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The ukFaculty dataset

The personal friendship network of a faculty of a UK university, consisting of 81 vertices (individuals) and
817 directed and weighted connections. The school affiliation of each individual is stored as a vertex attribute.
Two individuals are missing the school attribute. We will remove these for analysis.

suppressPackageStartupMessages (library(network))
library(lolog)

#> Loading required package: Rcpp

#>

#> Attaching package: 'lolog'

#> The following object ts masked from 'package:network':
#>

#> as.network

data(ukFaculty)

#?2ukFaculty

ukFaculty %v% "Group" # The school affiliation of the faculty

#> [1] 3 1 3 3 2 2 2 1 3 2 1 2 2 1 1 2 3 1 1 1 1 2 2
#> [24] 1 1 1 2 2 1 2 1 1 2 1 1 3 1 3 1 2 1 2 1 3 3 1
#> [47] 2 1 2N 1 1 3 1 1 1 1 1 3 3 3 3 2 1 2 2 2 2 2
#> [70] NA 2 2 3 3 3 2 2 3 1 1 3

ukFaculty %v/% "GroupC" # affiliation coded as categorical
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#> [52] M1 ongnorgeongongnomgho mgn MU NN M NN M
#> [69] "2" NA "2 v2r N3N N30 nguongn ngin ngu g g nghn
delete.vertices(ukFaculty, which(is.na(ukFaculty %v% "Group")))

plot (ukFaculty, vertex.col = (ukFaculty %v’% "Group" ) + 1)



ukFaculty
#> Network attributes:
#> vertices = 79

#> directed = TRUE

#>  hyper = FALSE

#> loops = FALSE

#> multiple = FALSE

#> bipartite = FALSE

#> Type = TSPE

#> Date = Mon Mar 19 21:56:02 2007

#> Citation = Nepusz T., Petroczi A., Negyessy L., Bazso F.: Fuzzy communities and the concept of bri
#>  Author = Nepusz T., Petroczt A., Negyessy L., Bazso F.

#> total edges= 781

#> missing edges= 0

#> non-missing edges= 781

#>

#> Vertex attribute names:

#> Group GroupC wvertex.names
#>

#> [Edge attribute names:

#> weight

We see a great number of like-to-like ties based on school affiliation, so this will probably be an important
thing to model.



A first attempt

Recall from the introductory vignette, a LOLOG represents the probability of a tie, given the network grown
up to a time-point as
logit (p(ys, = 1,y ™" 5<0)) = 0 clys, = 1|y ™" 5<0)

where s<; is the growth order of the network up to time ¢, y'~! is the state of the graph at time ¢t — 1.

c(ys, [yt =1, s<t) is a vector representing the change in graph statistics from time ¢ — 1 to ¢ if an edge is present,
and @ is a vector of parameters.

If the graph statistics are dyad independent (i.e. the change in graph statistics caused by the addition or
deletion of an edge depends only on the vertex covariates of the two vertices connected by the edge), then
LOLOG reduces to a simple logistic regression of the presence of an edge on the change statistics.

It is usually a good idea to start off model building with a dyad independent model.

fitukInd <- lolog(ukFaculty ~ edges() + nodeMatch("GroupC") + nodeFactor("GroupC"))
#> Initializing Using Variational Fit

#>

#> Model s dyad independent. Replications are redundant. Setting nReplicates <- 1L.
#> Model is dyad independent. Returning mazimum likelihood estimate.

summary (fitukInd)

#> observed_statistics theta se pvalue
#> edges 781 -3.72284710 0.13119098 0.0000
#> nodematch.GroupC 663 2.71643436 0.10573322 0.0000
#> nodeFactor.GroupC. 1 733 0.09183592 0.06607506 0.1646
#> nodeFactor.GroupC.2 584 0.20454753 0.06875534 0.0029

We see a highly significant term for ties within group nodematch.GroupC, and a difference in overall activity
comparing group 2 to the baseline group 3. Group 1 is not significantly more active than 3.

