Package 'lmtp'

July 18, 2020

Title Non-Parametric Causal Effects of Feasible Interventions Based on Modified Treatment Policies

Version 0.0.5

Description Non-parametric estimators for casual effects based on longitudinal modified treatment policies as described in Diaz, Williams, and Hoffman (<arXiv:2006.01366>), tradi-

tional point treatment,

and traditional longitudinal effects. Continuous, binary, and categorical treatments are allowed as well are

censored outcomes. The treatment mechanism is estimated via a density ratio classification procedure

irrespective of treatment variable type. For both continuous and binary outcomes, additive treatment effects

can be calculated and relative risks and odds ratios may be calculated for binary outcomes. Estimation is enhanced

using the Super Learner from 'sl3' available for download from GitHub using 'remotes::install_github(``tlverse/sl3@devel")'.

Depends R (>= 2.10)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports slider, stats, nnls, cli, utils, R6, generics, origami, future (>= 1.17.0), progressr

Suggests testthat (>= 2.1.0), covr, rmarkdown, knitr, ranger, twang

Enhances sl3 (>= 1.3.7)

NeedsCompilation no

Author Nicholas Williams [aut, cre, cph] (<https://orcid.org/0000-0002-1378-4831>), Iván Díaz [aut, cph] (<https://orcid.org/0000-0001-9056-2047>)

Maintainer Nicholas Williams <niw4001@med.cornell.edu>

Repository CRAN

Date/Publication 2020-07-18 09:10:02 UTC

R topics documented:

crea	ite_node_list .			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 •		•	•	•	•	•		•	•	•	•	•	•	2
eve	nt_locf																																			3
lmt	p_contrast																		•																	4
lmt	p_ipw																		•																	5
lmt	p_sdr					•	•					•	•		•		•	•	•	•				•	•		•	•						•		10
lmt	p_sub					•	•					•	•		•		•	•	•	•				•	•		•	•						•		15
lmt	p_tmle					•	•					•	•	•	•		•	•	•	•		 •		•	•		•	•						•		20
sim	_cens											•	•		•				•	•		 •					•									25
sim	_point_surv .						•					•	•	•	•				•	•		 •			•		•							•		26
sim	_t4					•	•					•	•	•	•		•	•	•	•		 •		•	•		•	•						•		27
stat	ic_binary_off					•	•					•	•	•	•		•	•	•	•		 •		•	•		•	•						•		27
stat	ic_binary_on .											•	•		•				•	•		 •					•									28
tidy	.lmtp	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	29
																																				30

Index

create_node_list Create a node list specification

Description

Creates a node list specification that is used by the provided estimators. create_node_list() is not explicitly called by the analyst, rather it is provided so the analyst can confirm how estimators will use variables before actually performing the estimation procedure.

Usage

```
create_node_list(trt, tau, time_vary = NULL, baseline = NULL, k = Inf)
```

Arguments

trt	A vector of column names of treatment variables.
tau	The number of time points of observation, excluding the final outcome.
time_vary	A list of length tau with the column names for new time_vary to be introduced at each time point. The list should be ordered following the time ordering of the model.
baseline	An optional vector of columns names for baseline covariates to be included for adjustment at every timepoint.
k	An integer specifying how previous time points should be used for estimation at the given time point. Default is Inf, all time points.

Value

A list the same length of the time_vary parameter with the variables to be used for estimation at that given time point.

event_locf

Examples

```
a <- c("A_1", "A_2", "A_3", "A_4")
bs <- c("W_1", "W_2")
time_vary <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))
# assuming no Markov property
create_node_list(a, 4, time_vary, bs, k = Inf)
# assuming a Markov property
create_node_list(a, 4, time_vary, bs, k = 0)</pre>
```

event_locf

Time To Event Last Outcome Carried Forward

Description

A helper function to prepare survival data for use with LMTP estimators by imputing outcome nodes using last outcome carried forward when an observation experiences the event before the end-of-follow-up.

Usage

```
event_locf(data, outcomes)
```

Arguments

data	The dataset to modify.
outcomes	A vector of outcome nodes ordered by time.

Value

A modified dataset with future outcome nodes set to 1 if an observation experienced an event at any previous time point.

Examples

```
event_locf(sim_point_surv, c(paste0("Y.", 0:6)))
```

lmtp_contrast

Description

Estimates contrasts of multiple LMTP fits compared to either a known reference value or a reference LMTP fit.

Usage

lmtp_contrast(..., ref, type = c("additive", "rr", "or"))

Arguments

•••	One or more objects of class lmtp.
ref	A reference value or another lmtp fit to compare all other fits against.
type	The contrasts of interest. Options are "additive" (the default), "rr", and "or".

Value

A list of class lmtp_contrast containing the following components:

type	The type of contrast performed.
null	The null hypothesis.
vals	A dataframe containing the contrasts estimates, standard errors, and confidence intervals.
eifs	Un-centered estimated influence functions for contrasts estimated.

Examples

treatment rule, everyone is decreased by 0.5

lmtp_ipw

```
d <- function(data, x) data[[x]] - 0.5</pre>
psi_rule2 <- lmtp_tmle(sim_cens, a, y, time_vary = nodes,</pre>
                       cens = cens, shift = d, folds = 2)
# Example 1.1
# Additive effect of rule 1 compared to a known constant
lmtp_contrast(psi_rule1, ref = 0.9)
# Example 1.2
# Additive effect of rule 1 compared to the population mean outcome
lmtp_contrast(psi_rule1, ref = psi_null)
# Example 1.3
# Additive effects of rule 1 and 2 compared to the population mean outcome
lmtp_contrast(psi_rule1, psi_rule2, ref = psi_null)
# Example 1.4
# Relative risk of rule 1 compared to observed exposure
lmtp_contrast(psi_rule1, ref = psi_null, type = "rr")
# Example 1.5
# Odds of rule 1 compared to observed exposure
lmtp_contrast(psi_rule1, ref = psi_null, type = "or")
```

lmtp_ipw

LMTP IPW Estimator

Description

Inverse probability of treatment weighting estimator for the effects of traditional causal effects and modified treatment policies for both point treatment and longitudinal data with binary, continuous, or time-to-event outcomes. Supports binary, categorical, and continuous exposures.

