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1 Introduction

The classical linear regression model

yi = x⊤

i
β + ui (i = 1, . . . , n) (1)

is still one of the most popular tools for data analysis despite (or due to) its simple structure. Al-
though it is appropriate in many situations, there are many pitfalls that might affect the quality of
conclusions drawn from fitted models or might even lead to uninterpretable results. Some of these
pitfalls that are considered especially important in applied econometrics are heteroskedasticity or
serial correlation of the error terms, structural changes in the regression coefficients, nonlinearities,
functional misspecification or omitted variables. Therefore, a rich variety of diagnostic tests for
these situations have been developed in the econometrics community, a collection of which has
been implemented in the packages lmtest and strucchange covering the problems mentioned
above.

These diagnostic tests are not only useful in econometrics but also in many other fields where
linear regression is used, which we will demonstrate with an application from biostatistics. As
Breiman (2001) argues it is important to assess the goodness-of-fit of data models, in particular
not only using omnibus tests but tests designed for a certain direction of the alternative. These
diagnostic checks do not have to be seen as pure significance procedures but also as an explorative
tool to extract information about the structure of the data, especially in connection with residual
plots or other diagnostic plots. As Brown, Durbin, and Evans (1975) argue for the recursive
CUSUM test, these procedures can “be regarded as yardsticks for the interpretation of data rather
than leading to hard and fast decisions.” Moreover, we will always be able to reject the null-
hypothesis provided we have enough data at hand. The question is not whether the model is
wrong (it always is!) but if the irregularities are serious.

The package strucchange implements a variety of procedures related to structural change of
the regression coefficients and was already introduced in R news by Zeileis (2001) and described in
more detail in Zeileis, Leisch, Hornik, and Kleiber (2002). Therefore, we will focus on the package
lmtest in the following. Most of the tests and the datasets contained in the package are taken
from the book of Krämer and Sonnberger (1986), which originally inspired us to write the package.
Compared to the book, we implemented later versions of some tests and modern flexible interfaces
for the procedures. Most of the tests are based on the OLS residuals of a linear model, which is
specified by a formula argument. Instead of a formula a fitted model of class "lm" can also be
supplied, which should work if the data are either contained in the object or still present in the
workspace—however this is not encouraged. The full references for the tests can be found on the
help pages of the respective function.

We present applications of the tests contained in lmtest to two different data sets: the first is
a macroeconomic time series from the U.S. analysed by Stock and Watson (1996) and the second
is data from a study on measurments of fetal mandible length discussed by Royston and Altman
(1994).
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2 U.S. macroeconomic data

Stock and Watson (1996) investigate the stability of 76 monthly macroeconomic time series from
1959 to 1993, of which we choose the department of commerce commodity price index time series
jocci to illustrate the tests for heteroskedasticity and serial correlation. The data is treated
with the same methodology as all other series considered by Stock and Watson (1996): they
were transformed suitably (here by log first differences) and then an AR(6) model was fitted and
analysed. The transformed series is denoted dy and is depicted together with a residual plot of
the AR(6) model in Figure 1.
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Figure 1: The jocci series and AR(6) residual plot

Not surprisingly, an autoregressive model is necessary as the series itself contains serial corre-
lation, which can be shown by the Durbin-Watson test

> data(jocci)

> dwtest(dy ~ 1, data = jocci)

Durbin-Watson test

data: dy ~ 1

DW = 1.0581, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0

or the Breusch-Godfrey test which also leads to a highly significant result. In the AR(6) model
given by

> ar6.model <- dy ~ dy1 + dy2 + dy3 + dy4 + dy5 +dy6

where the variables on the right hand side denote the lagged variables, there is no remaining serial
correlation in the residuals:

> bgtest(ar6.model, data = jocci)

Breusch-Godfrey test for serial correlation of order up to 1

data: ar6.model

LM test = 0.19999, df = 1, p-value = 0.6547
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The Durbin-Watson test is biased in dynamic models and should therefore not be applied.
The residual plot suggests that the variance of the error component increases over time, which

is emphasized by all three tests for heteroskedasticity implemented in lmtest: the Breusch-Pagan
test fits a linear regression model to the residuals and rejects if too much of the variance is explained
by the auxiliary explanatory variables, which are here the squared lagged values:

> var.model <- ~ I(dy1^2) + I(dy2^2) + I(dy3^2) + I(dy4^2) + I(dy5^2) + I(dy6^2)

> bptest(ar6.model, var.model, data = jocci)

studentized Breusch-Pagan test

data: ar6.model

BP = 22.377, df = 6, p-value = 0.001034

The Goldfeld-Quandt test gqtest() and the Harrison-McCabe test hmctest() also give highly
significant p values. Whereas the Breusch-Pagan test does not assume a particular timing of the
change of variance, the Goldfeld-Quandt and the Harrison-McCabe tests suffer from the same
problem as the Chow test for a change of the regression coefficients (available in package struc-

change): the breakpoint has to be known in advance. By default it is taken to be after 50% of
the observations, which leads to a significant result for the present series.

