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liquidSVM-package liquidSVM for R
Description

Support vector machines (SVMs) and related kernel-based learning algorithms are a well-known
class of machine learning algorithms, for non-parametric classification and regression. liquidSVM
is an implementation of SVMs whose key features are:

« fully integrated hyper-parameter selection,

* extreme speed on both small and large data sets,
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« full flexibility for experts, and
* inclusion of a variety of different learning scenarios:

— multi-class classification, ROC, and Neyman-Pearson learning, and
— least-squares, quantile, and expectile regression
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Further information is available in the following vignettes:

demo liquidSVM Demo (source, pdf)
documentation liquidSVM Documentation (source, pdf)

Details

In liquidSVM an application cycle is divided into a training phase, in which various SVM models
are created and validated, a selection phase, in which the SVM models that best satisfy a certain
criterion are selected, and a test phase, in which the selected models are applied to test data. These
three phases are based upon several components, which can be freely combined using different
components: solvers, hyper-parameter selection, working sets. All of these can be configured (see
Configuration) a

For instance multi-class classification with k labels has to be delegated to several binary classifica-
tions called tasks either using all-vs-all (k(k—1),/2 tasks on the corresponding subsets) or one-vs-all
(k tasks on the full data set). Every task can be split into cells in order to handle larger data sets (for
example > 10000 samples). Now for every task and every cell, several folds are created to enable
cross-validated hyper-parameter selection.

The following learning scenarios can be used out of the box:

mcSVM binary and multi-class classification
1sSVM least squares regression
nplSVM Neyman-Pearson learning to classify with a specified rate on one type of error

rocSVM Receivert Operating Characteristic (ROC) curve to solve multiple weighted binary classi-
fication problems.

qtSVM quantile regression
exSVM expectile regression

bsSVM bootstrapping

To calculate kernel matrices as used by the SVM we also provide for convenience the function kern.

liquidSVM can benefit heavily from native compilation, hence we recommend to (re-)install it
using the information provided in the installation section of the documentation vignette.
Known issues

Interruption (Ctrl-C) of running train/select/test phases is honored, but can leave the C++ library in
an inconsistent state, so that it is better to save your work and restart your R session.

liquidSVM is multi-threaded and is difficult to be multi-threaded externally, see documentation

Author(s)

Ingo Steinwart <ingo.steinwart@mathematik.uni-stuttgart.de>, Philipp Thomann <philipp.thomann@mathematik.

Maintainer: Philipp Thomann <philipp.thomann@mathematik.uni-stuttgart.de>


../doc/documentation.html#Installation
../doc/documentation.html#Using external parallelization
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References

http://www.isa.uni-stuttgart.de

See Also

init.liquidSVM, trainSVMs, predict.liquidSVM, clean.liquidSVM, and test.liquidSVM, Con-
figuration;

Examples

## Not run:

set.seed(123)

## Multiclass classification
modelIris <- svm(Species ~ ., iris)
y <- predict(modellris, iris)

## Least Squares

modelTrees <- svm(Height ~ Girth + Volume, trees)
y <- predict(modelTrees, trees)
plot(trees$Height, y)

test(modelTrees, trees)

## Quantile regression
modelTrees <- qtSVM(Height ~ Girth + Volume, trees, scale=TRUE)
y <- predict(modelTrees, trees)

## ROC curve

modelWarpbreaks <- rocSVM(wool ~ ., warpbreaks, scale=TRUE)
y <- test(modelWarpbreaks, warpbreaks)
plotROC(y,warpbreaks$wool)

## End(Not run)

banana banana-bc.train, banana-bc.test banana-mc.train, and
banana-mc.test

Description

Generated data set having a binary or 4-level Y variable and a two-dimensional X (first two levels
resemble bananas). Both the train and the test set have 2000 samples in the binary case, and 4000
in the multi-class case. They were generated by the authors and their collaborators.


http://www.isa.uni-stuttgart.de
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bsSVM Bootstrap

Description

This routine performs bootstrap learning for all scenarios except multiclass classification.

Usage

bsSVM(x, y, ..., solver, ws.number = 5, ws.size = 500,
do.select = TRUE)

Arguments
X either a formula or the features
y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.
solver the solver to use. Can be any of KERNEL_RULE, SVM_LS_2D, SVM_HINGE_2D,
SVM_QUANTILE, SVM_EXPECTILE_2D
ws.number number of working sets to build and train
ws.size how many samples to draw from the training set for each working set
do.select if TRUE also does the whole selection for this model
Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

clean.liquidSM Force to release the internal memory of the C++ objects associated to
this model.

Description
Usually this has not to be done by the user since liquidSVM harnesses garbage collection offered
by R.

Usage

## S3 method for class 'liquidSVM'
clean(model, warn = TRUE, ...)
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Arguments
model the SVM model as returned by init.liquidSVM
warn if TRUE issue warning if the model already was deleted
not used at the moment
See Also

init.liquidSVM

Examples
## Not run:
## Multiclass classification
modellIris <- svm(Species ~ ., iris)

y <- predict(modellris, iris)

## Least Squares

modelTrees <- svm(Height ~ Girth + Volume, trees)
y <- predict(modelTrees, trees)
plot(trees$Height, y)

test(modelTrees, trees)

clean(modelTrees)
clean(modellris)

# now predict(modelTrees, ...) would not be possible any more

## End(Not run)

command-args liquidSVM command line options

Description

Should only be used by experts! liquidSVM command line tools svm-train, svm-select, and
svm-test can be used by more advanced users to get the most advanced use. These three tools have
command line arguments and those can be used from R as well.

Examples

## Not run:

reg <- liquidData('reg-1d")

model <- init.liquidSVM(Y~., reg$train)

trainSVMs(model, command.args=list(L=2, T=2, d=1))
selectSVMs(model, command.args=list(R=0,d=2))

result <- test(model, reg$test, command.args=1list(T=1, d=0))

## End(Not run)
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compilationInfo Compilation information: whether the library was compiled using
SSE2 or even AVX.

Description

Compilation information: whether the library was compiled using SSE2 or even AVX.

Usage

compilationInfo()

Value

character with the information.

Configuration liquidSVM model configuration parameters.

Description

Different parameters configure different aspects of training/selection/testing. The learning scenarios
set many parameters to corresponding default values, and these can again be changed by the user.
Therefore the order in which they are specified can be important.

Usage

getConfig(model, name)

setConfig(model, name, value)

Arguments
model the model
name the name
value the value
Value

the value of the configuration parameter
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Overview of Configuration Parameters

display This parameter determines the amount of output of you see at the screen: The larger its
value is, the more you see. This can help as a progress indication.

scale If set to a true value then for every feature in the training data a scaling is calculated so that
its values lie in the interval [0, 1]. The training then is performed using these scaled values and
any testing data is scaled transparently as well.

Because SVMs are not scale-invariant any data should be scaled for two main reasons: First
that all features have the same weight, and second to assure that the default gamma parameters
that liquidSVM provide remain meaningful.

If you do not have scaled the data previously this is an easy option.

threads This parameter determines the number of cores used for computing the kernel matrices,
the validation error, and the test error.