Usage

```
lmtp_ipw(
   data,
   trt,
   outcome,
   baseline = NULL,
   time_vary = NULL,
   cens = NULL,
   k = Inf,
   id = NULL,
   shift,
   learners = NULL,
   folds = 10,
   bound = 1e-05
)
```

Arguments

data	A data frame in wide format containing all necessary variables for the estimation problem.
trt	A vector containing the column names of treatment variables ordered by time.
outcome	The column name of the outcome variable. In the case of time-to-event analysis, a vector containing the columns names of intermediate outcome variables and the final outcome variable ordered by time. Only numeric values are allowed. If the outcome type is binary, data should be coded as 0 and 1.
baseline	An optional vector of columns names of baseline covariates to be included for adjustment at every timepoint.
time_vary	A list the same length as the number of time points of observation with the column names for new time-varying covariates introduced at each time point. The list should be ordered following the time ordering of the model.
cens	An optional vector of column names of censoring indicators the same length as the number of time points of observation. If missingness in the outcome is present or if time-to-event outcome, must be provided.
k	An integer specifying how previous time points should be used for estimation at the given time point. Default is Inf, all time points.
id	An optional column name containing cluster level identifiers.
shift	A two argument function that specifies how treatment variables should be shifted. See examples for how to specify shift functions for continuous, binary, and cat- egorical exposures.
learners	An optional s13 learner stack for estimation of the exposure mechanism. If not specified, will default to using a generalized linear model.
folds	The number of folds to be used for cross-fitting. Minimum allowable number is two folds.
bound	Determines that maximum and minimum values (scaled) predictions will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.

Value

A list of class 1mtp containing the following components:

estimator	The estimator used, in this case "IPW".
theta	The estimated population LMTP effect.
standard_error	NA
low	NA
high	NA
shift	The shift function specifying the treatment policy of interest.
density_ratios	An n x Tau matrix of the estimated density ratios.
weights_r	A list the same length as folds, containing the Super Learner ensemble weights at each time-point for each fold for the propensity.

lmtp_ipw

Examples

```
library(lmtp)
# Example 1.1
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a population wide decrease in A of 5 units
# The true value under this intervention is about 519.
set.seed(56)
n <- 1000
W <- rnorm(n, 10, 5)
A <- 23 + 5*W + rnorm(n)
Y <- 7.2*A + 3*W + rnorm(n)
ex1_dat <- data.frame(W, A, Y)</pre>
d <- function(data, x) data[[x]] - 5</pre>
psi1.1 <- lmtp_ipw(ex1_dat, "A", "Y", baseline = "W", shift = d, folds = 2)</pre>
psi1.1
# Example 1.2
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a modified treatment policy where A is decreased by 15
# units only among observations whose observed A was above 80.
# The true value under this intervention is about 513.
d <- function(data, x) (data[[x]] > 80)*(data[[x]] - 15) + (data[[x]] <= 80)*data[[x]]</pre>
psi1.2 <- lmtp_ipw(ex1_dat, "A", "Y", baseline = "W", shift = d, folds = 2)</pre>
psi1.2
# Example 2.1
# Longitudinal setting, time-varying continuous exposure bounded by 0,
# time-varying covariates, and a binary outcome with no loss-to-follow-up.
# Interested in the effect of a treatment policy where exposure decreases by
# one unit at every time point if an observations observed exposure is greater
# than or equal to 2. The true value under this intervention is about 0.305.
head(sim_t4)
# specifying treament variables
a <- c("A_1", "A_2", "A_3", "A_4")
# specifying time varying covariates
tv <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))</pre>
# treatment policy function to be applied at all time points
d <- function(data, trt) {</pre>
  a <- data[[trt]]
  (a - 1) * (a - 1 \ge 1) + a * (a - 1 < 1)
}
progressr::with_progress({
  psi2.1 <- lmtp_ipw(sim_t4, a, "Y", time_vary = tv, shift = d, folds = 2)</pre>
})
psi2.1
# Example 2.2
# Example 2.1 assumed that the outcome (as well as the treatment variables)
# were directly affected by all other nodes in the past. In certain situtations,
# domain specific knowledge may suggest otherwise leading to a Markov processes.
```

```
# This can be controlled using the k argument.
progressr::with_progress({
  psi2.2 <- lmtp_ipw(sim_t4, a, "Y", time_vary = tv, shift = d,</pre>
                      k = 0, folds = 2)
})
psi2.2
# Example 2.3
# Using the same data as examples 2.1 and 2.2.
# Now estimating the effect of a dynamic modified treatment policy.
a <- c("A_1", "A_2", "A_3", "A_4")
time_varying <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))</pre>
# our same shift function
shift <- function(data, trt) {</pre>
  (data[[trt]] - 1) * (data[[trt]] - 1 >= 1) + data[[trt]] * (data[[trt]] - 1 < 1)
}
# creating a dynamic mtp that applies the shift function
# but also depends on history and the current time
dynamic_mtp <- function(data, trt) {</pre>
  if (trt == "A_1") {
    # if its the first time point, follow the same mtp as before
    shift(data, trt)
  } else {
    # otherwise check if the time varying covariate equals 1
    ifelse(data[[sub("A", "L", trt)]] == 1,
           shift(data, trt), # if yes continue with the policy
           data[[trt]]) # otherwise do nothing
  }
}
psi2.3 <- lmtp_ipw(sim_t4, a, "Y", time_vary = time_varying,</pre>
                   k = 0, shift = dynamic_mtp, folds = 2)
psi2.3
# Example 2.4
# Using the same data as examples 2.1, 2.2, and 2.3, but now treating the exposure
# as an ordered categorical variable. To account for the exposure being a
# factor we just need to modify the shift function (and the original data)
# so as to respect this.
for (i in a) {
  sim_t4[[i]] <- factor(sim_t4[[i]], levels = 0:5, ordered = TRUE)</pre>
}
d <- function(data, trt) {</pre>
  out <- list()</pre>
  a <- data[[trt]]
  for (i in 1:length(a)) {
    if (as.character(a[i]) %in% c("0", "1")) {
      out[[i]] <- as.character(a[i])</pre>
    } else {
      out[[i]] <- as.numeric(as.character(a[i])) - 1</pre>
    }
  3
  factor(unlist(out), levels = 0:5, ordered = TRUE)
}
```

```
progressr::with_progress({
  psi2.4 <- lmtp_ipw(sim_t4, a, "Y", time_vary = tv, shift = d, k = 0, folds = 2)</pre>
})
psi2.4
# Example 3.1
# Longitudinal setting, time-varying binary treatment, time-varying covariates
# and baseline covariates with no loss-to-follow-up. Interested in a traditional
# causal effect where treatment is set to 1 at all time points for all observations.
data("iptwExWide", package = "twang")
a <- paste0("tx", 1:3)
baseline <- c("gender", "age")</pre>
tv <- list(c("use0"), c("use1"), c("use2"))</pre>
progressr::with_progress({
  psi3.1 <-
    lmtp_ipw(iptwExWide, a, "outcome", baseline = baseline, time_vary = tv,
             shift = static_binary_on, folds = 2)
})
psi3.1
# Example 4.1
# Longitudinal setting, time-varying continuous treatment, time-varying covariates,
# binary outcome with right censoring. Interested in the mean population outcome under
# the observed exposures in a hypothetical population with no loss-to-follow-up.
head(sim_cens)
a <- c("A1", "A2")
tv <- list(c("L1"), c("L2"))</pre>
cens <- c("C1", "C2")
y <- "Y"
psi4.1 <- lmtp_ipw(sim_cens, a, y, time_vary = tv, cens = cens,</pre>
                   shift = NULL, folds = 2)
psi4.1
# Example 4.2
# Using the same data as example 4.1, but now interested in the causal effect of a
# treatment policy where exposure increased by 0.5 units at all time points. The
# true value under this intervention is about 0.88.
d <- function(data, x) data[[x]] + 0.5</pre>
psi4.2 <- lmtp_ipw(sim_cens, a, y, time_vary = tv,</pre>
                   cens = cens, shift = d, folds = 2)
psi4.2
# Example 5.1
# Time-to-event analysis with a binary time-invariant exposure. Interested in
# the effect of treatment being given to all observations on the cumulative
# incidence of our time-to-event outcome.
a <- "trt"
# for a survival problem, the outcome arugment now takes a vector of outcomes
# if an observation experiences the event prior to the end of follow-up, all future
# outcome nodes should be set to 1 (i.e., last observation carried forward).
y <- paste0("Y.", 1:6)</pre>
cens <- paste0("C.", 0:5)
baseline <- c("W1", "W2")</pre>
```

