
Package ‘lowpassFilter’
June 9, 2020

Title Lowpass Filtering

Version 1.0-0

Depends R (>= 3.0.0)

Imports Rcpp (>= 0.12.3), stats, methods

LinkingTo Rcpp

Suggests testthat

Description Creates lowpass filters which are commonly used in ion channel recordings. It sup-
ports generation of random numbers that are filtered, i.e. follow a model for ion channel record-
ings, see <doi:10.1109/TNB.2018.2845126>. Furthermore, time continuous convolu-
tions of piecewise constant signals with the kernel of lowpass filters can be computed.

License GPL-3

Encoding UTF-8

NeedsCompilation yes

Author Pein Florian [aut, cre],
Thomas Hotz [ctb],
Inder Tecuapetla-Gómez [ctb]

Maintainer Pein Florian <fpein@maths.cam.ac.uk>

Repository CRAN

Date/Publication 2020-06-09 15:00:02 UTC

R topics documented:
lowpassFilter-package . 2
convolve . 3
deconvolve . 4
helpFunctionsFilter . 5
lowpassFilter . 7
randomGeneration . 9

Index 13

1

2 lowpassFilter-package

lowpassFilter-package Lowpass Filtering

Description

Creates lowpass filters and offers further functionalities around them. Lowpass filters are commonly
used in ion channel recordings.

Details

The main function of this package is lowpassFilter which creates lowpass filters, currently only
Bessel filters are supported. randomGeneration and randomGenerationMA allow to generate ran-
dom numbers that are filtered, i.e. follow a model for ion channel recordings, see (Pein et al., 2018,
2020). getConvolution, getConvolutionJump, and getConvolutionPeak allow to compute the
convolution of a signal with the kernel of a lowpass filter.

References

Pein, F., Bartsch, A., Steinem, C., and Munk, A. (2020) Heterogeneous idealization of ion channel
recordings - Open channel noise. Submitted.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans.
Nanobioscience, 17(3):300-320.

Pein, F. (2017) Heterogeneous Multiscale Change-Point Inference and its Application to Ion Chan-
nel Recordings. PhD thesis, Georg-August-Universität Göttingen. http://hdl.handle.net/11858/00-
1735-0000-002E-E34A-7.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans.
Nanobioscience, 12(4):376-386.

See Also

lowpassFilter, randomGeneration, randomGenerationMA, getConvolution, getConvolutionJump,
getConvolutionPeak

Examples

creates a lowpass filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1e4)
time <- 1:4000 / filter$sr

creates a piecewise constant signal with a single peak
stepfun <- getSignalPeak(time, cp1 = 0.2, cp2 = 0.2 + 3 / filter$sr,

value = 20, leftValue = 40, rightValue = 40)

computes the convolution of the signal with the kernel of the lowpass filter
signal <- getConvolutionPeak(time, cp1 = 0.2, cp2 = 0.2 + 3 / filter$sr,

convolve 3

value = 20, leftValue = 40, rightValue = 40,
filter = filter)

generates random numbers that are filtered
data <- randomGenerationMA(n = 4000, filter = filter, signal = signal, noise = 1.4)

generated data
plot(time, data, pch = 16)

zoom into the single peak
plot(time, data, pch = 16, xlim = c(0.199, 0.202), ylim = c(19, 45))
lines(time, stepfun, col = "blue", type = "s", lwd = 2)
lines(time, signal, col = "red", lwd = 2)

use of data randomGeneration instead
data <- randomGeneration(n = 4000, filter = filter, signal = signal, noise = 1.4)

similar result
plot(time, data, pch = 16, xlim = c(0.199, 0.202), ylim = c(19, 45))
lines(time, stepfun, col = "blue", type = "s", lwd = 2)
lines(time, signal, col = "red", lwd = 2)

convolve Time discrete convolution

Description

For developers only; computes a time discrete convolution.

Usage

.convolve(val, kern)

Arguments

val a numeric vector giving the values

kern a numeric vector giving the time discrete kernel

Value

A numeric vector giving the convolution.

See Also

lowpassFilter

4 deconvolve

deconvolve Deconvolution of a single jump / isolated peak

Description

For developers only; computes the deconvolution of a single jump or an isolated peak assuming that
the observations are lowpass filtered. More details are given in (Pein et al., 2018).