For those familiar with ERGM modeling, dyad independent ergms are identical to dyad independent lolog
models.

suppressPackageStartupMessages(library(ergm))

ergm(ukFaculty ~ edges() + nodematch("GroupC") + nodefactor("GroupC", base=3))
#> Starting mazimum pseudolikelihood estimation (MPLE):

#> Evaluating the predictor and response mairic.

#> Mazimizing the pseudolikelihood.

#> Fintshed MPLE.

#> Stopping at the initial estimate.

#> Evaluating log-likelthood at the estimate.

#>

#> MLE Coefficients:

#> edges nodematch.GroupC nodefactor.GroupC.1
#> -3.72285 2.71643 0.09184
#> nodefactor.GroupC.2

#> 0.20455

At this point we will evaluate the fit of our first LOLOG model by comparing the in-degree, out-degree and
esp distribution of graphs simulated from the model to our observed graph.

g <- gofit(fitukInd, ukFaculty ~ degree(0:50,"out"))

plot(g)



g <- gofit(fitukInd, ukFaculty ~ degree(0:50,"in"))

plot(g)

ansnels ansiels %

g <- gofit(fitukInd, ukFaculty ~ esp(0:25))

plot(g)
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The statistics of the simulated networks are traced by the black lines, while out observed network is marked
in red. The degree distributions are not terribly mismatched (out-degree is not great though), but the ESP

distribution indicates simulated networks have far less transitivity than the observed network. Additionally,
the number of reciprocated ties (mutual) is far to low in the simulated graphs

g <- gofit(fitukInd, ukFaculty ~ edges +mutual)
plot(g,type="box")
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Okay, so let’s try adding a triangles term for transitivity. For dyad dependent models the nsamp parameter
controls how many samples are used for MC-GMM estimation. If you have a lot of terms in your model and
are having trouble with convergence, try increasing this parameter.

fituk <- lolog(ukFaculty ~ edges() + nodeMatch("GroupC") + nodeFactor("GroupC") +
triangles, nsamp=2000, verbose=FALSE)

summary (fituk)

#> observed_statistics theta se pvalue
#> edges 781 —4.17054982 0.38637963 0.0000
#> nodematch.GroupC 663 2.34914252 0.24963788 0.0000
#> nodeFactor.GroupC. 1 733 -0.14884925 0.09378670 0.1125



584 —0.04622409 0.09911486 0.6410

#> nodeFactor.GroupC.2
5139 0.66375911 0.23021998 0.0039

#> triangles

The triangles term is significant, but now the nodeFactor terms are not. This can be intuitively explained
by the fact that groups 1 and 2 are larger than group 3. Because the matching term is so highly sigificant,
there are more opportunities for within group clustering than in group 3, so when triangles are added, the
larger activity within these groups is explained by the clustering activity.

Now let’s look at those goodness of fit plots again. ..

g <- gofit(fituk, ukFaculty ~ degree(0:50,"out"))
plot(g)
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g <- gofit(fituk, ukFaculty ~ degree(0:50,"in"))
plot(g)
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g <- gofit(fituk, ukFaculty ~ esp
plot(g)
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g <- gofit(fituk, ukFaculty ~ edges + mutual)
plot(g, type="box")




3 o
Q -
—
= :
o _] !
o 9 !
2 — -~
8 o ,
n o — .
(o] —_— O
S i ° i
I .
| |
edges mutual

These look pretty good, with the observed values falling within the range of values simulated from the model.
Additionally, because 1lolog matches the expected model graph statistics with their observed values, we are
assured that statistics included in the model will have good goodness of fit. We can see this by plotting the
model diagnostics.

plot (fituk)
#> “stat_bin() " using ‘bins = 30 . Pick better value with “binwidth’.
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Attempting to fit with ERGM

Like LOLOGs, ERGMs are an incredibly flexible model class. However, they are prone to model degeneracy,
so it is recommended that great care is taken in choosing appropriate model statistics to use. Even using
best practices in choosing these statistics it is not unusual to be unable to fit a network due to degeneracy
related issues.