lmtp_sdr

LMTP Sequential Doubly Robust Estimator

Description

Sequentially doubly robust estimator for the effects of traditional causal effects and modified treatment policies for both point treatment and longitudinal data with binary, continuous, or time-toevent outcomes. Supports binary, categorical, and continuous exposures.

Usage

```
lmtp_sdr(
 data,
  trt,
 outcome,
 baseline = NULL,
  time_vary = NULL,
  cens = NULL,
  shift,
 k = Inf,
 outcome_type = c("binomial", "continuous"),
  id = NULL,
 bounds = NULL,
  learners_outcome = NULL,
  learners_trt = NULL,
  folds = 10,
 bound = 1e-05
)
```

Arguments

data	A data frame in wide format containing all necessary variables for the estimation problem.
trt	A vector containing the column names of treatment variables ordered by time.
outcome	The column name of the outcome variable. In the case of time-to-event analysis, a vector containing the columns names of intermediate outcome variables and the final outcome variable ordered by time. Only numeric values are allowed. If the outcome type is binary, data should be coded as 0 and 1.
baseline	An optional vector of columns names of baseline covariates to be included for adjustment at every timepoint.

time_vary	A list the same length as the number of time points of observation with the column names for new time-varying covariates introduced at each time point. The list should be ordered following the time ordering of the model.
cens	An optional vector of column names of censoring indicators the same length as the number of time points of observation. If missingness in the outcome is present or if time-to-event outcome, must be provided.
shift	A two argument function that specifies how treatment variables should be shifted. See examples for how to specify shift functions for continuous, binary, and cat- egorical exposures.
k	An integer specifying how previous time points should be used for estimation at the given time point. Default is Inf, all time points.
outcome_type	Outcome variable type (i.e., continuous, binomial).
id	An optional column name containing cluster level identifiers.
bounds	An optional vector of the bounds for continuous outcomes. If NULL, the bounds will be taken as the minimum and maximum of the observed data. Should be left as NULL if the outcome type is binary.
learners_outcom	le
	An optional s13 learner stack for estimation of the outcome regression. If not specified, will default to using a generalized linear model.
learners_trt	An optional s13 learner stack for estimation of the exposure mechanism. If not specified, will default to using a generalized linear model.
folds	The number of folds to be used for cross-fitting. Minimum allowable number is two folds.
bound	Determines that maximum and minimum values (scaled) predictions will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.

Value

A list of class 1mtp containing the following components:

estimator	The estimator used, in this case "SDR".
theta	The estimated population LMTP effect.
standard_error	The estimated standard error of the LMTP effect.
low	Lower bound of the 95% confidence interval of the LMTP effect.
high	Upper bound of the 95% confidence interval of the LMTP effect.
eif	The estimated, un-centered, influence function of the estimate.
shift	The shift function specifying the treatment policy of interest.
outcome_reg	An n x Tau $+ 1$ matrix of outcome regression predictions. The mean of the first column is used for calculating theta.
density_ratios	An n x Tau matrix of the estimated density ratios.
weights_m	A list the same length as folds, containing the Super Learner ensemble weights at each time-point for each fold for the outcome regression.
weights_r	A list the same length as folds, containing the Super Learner ensemble weights at each time-point for each fold for the propensity.
outcome_type	The outcome variable type.