* threads=0 (default) means that all physical cores of your CPU run one thread.
* threads=-1 means that all but one physical cores of your CPU run one thread.

partition_choice This parameter determines the way the input space is partitioned. This allows
larger data sets for which the kernel matrix does not fit into memory.

e partition_choice=0 (default) disables partitioning.
e partition_choice=6 gives usually highest speed.
e partition_choice=5 gives usually the best test error.

grid_choice This parameter determines the size of the hyper- parameter grid used during the
training phase. Larger values correspond to larger grids. By default, a 10x10 grid is used.
Exact descriptions are given in the next section.

adaptivity_control This parameter determines, whether an adaptive grid search heuristic is em-
ployed. Larger values lead to more aggressive strategies. The default adaptivity_control
= 0 disables the heuristic.

random_seed This parameter determines the seed for the random generator. random_seed = -1
uses the internal timer create the seed. All other values lead to repeatable behavior of the svm.

folds How many folds should be used.

Specialized configuration parameters

Parameters for regression (least-squares, quantile, and expectile)

clipping This parameter determines whether the decision functions should be clipped at the spec-
ified value. The value clipping =-1.0 leads to an adaptive clipping value, whereas clipping
= 0 disables clipping.

Parameter for multiclass classification determine the multiclass strategy: mc-type=0 : AvA with
hinge loss. mc-type=1: OvA with least squares loss. mc-type=2: OvA with hinge loss. mc-type=3
: AvA with least squares loss.

Parameters for Neyman-Pearson Learning

class The class, the constraint is enforced on.

constraint The constraint on the false alarm rate. The script actually considers a couple of values
around the value of constraint to give the user an informed choice.
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Hyperparameter Grid
For Support Vector Machines two hyperparameters need to be determined:

e gamma the bandwith of the kernel
* lambda has to be chosen such that neither over- nor underfitting happen. lambda values are
the classical regularization parameter in front of the norm term.

liquidSVM has a built-in a cross-validation scheme to calculate validation errors for many values of
these hyperparameters and then to choose the best pair. Since there are two parameters this means
we consider a two-dimensional grid.

For both parameters either specific values can be given or a geometrically spaced grid can be spec-
ified.

gamma_steps, min_gamma, max_gamma specifies in the interval between min_gamma and max_gamma
there should be gamma_steps many values

gammas e.g. gammas=c(0.1,1,10,100) will do these four gamma values

lambda_steps, min_lambda, max_lambda specifies in the interval between min_lambda and max_lambda
there should be 1ambda_steps many values

lambdas e.g. lambdas=c(@.1,1,10,100) will do these four lambda values

c_values the classical term in front of the empirical error term, e.g. c_values=c(0.1,1,10,100)
will do these four cost values (basically inverse of 1lambdas)

Note the min and max values are scaled according the the number of samples, the dimensionality
of the data sets, the number of folds used, and the estimated diameter of the data set.

Using grid_choice allows for some general choices of these parameters

grid_choice 0 1 2
gamma_steps 10 15 20
lambda_steps 10 15 20
min_gamma 0.2 0.1 0.05

max_gamma 5.0 10.0 20.0
min_lambda 0.001 0.0001 0.00001
max_lambda 0.01 0.01 0.01

Using negative values of grid_choice we create a grid with listed gamma and lambda values:

grid_choice -1
gammas c(10.0,5.9,2.0,1.0, 0.5, 0.25, 0.1, 0.05)
lambdas c(1.0,0.1,0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001)

grid_choice -2
gammas c(10.0,5.0,2.0,1.0,0.5,0.25,0.1, 0.05)
c_values c(0.01,0.1, 1, 10, 100, 1000, 10000)
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Adaptive Grid

An adaptive grid search can be activated. The higher the values of MAX_LAMBDA_INCREASES and
MAX_NUMBER_OF _WORSE_GAMMAS are set the more conservative the search strategy is. The values
can be freely modified.

ADAPTIVITY_CONTROL 1 2
MAX_LAMBDA_INCREASES 4 3
MAX_NUMBER_OF_WORSE_GAMMAS 4 3

Cells

A major issue with SVMs is that for larger sample sizes the kernel matrix does not fit into the
memory any more. Classically this gives an upper limit for the class of problems that traditional
SVMs can handle without significant runtime increase. Furthermore also the time complexity is at
least O(n?).

liquidSVM implements two major concepts to circumvent these issues. One is random chunks
which is known well in the literature. However we prefer the new alternative of splitting the space
into spatial cells and use local SVMs on every cell.

If you specify useCells=TRUE then the sample space X gets partitioned into a number of cells. The
training is done first for cell 1 then for cell 2 and so on. Now, to predict the label for a value x € X
liquidSVM first finds out to which cell this « belongs and then uses the SVM of that cell to predict
a label for it.

If you run into memory issues turn cells on: \code{useCells=TRUE}

This is quite performant, since the complexity in both time and memore are both O(CELLSIZE x n)
and this holds both for training as well as testing! It also can be shown that the quality of the solution
is comparable, at least for moderate dimensions.

The cells can be configured using the partition_choice:

1. This gives a partition into random chunks of size 2000
VORONOI=c(1,2000)

2. This gives a partition into 10 random chunks
VORONOI=c(2,10)

3. This gives a Voronoi partition into cells with radius not larger than 1.0. For its creation a
subsample containing at most 50.000 samples is used.

VORONOI=c(3,1.0,50000)

4. This gives a Voronoi partition into cells with at most 2000 samples (approximately). For its
creation a subsample containing at most 50.000 samples is used. A shrinking heuristic is used
to reduce the number of cells.

VORONOI=c(4,2000,1,50000)

5. This gives a overlapping regions with at most 2000 samples (approximately). For its creation
a subsample containing at most 50.000 samples is used. A stopping heuristic is used to stop
the creation of regions if 0.5 * 2000 samples have not been assigned to a region, yet.
VORONOI=c(5,2000,0.5,50000,1)
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6. This splits the working sets into Voronoi like with PARTITION_TYPE=4. Unlike that case, the
centers for the Voronoi partition are found by a recursive tree approach, which in many cases
may be faster.

VORONOI=c(6,2000,1,50000,2.0,20,4,)

The first parameter values correspond to NO_PARTITION, RANDOM_CHUNK_BY_SIZE, RANDOM_CHUNK_BY_NUMBER,
VORONOI_BY_RADIUS, VORONOI_BY_SIZE, OVERLAP_BY_SIZE

Weights

* gt, ex: Here the number of considered tau-quantiles/expectiles as well as the considered tau-
values are defined. You can freely change these values but notice that the list of tau-values is
space-separated!

* npl, roc: Here, you define, which weighted classification problems will be considered. The
choice is usually a bit tricky. Good luck ...