Usage

.deconvolveJump(grid, observations, time, leftValue, rightValue,
typeFilter, inputFilter, covariances)

.deconvolvePeak(gridLeft, gridRight, observations, time, leftValue, rightValue,
typeFilter, inputFilter, covariances, tolerance)

Arguments

grid, gridLeft, gridRight

numeric vectors giving the potential time points of the single jump, of the left
and right jump points of the peak, respectively

observations a numeric vector giving the observed data
time a numeric vector of length length(observations) giving the time points at

which the observations are observed
leftValue, rightValue

single numerics giving the value (conductance level) before and after the jump /
peak, respectively

typeFilter, inputFilter

a description of the assumed lowpass filter, usually computed by lowpassFilter

covariances a numeric vector giving the (regularized) covariances of the observations
tolerance a single numeric giving a tolerance for the decision whether the left jump point

is smaller than the right jump point

Value

For .deconvolveJump a single numeric giving the jump point. For .deconvolvePeak a list con-
taining the entries left, right and value giving the left and right jump point and the value of the
peak, respectively.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans.
Nanobioscience, 17(3):300-320.

See Also

lowpassFilter

helpFunctionsFilter 5

helpFunctionsFilter Convolved piecewise constant signals

Description

Creates piecewise constant signals with a single jump / peak. Computes the convolution of piece-
wise constant signals with the kernel of a lowpass filter.

Usage

getConvolution(t, stepfun, filter, truncated = TRUE)
getSignalJump(t, cp, leftValue, rightValue)
getConvolutionJump(t, cp, leftValue, rightValue, filter, truncated = TRUE)
getSignalPeak(t, cp1, cp2, value, leftValue, rightValue)
getConvolutionPeak(t, cp1, cp2, value, leftValue, rightValue, filter, truncated = TRUE)

Arguments

t a numeric vector giving the time points at which the signal / convolution should
be computed

stepfun specification of the piecewise constant signal, i.e. a data.frame with named
arguments leftEnd, rightEnd and value giving the start and end points of the
constant segments and the values on the segments, for instance an object of class
stepblock as available by the package ’stepR’

cp, cp1, cp2 a single numeric giving the location of the single, first and second jump point,
respectively

value, leftValue, rightValue

a single numeric giving the function value at, before and after the peak / jump,
respectively

filter an object of class lowpassFilter giving the analogue lowpass filter
truncated a single logical (not NA) indicating whether the signal should be convolved with

the truncated or the untruncated filter kernel

Value

a numeric of length length(t) giving the signal / convolution at time points t

References

Pein, F., Bartsch, A., Steinem, C., and Munk, A. (2020) Heterogeneous idealization of ion channel
recordings - Open channel noise. Submitted.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans.
Nanobioscience, 17(3):300-320.

Pein, F. (2017) Heterogeneous Multiscale Change-Point Inference and its Application to Ion Chan-
nel Recordings. PhD thesis, Georg-August-Universität Göttingen. http://hdl.handle.net/11858/00-
1735-0000-002E-E34A-7.

6 helpFunctionsFilter

See Also

lowpassFilter

Examples

creating and plotting a signal with a single jump at 0 from 0 to 1
time <- seq(-2, 13, 0.01)
signal <- getSignalJump(time, 0, 0, 1)
plot(time, signal, type = "l")

setting up the filter
filter <- lowpassFilter(param = list(pole = 4, cutoff = 0.1))

convolution with the truncated filter
convolution <- getConvolutionJump(time, 0, 0, 1, filter)
lines(time, convolution, col = "red")

without truncating the filter, looks almost equal
convolution <- getConvolutionJump(time, 0, 0, 1, filter, truncated = FALSE)
lines(time, convolution, col = "blue")

creating and plotting a signal with a single peak with jumps
at 0 and at 3 from 0 to 1 to 0
time <- seq(-2, 16, 0.01)
signal <- getSignalPeak(time, 0, 3, 1, 0, 0)
plot(time, signal, type = "l")

convolution with the truncated filter
convolution <- getConvolutionPeak(time, 0, 3, 1, 0, 0, filter)
lines(time, convolution, col = "red")

without truncating the filter, looks almost equal
convolution <- getConvolutionPeak(time, 0, 3, 1, 0, 0, filter, truncated = FALSE)
lines(time, convolution, col = "blue")