Examples

```
library(lmtp)
# Example 1.1
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a population wide decrease in A of 5 units
# The true value under this intervention is about 519.
set.seed(56)
n <- 1000
W <- rnorm(n, 10, 5)
A <- 23 + 5*W + rnorm(n)
Y <- 7.2 * A + 3 * W + rnorm(n)
ex1_dat <- data.frame(W, A, Y)</pre>
d <- function(data, x) data[[x]] - 5</pre>
psi1.1 <- lmtp_sdr(ex1_dat, "A", "Y", "W", shift = d,</pre>
                   outcome_type = "continuous", folds = 2)
psi1.1
# Example 1.2
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a modified treatment policy where A is decreased by 15
# units only among observations whose observed A was above 80.
# The true value under this intervention is about 513.
d <- function(data, x) (data[[x]] > 80)*(data[[x]] - 15) + (data[[x]] <= 80)*data[[x]]</pre>
psi1.2 <- lmtp_sdr(ex1_dat, "A", "Y", "W", shift = d,</pre>
                   outcome_type = "continuous", folds = 2)
psi1.2
# Example 2.1
# Longitudinal setting, time-varying continuous exposure bounded by 0,
# time-varying covariates, and a binary outcome with no loss-to-follow-up.
# Interested in the effect of a treatment policy where exposure decreases by
# one unit at every time point if an observations observed exposure is greater
# than or equal to 2. The true value under this intervention is about 0.305.
head(sim_t4)
# specifying treament variables
a <- c("A_1", "A_2", "A_3", "A_4")
# specifying time varying covariates
tv <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))
# treatment policy function to be applied at all time points
d <- function(data, trt) {</pre>
  a <- data[[trt]]
  (a - 1) * (a - 1 \ge 1) + a * (a - 1 < 1)
}
progressr::with_progress({
  psi2.1 <- lmtp_sdr(sim_t4, a, "Y", time_vary = tv, shift = d, folds = 2)</pre>
})
psi2.1
# Example 2.2
# Example 2.1 assumed that the outcome (as well as the treatment variables)
# were directly affected by all other nodes in the past. In certain situtations,
```

```
# domain specific knowledge may suggest otherwise leading to a Markov processes.
# This can be controlled using the k argument.
progressr::with_progress({
  psi2.2 <- lmtp_sdr(sim_t4, a, "Y", time_vary = tv, shift = d,</pre>
                     k = 0, folds = 2)
})
psi2.2
# Example 2.3
# Using the same data as examples 2.1 and 2.2.
# Now estimating the effect of a dynamic modified treatment policy.
a <- c("A_1", "A_2", "A_3", "A_4")
time_varying <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))</pre>
# our same shift function
shift <- function(data, trt) {</pre>
  (data[[trt]] - 1) * (data[[trt]] - 1 >= 1) + data[[trt]] * (data[[trt]] - 1 < 1)
}
# creating a dynamic mtp that applies the shift function
# but also depends on history and the current time
dynamic_mtp <- function(data, trt) {</pre>
  if (trt == "A_1") {
    # if its the first time point, follow the same mtp as before
    shift(data, trt)
  } else {
    # otherwise check if the time varying covariate equals 1
    ifelse(data[[sub("A", "L", trt)]] == 1,
           shift(data, trt), # if yes continue with the policy
           data[[trt]]) # otherwise do nothing
  }
}
psi2.3 <- lmtp_sdr(sim_t4, a, "Y", time_vary = time_varying,</pre>
                   k = 0, shift = dynamic_mtp, folds = 2)
psi2.3
# Example 2.4
# Using the same data as examples 2.1, 2.2, and 2.3, but now treating the exposure
# as an ordered categorical variable. To account for the exposure being a
# factor we just need to modify the shift function (and the original data)
# so as to respect this.
for (i in a) {
  sim_t4[[i]] <- factor(sim_t4[[i]], levels = 0:5, ordered = TRUE)</pre>
3
d <- function(data, trt) {</pre>
  out <- list()</pre>
  a <- data[[trt]]
  for (i in 1:length(a)) {
    if (as.character(a[i]) %in% c("0", "1")) {
      out[[i]] <- as.character(a[i])</pre>
    } else {
      out[[i]] <- as.numeric(as.character(a[i])) - 1</pre>
    }
  }
  factor(unlist(out), levels = 0:5, ordered = TRUE)
```

```
}
progressr::with_progress({
  psi2.4 <- lmtp_sdr(sim_t4, a, "Y", time_vary = tv, shift = d, k = 0, folds = 2)</pre>
})
psi2.4
# Example 3.1
# Longitudinal setting, time-varying binary treatment, time-varying covariates
# and baseline covariates with no loss-to-follow-up. Interested in a traditional
# causal effect where treatment is set to 1 at all time points for all observations.
data("iptwExWide", package = "twang")
a <- paste0("tx", 1:3)
baseline <- c("gender", "age")</pre>
tv <- list(c("use0"), c("use1"), c("use2"))</pre>
progressr::with_progress({
  psi3.1 <-
    lmtp_sdr(iptwExWide, a, "outcome", baseline = baseline, time_vary = tv,
             shift = static_binary_on, outcome_type = "continuous",
             folds = 2)
})
psi3.1
# Example 4.1
# Longitudinal setting, time-varying continuous treatment, time-varying covariates,
# binary outcome with right censoring. Interested in the mean population outcome under
# the observed exposures in a hypothetical population with no loss-to-follow-up.
head(sim_cens)
a <- c("A1", "A2")
tv <- list(c("L1"), c("L2"))</pre>
cens <- c("C1", "C2")
y <- "Y"
psi4.1 <- lmtp_sdr(sim_cens, a, y, time_vary = tv, cens = cens,</pre>
                   shift = NULL, folds = 2)
psi4.1
# Example 4.2
# Using the same data as example 4.1, but now interested in the causal effect of a
# treatment policy where exposure increased by 0.5 units at all time points. The
# true value under this intervention is about 0.88.
d <- function(data, x) data[[x]] + 0.5</pre>
psi4.2 <- lmtp_sdr(sim_cens, a, y, time_vary = tv,</pre>
                   cens = cens, shift = d, folds = 2)
psi4.2
# Example 5.1
# Time-to-event analysis with a binary time-invariant exposure. Interested in
# the effect of treatment being given to all observations on the cumulative
# incidence of our time-to-event outcome.
a <- "trt"
# for a survival problem, the outcome arugment now takes a vector of outcomes
# if an observation experiences the event prior to the end of follow-up, all future
# outcome nodes should be set to 1 (i.e., last observation carried forward).
y <- paste0("Y.", 1:6)</pre>
```

lmtp_sub

lmtp_sub

LMTP Substitution Estimator

Description

G-computation estimator for the effects of traditional causal effects and modified treatment policies for both point treatment and longitudinal data with binary, continuous, or time-to-event outcomes. Supports binary, categorical, and continuous exposures.