NPL:
WEIGHT_STEPS=10
MIN_WEIGHT=0.001
MAX_WEIGHT=0.5
GEO_WEIGHTS=1

ROC:
WEIGHT_STEPS=9
MAX_WEIGHT=0.9
MIN_WEIGHT=0.1
GEO_WEIGHTS=0

Grouped Cross Validation

By specifying groupIds when initializing an SVM samples obtain group ids. This by default also
sets FOLDS_KIND to GROUPED. If the latter is the case then samples with the same group id will be
put into the same fold at cross validation. This is important if e.g. there are several patients with
several measurements each.

More Advanced Parameters

The following parameters should only employed by experienced users and are self-explanatory for
these:

KERNEL specifies the kernel to use, at the moment either GAUSS_RBF or POISSON

RETRAIN_METHOD After training on grids and folds there are only solutions on folds. In order to con-
struct a global solution one can either retrain on the whole training data (SELECT_ON_ENTIRE_TRAIN_SET)
or the (partial) solutions from the training are kept and combined using voting (SELECT_ON_EACH_FOLD
default)

store_solutions_internally If this is true (default in all applicable cases) then the solutions of
the train phase are stored and can be just reused in the select phase. If you slowly run out of
memory during the train phase maybe disable this. However then in the select phase the best
models have to be trained again.
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For completeness here are some values that usually get set by the learning scenario

SVM_TYPE KERNEL_RULE, SVM_LS_2D, SVM_HINGE_2D, SYM_QUANTILE, SVYM_EXPECTILE_2D, SVM_TEMPLATE

LOSS_TYPE CLASSIFICATION_LOSS,MULTI_CLASS_LOSS, LEAST_SQUARES_LOSS, WEIGHTED_LEAST_SQUARES_LOSS,
PINBALL_LOSS, TEMPLATE_LOSS

VOTE_SCENARIO VOTE_CLASSIFICATION, VOTE_REGRESSION, VOTE_NPL
KERNEL_MEMORY_MODEL LINE_BY_LINE, BLOCK, CACHE, EMPTY

FOLDS_KIND BLOCKS, ALTERNATING, RANDOM, STRATIFIED, GROUPED, RANDOM_SUBSET
WS_TYPE FULL_SET, MULTI_CLASS_ALL_VS_ALL, MULTI_CLASS_ONE_VS_ALL, BOOT_STRAP

errors Obtain the test errors result.

Description
After calculating the result in test.1iquidSVM if labels were given liquidSVM also calculates the
test error.

Usage

errors(y, showall = FALSE)

Arguments
y the results of test.liquidSVM
showall show the more detailed errors as well.
Details

Depending on the learning scenario there can be multiple errors: usually there is one per task, and
mcSVM adds in front the global classification error. In the latter case the names give an information
for what task the error was computed.

For each error also the positive and negative validation error can be shonw using showall for
example in rocSVM.

Value
for all tasks the global and optionally also the positive/negative errors. Depending on the learning
scenario there can be also a overall error (e.g. in multi-class classification).

See Also

test.liquidSVM
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Examples

modelTrees <- svm(Height ~ Girth + Volume, trees[1:10, 1) # least squares

y <- test(modelTrees,trees[-1:-10,])

errors(y)

## Not run:

banana <- liquidData('banana-bc')
s_banana <- rocSVM(Y~., banana$test)

result <- test(s_banana, banana$train)
errors(result, showall=TRUE)

## End(Not run)

exSVM Expectile Regression

Description

This routine performs non-parametric, asymmetric least squares regression using SVMs. The tested
estimators are therefore estimating the conditional tau-expectiles of Y given X. By default, estima-
tors for five different tau values are computed. svmExpectileRegression is a simple alias of
exSVM.

Usage
exSVM(x, vy, ..., weights = c(0.05, 0.1, 0.5, 0.9, 0.95), clipping = -1,
do.select = TRUE)

svmExpectileRegression(x, y, ..., weights = c(0.05, 0.1, 0.5, 0.9, 0.95),
clipping = -1, do.select = TRUE)

Arguments

X either a formula or the features

y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type 1liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.

weights the expectiles that should be estimated

clipping absolute value where the estimated labels will be clipped. -1 (the default) leads

to an adaptive clipping value, whereas 0 disables clipping.

do.select if TRUE also does the whole selection for this model
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Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

Examples

## Not run:

tt <- ttsplit(quakes)

model <- exSVM(mag~., tt$train, display=1)
result <- test(model, tt$test)

errors(result)[2] ## is the same as
mean(ifelse(result[,2]<tt$test$mag, .1,.9) * (result[,2]-tt$test$mag)*2)

## End(Not run)

getCover Get Cover of partitioned SVM

Description

If you use voronoi=3 or voronoi=4 this retrieves the voronoi centers that have been found.

Usage

getCover(model, task = 1)

Arguments

model the model

task the task between 1 and number of tasks
Value

the indices of the samples in the training data set that were used as Voronoi partition centers.

Note

This is not tested thoroughly so use in production is at your own risk.

Examples

## Not run:

banana <- liquidData('banana-mc')

model <- mcSVM(Y~.,banana$train, voronoi=c(4,500),d=1)
# task 4 is predicting 2 vs 3

cover <- getCover(model, task=4)

centers <- cover$samples
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# we are considering task 4 and hence only show labels 2 and 3:
bananaSub <- banana$train[banana$train$yY %in% c(2,3),]
plot(bananaSub[,-1], col=bananaSub$Y)
points(centers,pch="x",cex=2)

if(require(deldir)){
voronoi <- deldir::deldir(centers$X1,centers$X2, rw=c(range(bananaSub$X1),range(bananaSub$x2)))
plot(voronoi,wlines="tess",add=TRUE, 1lty=1)
text(centers$X1,centers$X2,1:nrow(centers),pos=1)

}

# let us calculate for every sample in this task which cell it belongs to

distances <- as.matrix(dist(model$train_data))

cells <- apply(distances[model$train_labels %in% c(2,3),cover$indices],1,which.min)

# and you can check that the cell sizes are as reported in the training phase for task 4
table(cells)

## End(Not run)

getSolution Retrieve the solution of an SVM

Description

Gives the solution of an SVM that has been trained and selected in an ad-hoc list.

Usage

getSolution(model, task = 1, cell = 1, fold = 1)

Arguments
model the model
task the task between 1 and number of tasks
cell the cell between 1 and number of cells
fold the fold between 1 and number of folds
Details

liquidSVM splits all problems into tasks (e.g. for multiclass classification or if using multiple
weights), then each task is split into cells (maybe only a global one), and every cell then is trained
in one or more folds to yiele a solution. Hence these coordinates have to be specified.

Value

a list with three entries: the offset of the solution (not yet implemented), the indices of the support
vectors in the training data set, and the coefficients of the support vectors
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Note

This is not tested thoroughly so use in production is at your own risk.