When modeling transitivity, the best practice for ERGMs is to include a gwesp term, which is “robust”



to model degeneracy. We attempted many different models using this term (and others), and the best
fitting non-degenerate model that we could find fixed the decay parameter at 0.25. Larger values exhibited
degeneracy problems, and allowing the parameter to be fit using curved ERGM estimation failed to converge.

fitukErgm <- ergm(ukFaculty ~ edges() + nodematch("GroupC") + nodefactor("GroupC", base=3) +
gwesp(decay=.25, fixed=TRUE), verbose=FALSE)

#> Starting mazimum pseudolikelihood estimation (MPLE):

#> Evaluating the predictor and response matriz.

#> Mazimizing the pseudolikelihood.

#> Finished MPLE.

#> Starting Monte Carlo maxzimum likelihood estimation (MCMLE) :

#> Iteration 1 of at most 20:

#> Optimizing with step length 0.22345156908288/.

#> The log-likelihood improved by 3.39.

#> Iteration 2 of at most 20:

#> Optimizing with step length 0.302715567201787.

#> The log-likelihood improved by 3.255.

#> Iteration 3 of at most 20:

#> Optimizing with step length 0.435420622636583.

#> The log-likelthood improved by 3.594.

#> Iteration 4 of at most 20:

#> Optimizing with step length 0.655753280008192.

#> The log-likelthood improved by 3.077.

#> Iteration 5 of at most 20:

#> Optimizing with step length 1.

#> The log-likelihood improved by 0.9657.

#> Step length converged once. Increasing MCMC sample size.

#> Iteration 6 of at most 20:

#> Optimizing with step length 1.

#> The log-likelthood improved by 3.006.

#> Step length converged twice. Stopping.

#> Finished MCMLE.

#> Evaluating log-likelthood at the estimate. Using 20 bridges: 1 2 3 4 56 6 78 9 10 11 12 13 14 15 16

#> This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.

summary (fitukErgm)

#>

#>

#> Summary of model fit

#>

#>

#> Formula:  ukFaculty ~ edges() + nodematch("GroupC") + nodefactor("GroupC",
#> base = 3) + gwesp(decay = 0.25, fized = TRUE)

#>

#> Iterations: 6 out of 20

#>

#> Monte Carlo MLE Results:

#> Estimate Std. Error MCMC ] z wvalue Pr(>/z/)

#> edges —6.02472 0.19289 0 -31.234 <le-04 **x*
#> nodematch.GroupC 1.54363 0.10236 0 15.080 <le-04 ***
#> nodefactor.GroupC.1 -0.04046 0.04811 1 -0.841 0.400

#> nodefactor.GroupC.2 0.06568 0.05756 1 1.141 0.254

#> gquesp. fized.0.25 2.32311  0.18790 0 12.363 <le-04 ***
#> ———

#> Signif. codes: 0 '#**x' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1



#>

#> Null Deviance: 8542 on 6162 degrees of freedom
#> Restdual Deviance: 3435 on 6157 degrees of freedom
#>

#> AIC: 3445 BIC: 3479 (Smaller is better.)
g <- gof (fitukErgm)
par (mfrow=c(2,3))

plot(g)
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minimum geodesic distance model statistics

The added the gwesp term is highly significant, indicating increased levels of transitivity; however, the
goodness of fit plot shows that the ERGM is not capturing the full amount of transitivity in the network.
Simulated networks have much lower esp values than the one observed. Unfortunately, using the recommended
practices for fitting ERGMs, we were unable to find a non-degenerate ERGM that appropriately captures the
degree and transitivity patterns of this dataset.

10



	The ukFaculty dataset
	A first attempt
	Attempting to fit with ERGM