Usage

```
lmtp_sub(
 data,
  trt,
  outcome,
 baseline = NULL,
  time_vary = NULL,
  cens = NULL,
  shift,
 k = Inf,
 outcome_type = c("binomial", "continuous"),
  id = NULL,
 bounds = NULL,
 learners = NULL,
 folds = 10,
 bound = 1e-05
)
```

Arguments

data	A data frame in wide format containing all necessary variables for the estimation problem.
trt	A vector containing the column names of treatment variables ordered by time.
outcome	The column name of the outcome variable. In the case of time-to-event analysis, a vector containing the columns names of intermediate outcome variables and the final outcome variable ordered by time. Only numeric values are allowed. If the outcome type is binary, data should be coded as 0 and 1.

baseline	An optional vector of columns names of baseline covariates to be included for adjustment at every timepoint.
time_vary	A list the same length as the number of time points of observation with the column names for new time-varying covariates introduced at each time point. The list should be ordered following the time ordering of the model.
cens	An optional vector of column names of censoring indicators the same length as the number of time points of observation. If missingness in the outcome is present or if time-to-event outcome, must be provided.
shift	A two argument function that specifies how treatment variables should be shifted. See examples for how to specify shift functions for continuous, binary, and categorical exposures.
k	An integer specifying how previous time points should be used for estimation at the given time point. Default is Inf, all time points.
outcome_type	Outcome variable type (i.e., continuous, binomial).
id	An optional column name containing cluster level identifiers.
bounds	An optional vector of the bounds for continuous outcomes. If NULL, the bounds will be taken as the minimum and maximum of the observed data. Should be left as NULL if the outcome type is binary.
learners	An optional s13 learner stack for estimation of the outcome regression. If not specified, will default to using a generalized linear model.
folds	The number of folds to be used for cross-fitting. Minimum allowable number is two folds.
bound	Determines that maximum and minimum values (scaled) predictions will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.

Value

A list of class 1mtp containing the following components:

estimator	The estimator used, in this case "substitution".
theta	The estimated population LMTP effect.
standard_error	NA
low	NA
high	NA
shift	The shift function specifying the treatment policy of interest.
outcome_reg	An n x Tau $+ 1$ matrix of outcome regression predictions. The mean of the first column is used for calculating theta.
weights_m	A list the same length as folds, containing the Super Learner ensemble weights at each time-point for each fold for the outcome regression.
outcome_type	The outcome variable type.