Examples

## Not run:

# simple example: regression of sinus curve

x <- seq(0,1,by=.01)

y <= sin(x*10)

a <- lapply(1:5, function(i)getSolution(model <- 1sSVM(x,y,d=1), 1,1,1i))
plot(x,y,type="'1"',ylim=c(-5,5));

for(i in 1:5) lines(coeff~samples, data=al[[il],col=i)

# a more typical example

banana <- liquidData('banana-mc')

model <- mcSVYM(Y~.,banana$train,d=1)

# task 4 is predicting 2 vs 3, there is only cell 1 here
solution <- getSolution(model, task=4,cell=1,fold=1)
supportvecs <- solution$samples

# we are considering task 4 and hence only show labels 2 and 3:
bananaSub <- banana$train[banana$train$Y %in% c(2,3),]
plot(bananaSub[,-1], col=bananaSub$Y)
points(supportvecs,pch="x",cex=2)

## End(Not run)

init.liquidSvM Initialize an SVM object.

Description

Should only be used by experts! This initializes a svm object and allocates in C++ an SVM model
to which it keeps a reference.

Usage

init.liquidSWM(x, y, ...)

## S3 method for class 'formula'
init.liquidSWM(x, vy, ..., d = NULL)

## Default S3 method:

init.liquidSVM(x, y, scenario = NULL,
useCells = NULL, ..., sampleWeights = NULL, grouplIds = NULL,
ids = NULL, d = NULL)
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Arguments

X either a formula or the features

y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1,gpus=1,
etc.

d level of display information

scenario configures the model for a learning scenario: E.g. scenario="1ls"',scenario='mc',scenario="'npl',s
etc. Unlike the specialized functions qtSVM, exSVM,nplSVM etc. this does not
trigger the correct select

useCells if TRUE partitions the problem (equivalent to partition_choice=6)

sampleWeights vector of weights for every sample or NULL (default) [currently has no effect]

grouplds vector of integer group ids for every sample or NULL (default). If not NULL this
will do group-wise folds, see folds_kind="'GROUPED".
ids vector of integer ids for every sample or NULL (default) [currently has no effect]
Details

Since it binds heap memory it has to be released using clean.1liquidSVM which is also performed
at garbage collection.

The training data can either be provided using a formula and a corresponding data.frame or the
features and the labels are given directly.
Value

an object of type svm

Methods (by class)

* formula: Initialize SVM model using a a formula and data

* default: Initialize SVM model using a data frame and a label vector

See Also

svm, predict.1liquidSVM, test.1liquidSVM and clean.liquidSVM

Examples

modelTrees <- init.liquidSVM(Height ~ Girth + Volume, trees[1:20, ]) # least squares
modelIris <- init.liquidSVM(Species ~ ., iris) # multiclass classification
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kern Calculates the kernel matrix.

Description

Calculates the kernel matrix.

Usage

kern(data, gamma = 1, type = c("gaussian.rbf"”, "poisson”),
threads = getOption(”"liquidSVM.default.threads”, 1))

Arguments
data the data set
gamma the gamma-parameter
type kernel type to use: one of "gaussian.rbf","poisson"
threads how many threads to be used
Value

kernel matrix

Examples

## Not run:
kern(trees)
image (kern(trees, 2, "pois"))

## End(Not run)

liquidData Loads or downloads training and testing data

Description

This looks at several locations to find a name. train.csv and name. test.csv. If it does then it
loads or downloads it, parses it, and returns an liquidData-object. The files also can be gzipped

having names name . train.csv.gz and name. test.csv.gz.
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Usage

liquidData(name, factor_cols, header = FALSE, loc = c(".",
"~/liquidData”, system.file("data", package = "liquidSVM"),
"../../../data", "https://www.isa.uni-stuttgart.de/liquidData”),
prob = NULL, testSize = NULL, trainSize = NULL,
stratified = NULL)

ttsplit(data, target = NULL, testProb = 0.2, testSize = NULL,
stratified = NULL)

sample.liquidData(liquidData, prob = 0.2, trainSize = NULL,
testSize = NULL, stratified = NULL)

## S3 method for class 'liquidData'

print(x, ...)
Arguments

name name of the data set. If not given then a list of available names in loc is returned

factor_cols list of column numbers that are factors (or list of header names, if header=TRUE)

header do the data files have headers

loc vector of locations where the data should be searched for

prob probability of sample being put into test set

testSize size of the test set. If stratified, this will only be approximately fulfilled.

trainSize size of the train set. If stratified, this will only be approximately fulfilled.

stratified whether sampling should be done separately in every bin defined by the unique
values of the target column. Also can be index or name of the column in data
that should be used to define bins.

data the given data set

target optional name or index of the target variable. If both this and stratified are
not specified there will be no stratification.

testProb probability of sample being put into test set

liquidData the given liquidData

X the model to print
other arguments to print.default

Value

if name is specified an liquidData object: an environment with $train and $test datasets as well as
$name and optionally $target as name of the target variable. If no name is spacified a character
vector of available names in loc.

See Also

ttsplit
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Examples

banana <- liquidData('banana-mc')

## to get a smaller sample

liquidData('banana-mc',prob=0.2)

## if you disable stratified then there is some variance in the group sizes:
liquidData('banana-mc',prob=0.2, stratified=FALSE)

## Not run:
## to downlad a file from our web directory

liquidData("gisette")

## To get a list of available names:
liquidData()

## End(Not run)

## to produce an liquidData from some dataset
ttsplit(iris)

# the following will be stratified
ttsplit(iris, 'Species')

# specify a testSize:
ttsplit(trees, testSize=10)

## example for sample.liquidData
banana <- liquidData('banana-mc')
sample.liquidData(banana, prob=0.1)
# this is equivalent to
liquidData('banana-mc', prob=0.1)
## example for print

banana <- liquidData("banana-mc")
print(banana)
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liquidSVM-class A Reference Class to represent a liquidSVM model.

Description

A Reference Class to represent a liquidSVM model.

Fields

cookie this is used in C++ to access the model in memory



22 IsSVM

1sSWM Least Squares Regression

Description

This routine performs non-parametric least squares regression using SVMs. The tested estimators
are therefore estimating the conditional means of Y given X. svmRegression is a simple alias of
1sSWVM.

Usage
1sSVM(x, vy, ..., clipping = -1, do.select = TRUE)
svmRegression(x, y, ..., clipping = -1, do.select = TRUE)
Arguments
X either a formula or the features
y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1,gpus=1,
etc.
clipping absolute value where the estimated labels will be clipped. -1 (the default) leads
to an adaptive clipping value, whereas 0 disables clipping.
do.select if TRUE also does the whole selection for this model
Details

This is the default for svm if the labels are not a factor.

Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

Examples

## Not run:

tt <- ttsplit(quakes)

model <- 1sSVM(mag~., tt$train, display=1)
result <- test(model, tt$test)

errors(result) ## is the same as
mean( (tt$test$mag-result)*2 )

## End(Not run)
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mcSVM Multiclass Classification

Description

This routine is intended for both binary and multiclass classification. The binary classification is
treated by an SVM solver for the classical hinge loss, and for the multiclass case, one-verus-all and
all-versus-all reductions to binary classification for the hinge and the least squares loss are provided.
The error of the very first task is the overall classification error. svmMulticlass is a simple alias of
mcSVM

Usage
mcSVM(x, y, ..., predict.prob = FALSE, mc_type = c("AvA_hinge",
"OvA_ls", "OvA_hinge"”, "AvA_ls"), do.select = TRUE)

svmMulticlass(x, y, ..., predict.prob = FALSE, mc_type = c("AvA_hinge",
"OvA_ls", "OvA_hinge", "AvA_ls"), do.select = TRUE)

Arguments
X either a formula or the features
y either the data or the labels corresponding to the features x. It can be a character

in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).

configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.

predict.prob If TRUE then a LS-svm will be trained and the conditional probabilities for the
binary classification problems will be estimated. This also restricts the choices
of mc_type to c("OvA_1s","AvA_1s").

mc_type configures the the multiclass variants for All-vs-All / One-vs-All and with hinge
or least squares loss.

do.select if TRUE also does the whole selection for this model

Details

Please look at the demo-vignette (vignette('demo')) for more examples.

mcSVM is best used with factor-labels. If there are just two levels in the factor, or just two unique
values if it is numeric than a binary classification is performed. Else, by using the parameter
mc_type different combinations of all-vs-all (AvA) and one-vs-all (OvA) and hinge (hinge) and least
squares loss (1s) can be used.

If a test is performed then not only the final decision is returned but also the results of the interme-
diate binary classifications. This is indicated in the column names. If the training labels are given
by a factor then the final decision will be encoded in this factor. If this is the case and AvA_hinge
is used, then also the binary classification problems will receive the corresponding label...
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Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

See Also
Configuration

Examples
## Not run:
model <- mcSVM(Species ~ ., iris)
model <- mcSVM(Species ~ ., iris, mc_type="0vA")
model <- mcSVM(Species ~ ., iris, mc.type="AvA_hi")
model <- mcSVM(Species ~ ., iris, predict.prob=TRUE)

## a worked example can be seen at
vignette(”"demo”,package="1liquidSVM")

## End(Not run)

mlr-liquidSvM liquidSVM functions for mlr

Description

Allow for liquidSVM 1sSVM and mcSVM to be used in the m1r framework.

Usage

makeRLearner.regr.liquidSVM()

trainLearner.regr.liquidSVM(.learner, .task, .subset, .weights = NULL,
partition_choice = 0@, partition_param = -1, ...)

predictLearner.regr.liquidSVM(.learner, .model, .newdata, ...)
makeRLearner.classif.liquidSVM()

trainLearner.classif.liquidSVM(.learner, .task, .subset, .weights = NULL,
partition_choice = @, partition_param = -1, ...)

predictLearner.classif.liquidSVM(.learner, .model, .newdata, ...)
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Arguments
.learner see mlr-Documentation
.task see mir-Documentation
.subset see mlr-Documentation
.weights see mlr-Documentation

partition_choice

the partition choice, see Configuration
partition_param

a further param for partition choice, see Configuration

other parameters, see Configuration
.model the trained mlr-model, see mlr-Documentation

.newdata the test features, see mlr-Documentation

Note

In order that mlr can find our learners liquidSVM has to be loaded using e.g. library(1liquidSVM)
model <-train(...)

Examples

## Not run:
if(require(mlr)){
library(liquidSVM)

## Define a regression task

task <- makeRegrTask(id = "trees"”, data = trees, target = "Volume")
## Define the learner

1rn <- makelLearner("regr.liquidSVM", display=1)

## Train the model use mlr::train to get the correct train function
model <- train(lrn,task)

pred <- predict(model, task=task)

performance(pred)

## Define a classification task
task <- makeClassifTask(id = "iris", data = iris, target = "Species")

## Define the learner

1rn <- makelLearner(”classif.liquidSVM", display=1)
model <- train(lrn,task)

pred <- predict(model, task=task)
performance(pred)

## or for probabilities

1rn <- makelLearner("classif.liquidSVM", display=1, predict.type='prob"')
model <- train(lrn,task)

pred <- predict(model, task=task)

performance(pred)

} # end if(require(mlr))
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## End(Not run)

nplSVM Neyman-Pearson-Learning

Description

This routine provides binary classifiers that satisfy a predefined error rate on one type of error and
that simlutaneously minimize the other type of error. For convenience some points on the ROC
curve around the predefined error rate are returned. nplNPL performs Neyman-Pearson-Learning
for classification.

Usage

nplSVM(x, y, ..., class = 1, constraint = 0.05,
constraint.factors = c(3, 4, 6, 9, 12)/6, do.select = TRUE)

Arguments

X either a formula or the features

y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.

class is the normal class (the other class becomes the alarm class)

constraint gives the false alarm rate which should be achieved

constraint.factors
specifies the factors around constraint

do.select if TRUE also does the whole selection for this model

Details

Please look at the demo-vignette (vignette('demo')) for more examples. The labels should only
have value c(1,-1).

min_weight, max_weight, weight_steps: you might have to define which weighted classification
problems will be considered. The choice is usually a bit tricky. Good luck ...
Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.
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Examples
## Not run:
model <- nplSVM(Y ~ ., 'banana-bc', display=1)

## a worked example can be seen at
vignette(”"demo”,package="1liquidSVM")

## End(Not run)

plotROC Plots the ROC curve for a result or model

Description

This can be used either using rocSVM or 1sSVM

Usage
plotROC(x, correct, posValue = NULL, xlim = 0:1, ylim = @:1,
asp = 1, type = NULL, pch = "x", add = FALSE, ...)
Arguments
X either the result from a test or a model
correct either the true values or testing data for the model
posValue the label marking the positive value. If NULL (default) then the larger value.
x1lim sets better defaults for plot.default
ylim sets better defaults for plot.default
asp sets better defaults for plot.default
type sets better defaults for plot.default
pch sets better defaults for plot.default
add if ‘FALSE* (default) produces a new plot and if “TRUE* adds to existing plot.

gets passed to plot.default

See Also

rocSVM, IsSVM
rocSVM
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Examples

## Not run:
banana <- liquidData('banana-bc')
model <- rocSVM(Y~.,banana$train)

plotROC(model ,banana$test)

# or:

result <- test(model, banana$test)
plotROC(result, banana$test$Y)

model.ls <- 1sSVM(Y~., banana$train)
result <- plotROC(model.ls, banana$test)

## End(Not run)

predict.liquidSVM Predicts labels of new data using the selected SVM.

Description

After training and selection the SVM provides means to compute predictions for new input features.
If you have also labels consider using test.liquidSVM.

Usage
## S3 method for class 'liquidSVM'
predict(object, newdata, ...)
Arguments
object the SVM model as returned by init.liquidSVM
newdata data frame of features to predict. If it has all the explanatory variables of

formula, then the respective subset is taken.

other parameters passed to test.liquidSVM

Details

In the multi-result learning scenarios this returns all the predictions corresponding to the different
quantiles, expectiles, etc. For multi-class classification, if the model was setup with predict. prob=TRUE
Then this will return only the probability columns and not the prediction.

Value

the predicted values of test

See Also

init.liquidSVMand test.liquidSVM
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Examples
## Not run:
## Multiclass classification
modelIris <- svm(Species ~ ., iris)

y <- predict(modellris, iris)

## Least Squares

modelTrees <- svm(Height ~ Girth + Volume, trees)
y <- predict(modelTrees, trees)
plot(trees$Height, y)

## End(Not run)

29

print.liquidSVM Printing an SVM model.

