_plus = 0.01, eps_minus = 0.01,
                            aggreg_2ways ="mean",
                            min_prev = 0,
                            use_diff = FALSE)
print.res_matching <- function(res, threshold=0.9, ref=silverstandard_truematches){</pre>
 have_match_row <- rowSums(res>threshold)
 have_match_col <- colSums(res>threshold)
 bestmatched_pairs_all <- cbind.data.frame(</pre>
   "D1"=rownames(res)[apply(res[,which(have_match_col>0), drop=FALSE], 2, which.max)],
   "D2"=names(have_match_col)[which(have_match_col>0)]
 )
 nTM_all <- nrow(ref)</pre>
 nP_all <- nrow(bestmatched_pairs_all)</pre>
 TPR_all <- sum(apply(bestmatched_pairs_all, 1, paste0, collapse="")</pre>
                %in% apply(ref, 1, paste0, collapse=""))/nTM_all
 PPV_all <- sum(apply(bestmatched_pairs_all, 1, paste0, collapse="")</pre>
                %in% apply(ref, 1, paste0, collapse=""))/nP_all
 cat("threshold: ", threshold,
     "\nnb matched: ", nP_all,"; nb true matches: ", nTM_all,
     "\nTPR: ", TPR_all, "; PPV: ", PPV_all, "\n\n", sep="")
}
print.res_matching(res_match_6y)
print.res_matching(res_match_11y)
}
```

recordLink

Probabilistic Patient Record Linkage

Description

Probabilistic Patient Record Linkage

Usage

```
recordLink(data1, data2, dates1 = NULL, dates2 = NULL, eps_plus,
eps_minus, aggreg_2ways = "mean", min_prev = 0.01,
data1_cont2diff = NULL, data2_cont2diff = NULL, d_max,
use_diff = TRUE)
```

Arguments

data1	either a binary (1 or 0 values only) matrix or binary data frame of dimension n1 x K whose rownames are the observation identifiers.	
data2	either a binary (1 or 0 values only) matrix or a binary data frame of dimension $n2 \times K$ whose rownames are the observation identifiers.	
dates1	matrix or dataframe of dimension n1 x K including the concatenated dates intervals for each corresponding diagnosis codes in data1. Default is NULL in which case dates are not used.	
dates2	matrix or dataframe of dimension $n2 \times K$ including the concatenated dates intervals for each corresponding diagnosis codes in data2. Default is NULL in which case dates are not used. See details.	
eps_plus	discrepancy rate between data1 and data2	
eps_minus	discrepancy rate between data2 and data1	
aggreg_2ways	a character string indicating how to merge the posterior two probability matrices obtained for each of the 2 databases. Four possibility are currently implemented: "maxnorm", "max", "min", "mean" and "prod". Default is "mean".	
min_prev	minimum prevalence for the variables used in matching. Default is 1%.	
data1_cont2diff		
	either a matrix or dataframe of continuous features, such as age, for which the similarity measure uses the difference with data2_cont2diff, whose row-names are . Default is NULL.	
data2_cont2diff		
	either a matrix or dataframe of continuous features, such as age, for which the similarity measure uses the difference with data2_contldiff, whose rownames are . Default is NULL.	
d_max	a numeric vector of length K giving the minimum difference from which it is considered a discrepancy.	
use_diff	logical flag indicating whether continuous differentiable variables should be used in the	

Details

Dates: the use of dates1 and dates2 requires that at least one date interval matches across dates1 and dates2 for claiming an agreement on a diagnosis code between data1 and data2, in addition of having that very same code recorded in both.

Value

a matrix of size n1 x n2 with the posterior probability of matching for each n1*n2 pair

test_combine

References

Hejblum BP, Weber G, Liao KP, Palmer N, Churchill S, Szolovits P, Murphy S, Kohane I, Cai T Probabilistic Record Linkage of De-Identified Research Datasets Using Diagnosis Codes, *submitted*, 2017.

Examples

Description

Computes association test p-values from a generalized linear model for each considered threshold, and computes a p-value for the combination of all the envisioned thresholds through Fisher's method using perturbation resampling.

Usage