lmtp_sub

Examples

```
library(lmtp)
# Example 1.1
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a population wide decrease in A of 5 units
# The true value under this intervention is about 519.
set.seed(56)
n <- 1000
W <- rnorm(n, 10, 5)
A <- 23 + 5*W + rnorm(n)
Y <- 7.2*A + 3*W + rnorm(n)
ex1_dat <- data.frame(W, A, Y)</pre>
d <- function(data, x) data[[x]] - 5</pre>
psi1.1 <- lmtp_sub(ex1_dat, "A", "Y", "W", shift = d,</pre>
                   outcome_type = "continuous", folds = 2)
psil.1
# Example 1.2
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a modified treatment policy where A is decreased by 15
# units only among observations whose observed A was above 80.
# The true value under this intervention is about 513.
d <- function(data, x) (data[[x]] > 80)*(data[[x]] - 15) + (data[[x]] <= 80)*data[[x]]</pre>
psi1.2 <- lmtp_sub(ex1_dat, "A", "Y", "W", shift = d,</pre>
                    outcome_type = "continuous", folds = 2)
psi1.2
# Example 2.1
# Longitudinal setting, time-varying continuous exposure bounded by 0,
# time-varying covariates, and a binary outcome with no loss-to-follow-up.
# Interested in the effect of a treatment policy where exposure decreases by
# one unit at every time point if an observations observed exposure is greater
# than or equal to 2. The true value under this intervention is about 0.305.
head(sim_t4)
# specifying treament variables
a <- c("A_1", "A_2", "A_3", "A_4")
# specifying time varying covariates
tv <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))
# treatment policy function to be applied at all time points
d <- function(data, trt) {</pre>
  a <- data[[trt]]
  (a - 1) * (a - 1 >= 1) + a * (a - 1 < 1)
}
progressr::with_progress({
  psi2.1 <- lmtp_sub(sim_t4, a, "Y", time_vary = tv, shift = d, folds = 2)</pre>
})
psi2.1
# Example 2.2
# Example 2.1 assumed that the outcome (as well as the treatment variables)
```

```
# were directly affected by all other nodes in the past. In certain situtations,
# domain specific knowledge may suggest otherwise leading to a Markov processes.
# This can be controlled using the k argument.
progressr::with_progress({
  psi2.2 <- lmtp_sub(sim_t4, a, "Y", time_vary = tv, shift = d,</pre>
                       k = 0, folds = 2)
})
psi2.2
# Example 2.3
# Using the same data as examples 2.1 and 2.2.
# Now estimating the effect of a dynamic modified treatment policy.
a <- c("A_1", "A_2", "A_3", "A_4")
time_varying <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))</pre>
# our same shift function
shift <- function(data, trt) {</pre>
  (data[[trt]] - 1) * (data[[trt]] - 1 >= 1) + data[[trt]] * (data[[trt]] - 1 < 1)
}
# creating a dynamic mtp that applies the shift function
# but also depends on history and the current time
dynamic_mtp <- function(data, trt) {</pre>
  if (trt == "A_1") {
    # if its the first time point, follow the same mtp as before
    shift(data, trt)
  } else {
    # otherwise check if the time varying covariate equals 1
    ifelse(data[[sub("A", "L", trt)]] == 1,
           shift(data, trt), # if yes continue with the policy
           data[[trt]]) # otherwise do nothing
  }
}
psi2.3 <- lmtp_sub(sim_t4, a, "Y", time_vary = time_varying,</pre>
                   k = 0, shift = dynamic_mtp, folds = 2)
psi2.3
# Example 2.4
# Using the same data as examples 2.1, 2.2, and 2.3, but now treating the exposure
# as an ordered categorical variable. To account for the exposure being a
# factor we just need to modify the shift function (and the original data)
# so as to respect this.
for (i in a) {
  sim_t4[[i]] <- factor(sim_t4[[i]], levels = 0:5, ordered = TRUE)</pre>
}
d <- function(data, trt) {</pre>
  out <- list()</pre>
  a <- data[[trt]]
  for (i in 1:length(a)) {
    if (as.character(a[i]) %in% c("0", "1")) {
      out[[i]] <- as.character(a[i])</pre>
    } else {
      out[[i]] <- as.numeric(as.character(a[i])) - 1</pre>
    }
  }
```

```
factor(unlist(out), levels = 0:5, ordered = TRUE)
}
progressr::with_progress({
  psi2.4 <- lmtp_sub(sim_t4, a, "Y", time_vary = tv, shift = d, k = 0, folds = 2)
})
psi2.4
# Example 3.1
# Longitudinal setting, time-varying binary treatment, time-varying covariates
# and baseline covariates with no loss-to-follow-up. Interested in a traditional
# causal effect where treatment is set to 1 at all time points for all observations.
data("iptwExWide", package = "twang")
a <- paste0("tx", 1:3)
baseline <- c("gender", "age")</pre>
tv <- list(c("use0"), c("use1"), c("use2"))</pre>
progressr::with_progress({
  psi3.1 <-
    lmtp_sub(iptwExWide, a, "outcome", baseline = baseline, time_vary = tv,
              shift = static_binary_on, outcome_type = "continuous",
              folds = 2)
})
psi3.1
# Example 4.1
# Longitudinal setting, time-varying continuous treatment, time-varying covariates,
# binary outcome with right censoring. Interested in the mean population outcome under
# the observed exposures in a hypothetical population with no loss-to-follow-up.
head(sim_cens)
a <- c("A1", "A2")
tv <- list(c("L1"), c("L2"))</pre>
cens <- c("C1", "C2")
y <- "Y"
psi4.1 <- lmtp_sub(sim_cens, a, y, time_vary = tv,</pre>
                   cens = cens, shift = NULL, folds = 2)
psi4.1
# Example 4.2
# Using the same data as example 4.1, but now interested in the causal effect of a
# treatment policy where exposure increased by 0.5 units at all time points. The
# true value under this intervention is about 0.88.
d <- function(data, x) data[[x]] + 0.5</pre>
psi4.2 <- lmtp_sub(sim_cens, a, y, time_vary = tv, cens = cens, shift = d, folds = 2)</pre>
psi4.2
# Example 5.1
# Time-to-event analysis with a binary time-invariant exposure. Interested in
# the effect of treatment being given to all observations on the cumulative
# incidence of our time-to-event outcome.
a <- "trt"
# for a survival problem, the outcome arugment now takes a vector of outcomes
# if an observation experiences the event prior to the end of follow-up, all future
# outcome nodes should be set to 1 (i.e., last observation carried forward).
y <- paste0("Y.", 1:6)</pre>
```

```
lmtp_tmle
```

LMTP Targeted Maximum Likelihood Estimator

Description

Targeted maximum likelihood estimator for the effects of traditional causal effects and modified treatment policies for both point treatment and longitudinal data with binary, continuous, or time-to-event outcomes. Supports binary, categorical, and continuous exposures.

Usage

```
lmtp_tmle(
  data,
  trt,
  outcome,
  baseline = NULL,
  time_vary = NULL,
  cens = NULL,
  shift,
  k = Inf,
  outcome_type = c("binomial", "continuous"),
  id = NULL,
 bounds = NULL,
  learners_outcome = NULL,
  learners_trt = NULL,
  folds = 10,
  bound = 1e-05
)
```

Arguments

data	A data frame in wide format containing all necessary variables for the estimation problem.
trt	A vector containing the column names of treatment variables ordered by time.
outcome	The column name of the outcome variable. In the case of time-to-event analysis, a vector containing the columns names of intermediate outcome variables and the final outcome variable ordered by time. Only numeric values are allowed. If the outcome type is binary, data should be coded as 0 and 1.

baseline	An optional vector of columns names of baseline covariates to be included for adjustment at every timepoint.
time_vary	A list the same length as the number of time points of observation with the column names for new time-varying covariates introduced at each time point. The list should be ordered following the time ordering of the model.
cens	An optional vector of column names of censoring indicators the same length as the number of time points of observation. If missingness in the outcome is present or if time-to-event outcome, must be provided.
shift	A two argument function that specifies how treatment variables should be shifted. See examples for how to specify shift functions for continuous, binary, and cat- egorical exposures.
k	An integer specifying how previous time points should be used for estimation at the given time point. Default is Inf, all time points.
outcome_type	Outcome variable type (i.e., continuous, binomial).
id	An optional column name containing cluster level identifiers.
bounds	An optional vector of the bounds for continuous outcomes. If NULL, the bounds will be taken as the minimum and maximum of the observed data. Should be left as NULL if the outcome type is binary.
learners_outcom	le
	An optional s13 learner stack for estimation of the outcome regression. If not specified, will default to using a generalized linear model.
learners_trt	An optional s13 learner stack for estimation of the exposure mechanism. If not specified, will default to using a generalized linear model.
folds	The number of folds to be used for cross-fitting. Minimum allowable number is two folds.
bound	Determines that maximum and minimum values (scaled) predictions will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.