Description

Printing an SVM model.

Usage
## S3 method for class 'liquidSVM'
print(x, ...)
Arguments
X the model to print
other arguments to print.default
Examples
## Not run:
s_iris <- svm(solver='hinge', Species ~ ., iris) # multiclass classification

print(s_iris)

## End(Not run)
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qtSVM Quantile Regression

Description

This routine performs non-parametric and quantile regression using SVMs. The tested estimators
are therefore estimating the conditional tau-quantiles of Y given X. By default, estimators for five
different tau values are computed. svmQuantileRegression is a simple alias of qtSVM.

Usage
qtSYM(x, vy, ..., weights = c(0.05, 0.1, 0.5, 0.9, 0.95), clipping = -1,
do.select = TRUE)

svmQuantileRegression(x, y, ..., weights = c(0.05, 0.1, 0.5, 0.9, 0.95),
clipping = -1, do.select = TRUE)

Arguments
X either a formula or the features
y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.
weights the quantiles that should be estimated
clipping absolute value where the estimated labels will be clipped. -1 (the default) leads
to an adaptive clipping value, whereas 0 disables clipping.
do.select if TRUE also does the whole selection for this model
Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

Examples

## Not run:

tt <- ttsplit(quakes)

model <- qtSVM(mag~., tt$train, display=1)
result <- test(model, tt$test)

errors(result)[2] ## is the same as
mean(ifelse(result[,2]<tt$test$mag, -.1,.9) * (result[,2]-tt$test$mag))

## End(Not run)
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read.liquidSvM Read and Write Solution from and to File

Description

Reads or writes the solution from or to a file. The format of the solutions is the same as used in the
command line version of liquidSVM. In addition also configuration data is written and by default
also the training data. This can be interchanged also with the other bindings.

Usage
read.liquidSVM(filename, ...)
write.liquidSVM(model, filename)

serialize.liquidSVM(model, writeData = TRUE)

unserialize.liquidSVYM(obj, ...)
Arguments
filename the filename to read from/save to. Can be relative to the working directory.

passed to init.liquidSVM

model the model
writeData whether the training data should be serialized in the stream
obj the data to unserialize

Details

The command line version of liquidSVM saves solutions after select in files of the name data. sol
or data.fsol and uses those in the test-phase. read.liquidSVM and write.liquidSVM read and
write the same format at the specified path. If you give a filename using extension .fsol the
training data is written to the file and read from it. On the other hand, if you use the . sol format,
you need to be able to reproduce the same data again once you read the solution. readSolution
creates a new svm object.

Note

This is not tested thoroughly so use in production is at your own risk. Furthermore the serial-
ize/unserialize hooks write temporary files.

See Also

init.liquidSVM, write.liquidSVM
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Examples

## Not run:

banana <- liquidData('banana-bc')

modelOrig <- mcSVM(Y~., banana$train)
write.liquidSVM(modelOrig, "banana-bc.fsol")
write.liquidSVM(modelOrig, "banana-bc.sol")
clean(modelOrig) # delete the SVM object

# now we read it back from the file
modelRead <- read.liquidSVYM("banana-bc.fsol")
# No need to train/select the data!
errors(test(modelRead, banana$test))

# to read the model where no data was saved we have to make sure, we get the same training data:
banana <- liquidData('banana-bc')

# then we can read it

modelDataExternal <- read.liquidSVM("banana-bc.sol”, Y~., banana$train)

result <- test(modelDataExternal, banana$test)

# to serialize an object use:

banana <- liquidData('banana-bc')
modelOrig <- mcSVM(Y~., banana$train)

# we serialize it into a raw vector

obj <- serialize.liquidSVM(modelOrig)
clean(modelOrig) # delete the SVM object

# now we unserialize it from that raw vector
modelUnserialized <- unserialize.liquidSVM(obj)

errors(test(modelUnserialized, banana$test))

## End(Not run)

reg-1d reg-1d.train and reg-1d. test

Description

Generated data set having a continuous Y variable and a one-dimensional X variable.

Details

Both the train and the test set have 2000 samples. They were generated by the authors and their
collaborators.



rocSVM 33

rocSVM™ Receiver Operating Characteristic curve (ROC curve)

Description

This routine provides several points on the ROC curve by solving multiple weighted binary classi-
fication problems. It is only suitable to binary classification data.

Usage
rocSVM(x, vy, ..., weight_steps = 9, do.select = TRUE)
Arguments
X either a formula or the features
y either the data or the labels corresponding to the features x. It can be a character

in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).

configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.

weight_steps indicates how many weights between min_weight and max_weight will be used

do.select if TRUE also does the whole selection for this model

Details

Please look at the demo-vignette (vignette('demo')) for more examples. The labels should only
have value c(1,-1).

min_weight, max_weight, weight_steps: you might have to define which weighted classification
problems will be considered. The choice is usually a bit tricky. Good luck ...

Value

an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

See Also

plotROC
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Examples
## Not run:
banana <- liquidData('banana-bc')
model <- rocSVM(Y ~ ., banana$train, display=1)

plotROC(model,bananas$test)

## a worked example can be seen at
vignette(”"demo”,package="1liquidSVM")

## End(Not run)

selectSVMs Selects the best hyper-parameters of all the trained SVMs.

Description

Should only be used by experts! This selects for every task and cell the best hyper-parameter based
on the validation errors in the folds. This is saved and will afterwards be used in the evaluation of
the decision functions.

Usage

selectSVMs(model, command.args = NULL, ..., d = NULL,
warn.suboptimal = getOption("liquidSVM.warn.suboptimal”, TRUE))

Arguments

model the svm-model

command. args further arguments aranged in a list, corresponding to the arguments of the com-
mand line interface to svm-select, e.g. list(d=2,R=0) is equivalent to svm-select
-d 2 -R 0. See command-args for details.

parameters passed to selection phase e.g. retrain_method="select_on_entire_train_set”

d level of display information

warn. suboptimal
if TRUE this will issue a warning if the boundary of the hyper-parameter grid
was hit too many times. The default can be changed by setting options(liquidSVM.warn. suboptimal=F

Details

Some learning scenarios have to perform several selection runs: for instance in quantile regression
for every quantile. This is done by specifying weight_number ranging from 1 to the number of
quantiles.

See command-args for details.
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Value

a table giving training and validation errors and more internal statistic for all the SVMs that were
selected. This is also recorded in model$select_errors.

Documentation for command-line parameters of svi-select

The following parameters can be used as well:

* h=[<level>]
Displays all help messages.

Meaning of specific values:

<level> = 0 => short help messages
<level> = 1 => detailed help messages
Allowed values:

<level>: O or 1
Default values:

<level>=0

¢ N=c(<class>,<constraint>)
Replaces the best validation error in the search for the best hyper-parameter

combination by an NPL criterion, in which the best detection rate is searched
for given the false alarm constraint <constraint> on class <class>.
Allowed values:

<class>: -1 or1
<constraint>: float between 0.0 and 1.0
Default values:

Option is deactivated.

e R=<method>
Selects the method that produces decision functions from the different folds.