doing the same with getConvolution
signal can also be an object of class stepblock instead,
e.g. constructed by stepR::stepblock
signal <- data.frame(value = c(0, 1, 0), leftEnd = c(-2, 0, 3), rightEnd = c(0, 3, 16))

convolution <- getConvolution(time, signal, filter)
lines(time, convolution, col = "red")

convolution <- getConvolution(time, signal, filter, truncated = FALSE)
lines(time, convolution, col = "blue")

more complicated signal
time <- seq(-2, 21, 0.01)
signal <- data.frame(value = c(0, 10, 0, 50, 0), leftEnd = c(-2, 0, 3, 6, 8),

lowpassFilter 7

rightEnd = c(0, 3, 6, 8, 21))

convolution <- getConvolution(time, signal, filter)
plot(time, convolution, col = "red", type = "l")

convolution <- getConvolution(time, signal, filter, truncated = FALSE)
lines(time, convolution, col = "blue")

lowpassFilter Lowpass filtering

Description

Creates a lowpass filter.

Usage

lowpassFilter(type = c("bessel"), param, sr = 1, len = NULL, shift = 0.5)
S3 method for class 'lowpassFilter'
print(x, ...)

Arguments

type a string specifying the type of the filter, currently only Bessel filters are sup-
ported

param a list specifying the parameters of the filter depending on type. For "bessel"
the entries pole and cutoff have to be specified and no other named entries
are allowed. pole has to be a single integer giving the number of poles (order).
cutoff has to be a single positive numeric not larger than 1 giving the normal-
ized cutoff frequency, i.e. the cutoff frequency (in the temporal domain) of the
filter divided by the sampling rate

sr a single numeric giving the sampling rate

len a single integer giving the filter length of the truncated and digitised filter, see
Value for more details. By default (NULL) it is chosen such that the autocorre-
lation function is below 1e-3 at len / sr and at all lager lags (len + i) / sr,
with i a positive integer

shift a single numeric between 0 and 1 giving a shift for the digitised filter, i.e. kernel
and step are obtained by evaluating the corresponding functions at (0:len +
shift) / sr

x the object

... for generic methods only

8 lowpassFilter

Value

An object of class lowpassFilter, i.e. a list that contains

"type", "param", "sr", "len" the corresponding arguments

"kernfun" the kernel function of the filter, obtained as the Laplace transform of the corresponding
transfer function

"stepfun" the step-response of the filter, i.e. the antiderivative of the filter kernel

"acfun" the autocorrelation function, i.e. the convolution of the filter kernel with itself

"acAntiderivative" the antiderivative of the autocorrelation function

"truncatedKernfun" the kernel function of the at len / sr truncated filter, i.e. kernfun truncated
and rescaled such that the new kernel still integrates to 1

"truncatedStepfun" the step-response of the at len / sr truncated filter, i.e. the antiderivative of
the kernel of the truncated filter

"truncatedAcfun" the autocorrelation function of the at len / sr truncated filter, i.e. the convo-
lution of the kernel of the truncated filter with itself

"truncatedAcAntiderivative" the antiderivative of the autocorrelation function of the at len /
sr truncated filter

"kern" the digitised filter kernel normalised to one, i.e. kernfun((0:len + shift) / sr) / sum(kernfun((0:len
+ shift) / sr))

"step" the digitised step-response of the filter, i.e. stepfun((0:len + shift) / sr)

"acf" the discrete autocorrelation, i.e. acfun(0:len / sr)

"jump" the last index of the left half of the filter, i.e. min(which(ret$step >= 0.5)) -1L, it in-
dicates how much a jump is shifted in time by a convolution of the signal with the digitised
kernel of the lowpassfilter; if all values are below 0.5, len is returned with a warning

"number" for developers; an integer indicating the type of the filter

"list" for developers; a list containing precomputed quantities to recreate the filter in C++

References

Pein, F., Bartsch, A., Steinem, C., and Munk, A. (2020) Heterogeneous idealization of ion channel
recordings - Open channel noise. Submitted.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans.
Nanobioscience, 17(3):300-320.

Pein, F. (2017) Heterogeneous Multiscale Change-Point Inference and its Application to Ion Chan-
nel Recordings. PhD thesis, Georg-August-Universität Göttingen. http://hdl.handle.net/11858/00-
1735-0000-002E-E34A-7.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans.
Nanobioscience, 12(4):376-386.