Value

A list of class 1mtp containing the following components:

estimator	The estimator used, in this case "TMLE".
theta	The estimated population LMTP effect.
standard_error	The estimated standard error of the LMTP effect.
low	Lower bound of the 95% confidence interval of the LMTP effect.
high	Upper bound of the 95% confidence interval of the LMTP effect.
eif	The estimated, un-centered, influence function of the estimate.
shift	The shift function specifying the treatment policy of interest.
outcome_reg	An n x Tau $+ 1$ matrix of outcome regression predictions. The mean of the first column is used for calculating theta.
density ratios	An n x Tau matrix of the estimated density ratios

weights_m	A list the same length as folds, containing the Super Learner ensemble weights at each time-point for each fold for the outcome regression.
weights_r	A list the same length as folds, containing the Super Learner ensemble weights at each time-point for each fold for the propensity.
outcome_type	The outcome variable type.

Examples

library(lmtp)

```
# Example 1.1
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a population wide decrease in A of 5 units
# The true value under this intervention is about 519.
set.seed(56)
n <- 1000
W <- rnorm(n, 10, 5)
A <- 23 + 5*W + rnorm(n)
Y <- 7.2*A + 3*W + rnorm(n)
ex1_dat <- data.frame(W, A, Y)</pre>
d <- function(data, x) data[[x]] - 5</pre>
psi1.1 <- lmtp_tmle(ex1_dat, "A", "Y", "W", shift = d,</pre>
                    outcome_type = "continuous", folds = 2)
psil.1
# Example 1.2
# Point treatment, continuous exposure, continuous outcome, no loss-to-follow-up
# Interested in the effect of a modified treatment policy where A is decreased by 15
# units only among observations whose observed A was above 80.
# The true value under this intervention is about 513.
d <- function(data, x) (data[[x]] > 80)*(data[[x]] - 15) + (data[[x]] <= 80)*data[[x]]</pre>
psi1.2 <- lmtp_tmle(ex1_dat, "A", "Y", "W", shift = d,</pre>
                    outcome_type = "continuous", folds = 2)
psi1.2
# Example 2.1
# Longitudinal setting, time-varying continuous exposure bounded by 0,
# time-varying covariates, and a binary outcome with no loss-to-follow-up.
# Interested in the effect of a treatment policy where exposure decreases by
# one unit at every time point if an observations observed exposure is greater
# than or equal to 2. The true value under this intervention is about 0.305.
head(sim_t4)
# specifying treatment variables
a <- c("A_1", "A_2", "A_3", "A_4")
# specifying time varying covariates
tv <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))
# treatment policy function to be applied at all time points
d <- function(data, trt) {</pre>
 a <- data[[trt]]
  (a - 1) * (a - 1 \ge 1) + a * (a - 1 < 1)
}
```

```
progressr::with_progress({
  psi2.1 <- lmtp_tmle(sim_t4, a, "Y", time_vary = tv, shift = d, folds = 2)</pre>
})
psi2.1
# Example 2.2
# Example 2.1 assumed that the outcome (as well as the treatment variables)
# were directly affected by all other nodes in the past. In certain situtations,
# domain specific knowledge may suggest otherwise leading to a Markov processes.
# This can be controlled using the k argument.
progressr::with_progress({
  psi2.2 <- lmtp_tmle(sim_t4, a, "Y", time_vary = tv, shift = d,</pre>
                      k = 0, folds = 2)
})
psi2.2
# Example 2.3
# Using the same data as examples 2.1 and 2.2.
# Now estimating the effect of a dynamic modified treatment policy.
a <- c("A_1", "A_2", "A_3", "A_4")
time_varying <- list(c("L_1"), c("L_2"), c("L_3"), c("L_4"))</pre>
# our same shift function
shift <- function(data, trt) {</pre>
  (data[[trt]] - 1) * (data[[trt]] - 1 >= 1) + data[[trt]] * (data[[trt]] - 1 < 1)
}
# creating a dynamic MTP that applies the shift function
# but also depends on history and the current time
dynamic_mtp <- function(data, trt) {</pre>
  if (trt == "A_1") {
    # if its the first time point, follow the same mtp as before
    shift(data, trt)
  } else {
    # otherwise check if the time varying covariate equals 1
    ifelse(data[[sub("A", "L", trt)]] == 1,
           shift(data, trt), # if yes continue with the policy
           data[[trt]]) # otherwise do nothing
  }
}
psi2.3 <- lmtp_tmle(sim_t4, a, "Y", time_vary = time_varying,</pre>
                    k = 0, shift = dynamic_mtp, folds = 2)
psi2.3
# Example 2.4
# Using the same data as examples 2.1, 2.2, and 2.3, but now treating the exposure
# as an ordered categorical variable. To account for the exposure being a
# factor we just need to modify the shift function (and the original data)
# so as to respect this.
for (i in a) {
  sim_t4[[i]] <- factor(sim_t4[[i]], levels = 0:5, ordered = TRUE)</pre>
}
d <- function(data, trt) {</pre>
  out <- list()</pre>
  a <- data[[trt]]
```

```
for (i in 1:length(a)) {
    if (as.character(a[i]) %in% c("0", "1")) {
      out[[i]] <- as.character(a[i])</pre>
    } else {
      out[[i]] <- as.numeric(as.character(a[i])) - 1</pre>
    }
  }
  factor(unlist(out), levels = 0:5, ordered = TRUE)
}
progressr::with_progress({
  psi2.4 <- lmtp_tmle(sim_t4, a, "Y", time_vary = tv, shift = d, k = 0, folds = 2)</pre>
})
psi2.4
# Example 3.1
# Longitudinal setting, time-varying binary treatment, time-varying covariates
# and baseline covariates with no loss-to-follow-up. Interested in a traditional
# causal effect where treatment is set to 1 at all time points for all observations.
data("iptwExWide", package = "twang")
a <- paste0("tx", 1:3)
baseline <- c("gender", "age")</pre>
tv <- list(c("use0"), c("use1"), c("use2"))</pre>
progressr::with_progress({
  psi3.1 <-
    lmtp_tmle(iptwExWide, a, "outcome", baseline = baseline, time_vary = tv,
              shift = static_binary_on, outcome_type = "continuous",
              folds = 2)
})
psi3.1
# Example 4.1
# Longitudinal setting, time-varying continuous treatment, time-varying covariates,
# binary outcome with right censoring. Interested in the mean population outcome under
# the observed exposures in a hypothetical population with no loss-to-follow-up.
head(sim_cens)
a <- c("A1", "A2")
tv <- list(c("L1"), c("L2"))</pre>
cens <- c("C1", "C2")
y <- "Y"
psi4.1 <- lmtp_tmle(sim_cens, a, y, time_vary = tv, cens = cens, shift = NULL, folds = 2)</pre>
psi4.1
# Example 4.2
# Using the same data as example 4.1, but now interested in the causal effect of a
# treatment policy where exposure increased by 0.5 units at all time points. The
# true value under this intervention is about 0.88.
d <- function(data, x) data[[x]] + 0.5</pre>
psi4.2 <- lmtp_tmle(sim_cens, a, y, time_vary = tv,</pre>
                    cens = cens, shift = d, folds = 2)
psi4.2
# Example 5.1
# Time-to-event analysis with a binary time-invariant exposure. Interested in
```