Meaning of specific values:

<method> = 0 => select for best average validation error
<method> = 1 => on each fold select for best validation error
Allowed values:

<method>: integer between 0 and 1
Default values:

<method> =1
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e W=<number>
Restrict the search for the best hyper-parameters to weights with the number

<number>.
Meaning of specific values:

<number> = 0 => all weights are considered.
Default values:

<number> =0

See Also

command-args, svm, init.liquidSVM, selectSVMs, predict.liquidSVM, test.liquidSVM and
clean.liquidSwM

setDisplay Set display info mode that controls how much information is displayed
by liquidSVM C++ routines. Usually you will use display=d in
svm(...) etc.

Description
Set display info mode that controls how much information is displayed by liquidSVM C++ routines.
Usually you will use display=din svm(...) etc.

Usage

setDisplay(d = 1)

Arguments
d the display information
svm Convenience function to initialize, train, select, and optionally test an
SVM.
Description

The model is inited using the features and labels provided and training and selection is performed.
If the labels are given as a factor classification is performed else least squares regression. If testing
data is provided then this is used to calculate predictions and if test labels are provided also the test
error and both are saved in $last_result of the returned svm object.
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Usage

svm(x, y, ..., do.select = TRUE, testdata = NULL,
testdata_labels = NULL, scenario = NULL, d = NULL, scale = TRUE,
predict.prob = FALSE)

Arguments

X either a formula or the features

y either the data or the labels corresponding to the features x. It can be a character
in which case the data is loaded using liquidData. If it is of type liquidData
then after training and selection the model is tested using the testing data
(y$test).
configuration parameters, see Configuration. Can be threads=2,display=1, gpus=1,
etc.

do.select can be set to a list to args to be passed to the select phase

testdata if supplied then also testing is performed. If this is NULL but y is of type

liquidData then y$test is used.
testdata_labels
the labels used if testing is also perfomed.
scenario configures the model for a learning scenario: E.g. scenario="1ls"',scenario='mc',scenario='npl’',s

etc. Unlike the specialized functions qtSVM, exSVM,npl1SVM etc. this does not
trigger the correct select

d level of display information
scale if TRUE scales the features in the internal representation to values between 0 and
1.

predict.prob If TRUE then a LS-svm will be trained and the conditional probabilities for the
binary classification problems will be estimated. This also restricts the choices
of mc_type to c("OvA_1s","AvA_1s").
Details

The training data can either be provided using a formula and a corresponding data.frame or the
features and the labels are given directly.

svm has one more difference to 1sSVM and mcSVM because it uses scale=TRUE by default and the
others do not.

Value
an object of type svm. Depending on the usage this object has also $train_errors, $select_errors,
and $last_result properties.

See Also

1sSVM, mcSVM, init.liquidSVM, trainSVMs, selectSVMs
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Examples

# since Species is a factor the following performs multiclass classification
modellIris <- svm(Species ~ ., iris)

# equivalently

modellIris <- svm(iris[,1:4], iris$Species)

# since Height is numeric the following performs least-squares regression
modelTrees <- svm(Height ~ Girth + Volume, trees)

# equivalently

modelTrees <- svm(trees[,c(1,3)],trees$Height)

test.liquidSWM Tests new data using the selected SVM.

Description

After training and selection the SVM provides means to evaluate labels for new input features. If
you do not have labels consider using predict.liquidSVM. The errors for all tasks and cells are
returned attached to the result (see errors).

Usage

## S3 method for class 'liquidSVM'
test(model, newdata, labels = NULL,

command.args = NULL, ..., d = NULL)
Arguments
model the SVM model as returned by init.1liquidSVM
newdata data frame of features to predict. If it has all the explanatory variables of

formula, then the respective subset is taken. NAs will be removed.

labels the known labels to test against. If NULL then they are retrieved from newdata
using the original formula.

command.args  further arguments aranged in a list, corresponding to the arguments of the com-
mand line interface to svm-select, e.g. list(d=2,R=0) is equivalent to svm-select
-d 2 -R 0. See command-args for details.

other configuration parameters passed to testing phase

d level of display information

Details

If the SVM has multiple tasks the result will have corresponding columns. For mcSVM the first
column gives the global vote and the other columns give the result for the corresponding binary
classification problem indicated by the column name.

For convenience the latest result is always saved in model$last_result.
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Value

predictions for all tasks together with errors (see errors). This is also recorded in model$last_result.

Documentation for command-line parameters of svin-test

The following parameters can be used as well:

¢ GPU=c(<use_gpus>, [<GPU_offset>])
Flag controlling whether the GPU support is used. If <use_gpus> = 1, then each

CPU thread gets a thread on a GPU. In the case of multiple GPUs, these threads
are uniformly distributed among the available GPUs. The optional <GPU_offset>
is added to the CPU thread number before the GPU is added before distributing
the threads to the GPUs. This makes it possible to avoid that two or more
independent processes use the same GPU, if more than one GPU is available.
Allowed values:

<use_gpus>: bool
<use_offset>: non-negative integer.
Default values:

<gpus>=0
<gpu_offset>=0
Unfortunately, this option is not activated for the binaries you are currently

using. Install CUDA and recompile to activate this option.

* h=[<level>]
Displays all help messages.

Meaning of specific values:

<level> = 0 => short help messages
<level> = 1 => detailed help messages
Allowed values:

<level>: O or 1
Default values:

<level>=0

e L=c(<loss>, [<neg_weight>,<pos_weight>])
Sets the loss that is used to compute empirical errors. The optional weights can

only be set, if <loss> specifies a loss that has weights.
Meaning of specific values:

<loss> = 0 => binary classification loss
<loss> =1 => multiclass class
<loss> =2 => least squares loss
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<loss> = 3 => weighted least squares loss
<loss> = 6 => your own template loss
Allowed values:

<loss>: integer between 0 and 2
<neg_weight>: float > 0.0
<pos_weight>: float > 0.0
Default values:

<loss>=0
<neg_weight>= 1.0
<pos_weight>=1.0

T=c(<threads>, [<thread_id_offset>])
Sets the number of threads that are going to be used. Each thread is

assigned to a logical processor on the system, so that the number of
allowed threads is bounded by the number of logical processors. On
systems with activated hyperthreading each physical core runs one thread,
if <threads> does not exceed the number of physical cores. Since hyper-
threads on the same core share resources, using more threads than cores
does usually not increase the performance significantly, and may even
decrease it. The optional <thread_id_offset> is added before distributing
the threads to the cores. This makes it possible to avoid that two or more
independent processes use the same physical cores.

Example: To run 2 processes with 3 threads each on a 6-core system call
the first process with -T 3 0 and the second one with -T 3 3 .