See Also

filter

randomGeneration 9

Examples

filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),
sr = 1e4)

filter kernel, truncated version
plot(filter$kernfun, xlim = c(0, 20 / filter$sr))
t <- seq(0, 20 / filter$sr, 0.01 / filter$sr)
truncated version looks very similar
lines(t, filter$truncatedKernfun(t), col = "red")

filter$len (== 11) is chosen automatically
this ensures that filter$acf < 1e-3 for this lag and at all larger lags
plot(filter$acfun, xlim = c(0, 20 / filter$sr), ylim = c(-0.003, 0.003))
abline(h = 0.001, lty = "22")
abline(h = -0.001, lty = "22")

abline(v = (filter$len - 1L) / filter$sr, col = "grey")
abline(v = filter$len / filter$sr, col = "red")

filter with sr == 1
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4))

filter kernel and its truncated version
plot(filter$kernfun, xlim = c(0, 20 / filter$sr))
t <- seq(0, 20 / filter$sr, 0.01 / filter$sr)
truncated version looks very similar
lines(t, filter$truncatedKernfun(t), col = "red")
digitised filter
points((0:filter$len + 0.5) / filter$sr, filter$kern, col = "red", pch = 16)

without a shift
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

shift = 0)
filter$kern starts with zero
points(0:filter$len / filter$sr, filter$kern, col = "blue", pch = 16)

much shorter filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

len = 4L)
points((0:filter$len + 0.5) / filter$sr, filter$kern, col = "darkgreen", pch = 16)

randomGeneration Random number generation

Description

Generate random numbers that are filtered. Both, signal and noise, are convolved with the given
lowpass filter, see details. Can be used to generate synthetic data resembling ion channel recordings,
please see (Pein et al., 2018, 2020) for the exact models.

10 randomGeneration

Usage

randomGeneration(n, filter, signal = 0, noise = 1, oversampling = 100L, seed = n,
startTime = 0, truncated = TRUE)

randomGenerationMA(n, filter, signal = 0, noise = 1, seed = n,
startTime = 0, truncated = TRUE)

Arguments

n a single positive integer giving the number of observations that should be gen-
erated

filter an object of class lowpassFilter giving the analogue lowpass filter

signal either a numeric of length 1 or of length n giving the convolved signal, i.e. the
mean of the random numbers, or an object that can be passed to getConvolution,
i.e. an object of class stepblock, see Examples, giving the signal that will be
convolved with the kernel of the lowpass filter filter

noise for randomGenerationMA a single positive finite numeric giving the constant
noise level, for randomGeneration either a numeric of length 1 or of length
(n + filter$len -1L) * oversampling or an object of class stepblock, see
Examples, giving the noise of the random errors, see Details

oversampling a single positive integer giving the factor by which the errors should be over-
sampled, see Details

seed will be passed to set.seed to set a seed, set.seed will not be called if this
argument is set to "no", i.e. a single value, interpreted as an integer, NULL or
"no"

startTime a single finite numeric giving the time at which sampling should start

truncated a single logical (not NA) indicating whether the signal should be convolved with
the truncated or the untruncated filter kernel

Details

As discussed in (Pein et al., 2018) and (Pein et al., 2020), in ion channel recordings the recorded
data points can be modelled as equidistant sampled at rate filter$sr from the convolution of a
piecewise constant signal perturbed by Gaussian white noise scaled by the noise level with the ker-
nel of an analogue lowpass filter. The noise level is either constant (homogeneous noise, see (Pein et
al., 2018)) or itself varying (heterogeneous noise, see (Pein et al., 2020)). randomGeneration and
randomGenerationMA generate synthetic data from such models. randomGeneration allows ho-
mogeneous and heterogeneous noise, while randomGenerationMA only allows homogeneous noise,
i.e. noise has to be a single numeric giving the constant noise level. The resulting observations
represent the conductance at time points startTime + 1:n / filter$sr.

The generated observations are the sum of a convolved signal evaluated at those time points plus
centred Gaussian errors that are correlated (coloured noise), because of the filtering, and scaled by
the noise level. The convolved signal evaluated at those time points can either by specified in signal
directly or signal can specify a piecewise constant signal that will be convolved with the filter
using getConvolution and evaluated at those time points. randomGenerationMA computes a mov-
ing average process with the desired autocorrelation to generate random errors. randomGeneration
oversamples the error, i.e. generates errors at time points startTime + (seq(1 -filter$len + 1 /

randomGeneration 11

oversampling,n,1 / oversampling) -1 / 2 / oversampling) / filter$sr, which will then be
convolved with the filter. For this function noise can either give the noise levels at those over-
sampled time points or specify a piecewise constant function that will be automatically evaluated at
those time points.