sim_cens

sim_cens

Simulated Longitudinal Data With Censoring

Description

A dataset with a binary outcome, two time varying treatment nodes, two time varying covariates, and two censoring indicators.

Usage

sim_cens

Format

A data frame with 1000 rows and 10 variables:

L1 Time varying covariate time 1

- A1 Treatment node at time 1, effected by L_1
- C1 Censoring indicator that the observation is observed after time 1
- L2 Time varying covariate at time 2, effected by L_1 and A_1
- A2 Treatment node at time 2, effected by L_2 and A_1
- C2 Censoring indicator that the observation is observed after time 2
- Y Binary outcome at time 3, effected by L_2 and A_2

sim_point_surv

Description

A dataset with a time-to-event outcome, two baseline nodes, a binary point treatment, six past-time outcome nodes, and six censoring indicators.

Usage

sim_point_surv

Format

A data frame with 2000 rows and 16 variables:

- W1 Binary baseline variable.
- W2 Categorical baseline variable.
- trt Binary treatment variable.
- Y.0 Outcome node at time 0.
- C.0 Censoring indicator that the observation is observed future time points.
- **Y.1** Outcome node at time 1.
- C.1 Censoring indicator that the observation is observed future time points.
- Y.2 Outcome node at time 2.
- C.2 Censoring indicator that the observation is observed future time points.
- Y.3 Outcome node at time 3.
- C.3 Censoring indicator that the observation is observed future time points.
- Y.4 Outcome node at time 4.
- C.4 Censoring indicator that the observation is observed future time points.
- **Y.5** Outcome node at time 5.
- C.5 Censoring indicator that the observation is observed future time points.
- Y.6 Final outcome node.

sim_t4

Description

A dataset with a binary outcome, four time varying treatment nodes, and four time varying covariates.

Usage

sim_t4

Format

A data frame with 5000 rows and 10 variables:

ID observation ID

- **L_1** Time varying covariate time 1
- A_1 Treatment node at time 1, effected by L_1
- L_2 Time varying covariate time 1, effected by L_1 and A_1
- A_2 Treatment node at time 2, effected by L_2 and A_1
- L_3 Time varying covariate time 1, effected by L_2 and A_2
- A_3 Treatment node at time 3, effected by L_3 and A_2
- L_4 Time varying covariate time 1, effected by L_3 and A_3
- A_4 Treatment node at time 3, effected by L_4 and A_3
- Y Binary outcome at time 5, effected by L_4 and A_4

static_binary_off Turn All Treatment Nodes Off

Description

A pre-packaged shift function for use with provided estimators when the exposure is binary. Used to estimate the population intervention effect when all treatment variables are set to 0.

Usage

```
static_binary_off(data, trt)
```

Arguments

data	A dataframe containing the treatment variables.
trt	The name of the current treatment variable.

Value

A dataframe with all treatment nodes set to 0.

See Also

lmtp_tmle(), lmtp_sdr(), lmtp_sub(), lmtp_ipw()

Examples

static_binary_on Turn All Treatment Nodes On

Description

A pre-packaged shift function for use with provided estimators when the exposure is binary. Used to estimate the population intervention effect when all treatment variables are set to 1.

Usage

```
static_binary_on(data, trt)
```

Arguments

data	A dataframe containing the treatment variables.
trt	The name of the current treatment variable.

Value

A dataframe with all treatment nodes set to 1.

See Also

lmtp_tmle(), lmtp_sdr(), lmtp_sub(), lmtp_ipw()

tidy.lmtp

Examples

tidy.lmtp

Tidy a(n) lmtp object

Description

Tidy a(n) lmtp object

Usage

S3 method for class 'lmtp'
tidy(x, ...)

Arguments

х	A lmtp object produced by a call to lmtp::lmtp_tmle(), lmtp::lmtp_sdr(),
	<pre>lmtp::lmtp_sub(), or lmtp::lmtp_ipw().</pre>
	Unused, included for generic consistency only.

Examples

```
a <- c("A1", "A2")
nodes <- list(c("L1"), c("L2"))
cens <- c("C1", "C2")
y <- "Y"
fit <- lmtp_tmle(sim_cens, a, y, time_vary = nodes, cens = cens, shift = NULL, folds = 2)
tidy(fit)</pre>
```

Index

* datasets sim_cens, 25 sim_point_surv, 26 sim_t4,27 create_node_list, 2 $event_locf, 3$ lmtp::lmtp_ipw(), 29 lmtp::lmtp_sdr(), 29 lmtp::lmtp_sub(), 29 lmtp::lmtp_tmle(), 29 lmtp_contrast, 4 lmtp_ipw, 5 lmtp_ipw(), 28 lmtp_sdr, 10 lmtp_sdr(), 28 lmtp_sub, 15 lmtp_sub(), 28 lmtp_tmle, 20 lmtp_tmle(), 28 sim_cens, 25 sim_point_surv, 26 sim_t4,27 static_binary_off, 27 static_binary_on, 28

tidy.lmtp, 29