```
test_combine(match_prob, y, x, thresholds = seq(from = 0.5, to = 0.95, by
 = 0.05), nb_perturb = 200, dist_family = c("gaussian", "binomial"),
 impute_strategy = c("weighted average", "best"))
```

Arguments

match_prob	matching probabilities matrix (e.g. obtained through recordLink) of dimensions n1 x n2.
У	response variable of length n1. Only binary phenotypes are supported at the moment.
x	a matrix or a data.frame of predictors of dimensions $n2 \times p$. An intercept is automatically within the function.

thresholds	a vector (possibly of length 1) containing the different threshold to use to call a match. Default is $seq(from = 0.5, to = 0.95, by = 0.05)$.
nb_perturb	the number of perturbation used for the p-value combination. Default is 200.
dist_family	a character string indicating the distribution family for the glm. Currently, only 'gaussian' and 'binomial' are supported. Default is 'gaussian'.
<pre>impute_strategy</pre>	
	a character string indicating which strategy to use to impute x from the matching probabilities match_prob. Either "best" (in which case the highest probable

probabilities match_prob. Either "best" (in which case the highest probable match above the threshold is imputed) or "weighted average" (in which case weighted mean is imputed for each individual who has at least one match with a posterior probability above the threshold). Default is "weighted average".

Value

a list containing the following:

- influencefn_pvals p-values obtained from influence function perturbations with the covariates as columns and the thresholds as rows, with an additional row at the top for the combination
- wald_pvals a matrix containing the p-values obtained from the Wald test with the covariates as columns and the thresholds as rows
- ptbed_pvals a list containing, for each covariates, a matrix with the nb_perturb perturbed p-values with the different thresholds as rows
- theta_impute a matrix of the estimated coefficients from the glm when imputing the weighted average for covariates (as columns) with the thresholds as rows
- sd_theta a matrix of the estimated SD (from the influence function) of the coefficients from the glm when imputing the weighted average for covariates (as columns), with the thresholds as rows
- ptbed_theta_impute a list containing, for each covariates, a matrix with the nb_perturb perturbed estimated coefficients from the glm when imputing the weighted average for covariates, with the different thresholds as rows
- impute_strategy a character string indicating which impute strategy was used (either "weighted average" or "best")

Examples

```
#rm(list=ls())
res <- list()
n_sims <- 1#5000
for(n in 1:n_sims){
x <- matrix(ncol=2, nrow=99, stats::rnorm(n=99*2))
#plot(density(rbeta(n=1000, 1,2)))
match_prob <- matrix(rbeta(n=103*99, 1, 2), nrow=103, ncol=99)
#y <- rnorm(n=103, 1, 0.5)
#res[[n]] <- test_combine(match_prob, y, x, dist_family="gaussian")$influencefn_pvals</pre>
```

```
y <- rbinom(n=103, 1, prob=0.5)
res[[n]] <- test_combine(match_prob, y, x, dist_family="binomial")$influencefn_pvals
cat(n, "/", n_sims, "\n", sep="")
}
size <- matrix(NA, ncol=nrow(res[[1]]), nrow=ncol(res[[1]])-2)
colnames(size) <- rownames(res[[1]])
rownames(size) <- colnames(res[[1]])[-(-1:0 + ncol(res[[1]]))]
for(i in 1:(ncol(res[[1]])-2)){
    size[i, ] <- rowMeans(sapply(res, function(m){m[, i]<0.05}), na.rm = TRUE)
}
size</pre>
```

Index

*Topic datasets RA, 8 agree_C, 2 agree_C_sparse (agree_C), 2 $comb_pvals, 3$ em_winkler,4 em_winkler_big (em_winkler), 4 loglikC_bin, 5 loglikC_bin_wDates (loglikC_bin), 5 loglikratioC_diff_arbitrary (loglikC_bin), 5 ludic (ludic-package), 2 ludic-package, 2matchingScore_C, 6 matchingScore_C_sparse_big (matchingScore_C), 6 matchProbs_rank_full_C,7 pval_zscore, 7 RA, 8 RA1_11y (RA), 8 RA1_6y (RA), 8 RA2_11y (RA), 8 RA2_6y (RA), 8 recordLink, 2, 9, 11 silverstandard_truematches (RA), 8

 $\texttt{test_combine}, 11$