Value

a numeric vector of length n giving the generated random numbers

References

Pein, F., Bartsch, A., Steinem, C., and Munk, A. (2020) Heterogeneous idealization of ion channel
recordings - Open channel noise. Submitted.

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2018) Fully-automatic mul-
tiresolution idealization for filtered ion channel recordings: flickering event detection. IEEE Trans.
Nanobioscience, 17(3):300-320.

Pein, F. (2017) Heterogeneous Multiscale Change-Point Inference and its Application to Ion Chan-
nel Recordings. PhD thesis, Georg-August-Universität Göttingen. http://hdl.handle.net/11858/00-
1735-0000-002E-E34A-7.

See Also

lowpassFilter, getConvolution

Examples

filter <- lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1e4)
time <- 1:4000 / filter$sr
stepfun <- getSignalPeak(time, cp1 = 0.2, cp2 = 0.2 + 3 / filter$sr,

value = 20, leftValue = 40, rightValue = 40)
signal <- getConvolutionPeak(time, cp1 = 0.2, cp2 = 0.2 + 3 / filter$sr,

value = 20, leftValue = 40, rightValue = 40, filter = filter)
data <- randomGenerationMA(n = 4000, filter = filter, signal = signal, noise = 1.4)

generated data
plot(time, data, pch = 16)

zoom into the single peak
plot(time, data, pch = 16, xlim = c(0.199, 0.202), ylim = c(19, 45))
lines(time, stepfun, col = "blue", type = "s", lwd = 2)
lines(time, signal, col = "red", lwd = 2)

use of randomGeneration instead
data <- randomGeneration(n = 4000, filter = filter, signal = signal, noise = 1.4)

similar result
plot(time, data, pch = 16, xlim = c(0.199, 0.202), ylim = c(19, 45))
lines(time, stepfun, col = "blue", type = "s", lwd = 2)
lines(time, signal, col = "red", lwd = 2)

heterogeneous noise

12 randomGeneration

manual creation of an object of class 'stepblock'
instead the function stepblock in the package stepR can be used
noise <- data.frame(leftEnd = c(0, 0.2, 0.2 + 3 / filter$sr),

rightEnd = c(0.2, 0.2 + 3 / filter$sr, 0.4),
value = c(1, 30, 1))

attr(noise, "x0") <- 0
class(noise) <- c("stepblock", class(noise))

data <- randomGeneration(n = 4000, filter = filter, signal = signal, noise = noise)

plot(time, data, pch = 16, xlim = c(0.199, 0.202), ylim = c(19, 45))
lines(time, stepfun, col = "blue", type = "s", lwd = 2)
lines(time, signal, col = "red", lwd = 2)

Index

∗Topic nonparametric
helpFunctionsFilter, 5
lowpassFilter-package, 2
randomGeneration, 9

∗Topic package
lowpassFilter-package, 2

∗Topic ts
lowpassFilter, 7
lowpassFilter-package, 2

.convolve (convolve), 3

.deconvolveJump (deconvolve), 4

.deconvolvePeak (deconvolve), 4

class, 8
convolve, 3

data.frame, 5
deconvolve, 4
deconvolveJump (deconvolve), 4
deconvolvePeak (deconvolve), 4

filter, 8

getConvolution, 2, 10, 11
getConvolution (helpFunctionsFilter), 5
getConvolutionJump, 2
getConvolutionJump

(helpFunctionsFilter), 5
getConvolutionPeak, 2
getConvolutionPeak

(helpFunctionsFilter), 5
getSignalJump (helpFunctionsFilter), 5
getSignalPeak (helpFunctionsFilter), 5

helpFunctionsFilter, 5

integer, 10

list, 7, 8
lowpassFilter, 2–6, 7, 10, 11
lowpassFilter-package, 2

print.lowpassFilter (lowpassFilter), 7

randomGeneration, 2, 9
randomGenerationMA, 2
randomGenerationMA (randomGeneration), 9

set.seed, 10

13

	lowpassFilter-package
	convolve
	deconvolve
	helpFunctionsFilter
	lowpassFilter
	randomGeneration
	Index