3 The mandible data

Royston and Altman (1994) discuss a linear regression model for data taken from a study of fetal
mandible length by Chitty, Campbell, and Altman (1993). The data comprises measurements of
mandible length (in mm) and gestational age (in weeks) in 158 fetuses. The data (after log trans-
formation) is depicted in Figure 2 together with the fitted values of a linear model length ~ age

and a quadratic model length ~ age + I(age^2).

●

●

●●
●

●

●

●
●

●●

●

●●

●
●
●

●

●

●
●●
●

● ●●
●

●
●●●

●
●

●

●

●
●
●●

●

●
●
●

●●
●●

●

●
●

●
●●●

●

●
●●
●
●
●●

●
●

●

●
●
●
●
●
●●

●●●
●
●●●●
●
●●●

●

●
●●

●

●●
●●
●

●

●

●

●

●●

●
●●

●

●

●
●

●

●
●

●
●●●
●●●●●
●
●

●
●●
●●●
●

●
●
●●

●

●

●
●●

●
●●
●●

●

●

●●
●
●

●

●
●
●
●

●

●

●

●
● ●

●
●

●

●
●

●
●

●

2.6 2.8 3.0 3.2 3.4

2
.5

3
.0

3
.5

age

le
n
g
th

Figure 2: The mandible data

Although by merely visually inspecting the raw data or the residual plots in Figure 3 a quadratic
model seems to be more appropriate, we will first fit a linear model for illustrating some tests for
nonlinearity and misspecified functional form.

The suitable tests in lmtest are the Harvey-Collier test, which is essentially a t test of the
recursive residuals (standardized one step prediction errors), and the Rainbow test. Both try to
detect nonlinearities when the data is ordered with respect to a specific variable.
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Figure 3: Residual plots for mandible models

> data(Mandible)

> mandible <- log(Mandible)

> harvtest(length ~ age, order.by = ~ age, data = mandible)

> raintest(length ~ age, order.by = ~ age, data = mandible)

Both lead to highly significant results, suggesting that the model is not linear in age. Another
appropriate procedure is the RESET test, which tests whether some auxiliary variables improve
the fit significantly. By default the second and third powers of the fitted values are chosen:

> resettest(length ~ age, data = mandible)

RESET test

data: length ~ age

RESET = 25.637, df1 = 2, df2 = 163, p-value = 2.086e-10

In our situation it would also be natural to consider powers of the regressor age as auxiliary
variables

> resettest(length ~ age, power = 2, type = "regressor", data = mandible)

RESET test

data: length ~ age

RESET = 51.554, df1 = 1, df2 = 164, p-value = 2.302e-11

which also gives a highly significant p value (higher powers do not have a significant influence).
These results correspond to the better fit of the quadratic model which can both be seen in
Figure 2 and 3. Although its residual plot does not look too suspicious several tests are able to
reveal irregularities in this model as well. The Breusch-Pagan tests gives a p value of 0.044 and
the Rainbow test gives

> raintest(length ~ age + I(age^2), order.by = ~ age, data = mandible)

Rainbow test

data: length ~ age + I(age^2)

Rain = 1.579, df1 = 84, df2 = 80, p-value = 0.02033

4



and finally an supF test from the strucchange package would also reject the null hypothesis of
stability at 10% level (p = 0.034) in favour of a breakpoint after about 90% of the observations.
All three tests probably reflect that there is more variability in the edges (especially the right one)
than in the middle which the model does not describe sufficiently.

4 Conclusions

We illustrated the usefulness of a collection of diagnostic tests for various situations of deviations
from the assumptions of the classical linear regression model. We chose two fairly simple data
sets—an econometric and a biometric application—to demonstrate how the tests work, but they
are also particularly helpful to detect irregularities in regressions with a larger number of regressors.
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