Meaning of specific values:

<threads> = 0 => 4 threads are used (all physical cores run one thread)
<threads> = -1 => 3 threads are used (all but one of the physical cores
run one thread)

Allowed values:

<threads>: integer between -1 and 4
<thread_id_offset>: integer between O and 4
Default values:

<threads>=0
<thread_id_offset> =0

v=c(<weighted>,<scenario>, [<npl_class>])

Sets the weighted vote method to combine decision functions from different

folds. If <weighted> = 1, then weights are computed with the help of the
validation error, otherwise, equal weights are used. In the classification
scenario, the decision function values are first transformed to -1 and +1,
before a weighted vote is performed, in the regression scenario, the bare

test.liquidSVM

function values are used in the vote. In the weighted NPL scenario, the weights

are computed according to the validation error on the samples with label
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<npl_class>, the rest is like in the classification scenario.
<npl_class> can only be set for the NPL scenario.
Meaning of specific values:

<scenario> = 0 => classification
<scenario> = 1 => regression
<scenario> = 2 => NPL
Allowed values:

<weighted>: 0 or 1

<scenario>: integer between 0 and 2
<npl_class>: -1 or 1

Default values:

<weighted> =1
<scenario>=0
<npl_class> =1

e o=<display_roc_style>
Sets a flag that decides, wheather classification errors are displayed by

true positive and false positives.
Allowed values:

<display_roc_style>: 0 or 1
Default values:

<display_roc_style>: Depends on option -v

See Also

command-args, init.liquidSVM, errors

Examples

modelTrees <- svm(Height ~ Girth + Volume, trees[1:10, 1) # least squares
result <- test(modelTrees, trees[11:31, 1, trees$Height[11:31])
errors(result)

trainSvMs Trains an SVM object.

Description

Should only be used by experts! This uses the liquidSVM C++ implementation to solve all SVMs
on the hyper-parameter grid.
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Usage

trainSVMs(model, ..., solver = c("kernel.rule”, "1s", "hinge",
"quantile”), command.args = NULL, do.select = FALSE,
useCells = FALSE, d = NULL)

Arguments
model the svm-model
configuration parameters set before training
solver solver to use: one of "kernel.rule","Is","hinge","quantile","expectile"

command.args  further arguments aranged in a list, corresponding to the arguments of the com-
mand line interface to svm-train, e.g. list(d=2,W=2) is equivalent to svm-train
-d 2 -W 2. See command-args for details.

do.select if not FALSE then the model is selected. This parameter can be used as a list of
named arguments to be passed to the select phase
useCells if TRUE partitions the problem (equivalent to partition_choice=6)
d level of display information
Details

SVMs are solved for all tasks/cells/folds and entries in the hyper-parameter grid and can afterwards
be selected using selectSVMs. A model even can be retrained using other parameters, reusing the
training data. The training phase is usually the most time-consuming phase, and therefore for bigger
problems it is recommended to use display=1 to get some progress information.

See command-args for details.

Value

a table giving training and validation errors and more internal statistic for every SVM that was
trained. This is also recorded in model$train_errors.

Documentation for command-line parameters of svm-train

The following parameters can be used as well:

e f=c(<kind>,<number>,[<train_fraction>],[<neg_fraction>])
Selects the fold generation method and the number of folds. If <train_fraction>

< 1.0, then the folds for training are generated from a subset with the
specified size and the remaining samples are used for validation.

Meaning of specific values:

<kind> = 1 => each fold is a contiguous block

<kind> = 2 => alternating fold assignmend

<kind> = 3 => random

<kind> = 4 => stratified random

<kind> = 5 => random respecting group information of samples

<kind> = 6 => random subset (<train_fraction> and <neg_fraction> required)
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Allowed values:

<kind>: integer between 1 and 6
<number>: integer >= 1
<train_fraction>: float > 0.0 and <= 1.0
<neg_fraction>: float > 0.0 and < 1.0
Default values:

<kind> =3
<number> =5
<train_fraction> = 1.00

g=c(<size>,<min_gamma>,<max_gamma>, [<scale>])

g=<gamma_list>
The first variant sets the size <size> of the gamma grid and its endpoints

<min_gamma> and <max_gamma>.
The second variant uses <gamma_list> for the gamma grid.
Meaning of specific values:

<scale> Flag indicating whether <min_gamma> and <max_gamma> are scaled
based on the sample size, the dimension, and the diameter.
Allowed values:

<size>: integer >= 1
<min_gamma>: float > 0.0
<max_gamma>: float > 0.0
<scale>: bool

Default values:

<size> =10
<min_gamma> = 0.200
<max_gamma> = 5.000
<scale> =1

GPU=c(<use_gpus>, [<GPU_offset>])
Flag controlling whether the GPU support is used. If <use_gpus> = 1, then each

CPU thread gets a thread on a GPU. In the case of multiple GPUs, these threads
are uniformly distributed among the available GPUs. The optional <GPU_offset>
is added to the CPU thread number before the GPU is added before distributing
the threads to the GPUs. This makes it possible to avoid that two or more
independent processes use the same GPU, if more than one GPU is available.
Allowed values:

<use_gpus>: bool
<use_offset>: non-negative integer.
Default values:

<gpus>=0

43
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<gpu_offset>=0
Unfortunately, this option is not activated for the binaries you are currently

using. Install CUDA and recompile to activate this option.

h=[<level>]
Displays all help messages.

Meaning of specific values:

<level> = 0 => short help messages
<level> = 1 => detailed help messages
Allowed values:

<level>: Oor 1
Default values:

<level>=0

i=c(<cold>,<warm>)
Selects the cold and warm start initialization methods of the solver. In

general, this option should only be used in particular situations such as the
implementation and testing of a new solver or when using the kernel cache.
Meaning of specific values:

For values between 0 and 6, both <cold> and <warm> have the same meaning as
in Steinwart et al, *Training SVMs without offset’, JMLR 2011. These are:

0 Sets all coefficients to zero.

1 Sets all coefficients to C.

2 Uses the coefficients of the previous solution.

3 Multiplies all coefficients by C_new/C_old.

4 Multiplies all unbounded SVs by C_new/C_old.

5 Multiplies all coefficients by C_old/C_new.

6 Multiplies all unbounded SVs by C_old/C_new.

Allowed values:

Depends on the solver, but the range of <cold> is always a subset of the range
of <warm>.
Default values:

Depending on the solver, the (hopefully) most efficient method is chosen.

k=c(<type>, [aux-file], [<Tr_mm_Pr>,[<size_P>]1,<Tr_mm>, [<size>],<Va_mm_Pr>,6<Va_mm>])
Selects the type of kernel and optionally the memory model for the kernel matrices.

Meaning of specific values:

<type> = 0 => Gaussian RBF
<type>= 1 => Poisson
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<type> = 3 => Experimental hierarchical Gauss kernel

<aux_file> => Name of the file that contains additional information for the
hierarchical Gauss kernel. Only this kernel type requires this option.
<X_mm_Y> = 0 => not contiguously stored matrix

<X_mm_Y> = 1 => contiguously stored matrix

<X_mm_Y> = 2 => cached matrix

<X_mm_Y> = 3 => no matrix stored

<size_Y> => size of kernel cache in MB

Here, X=Tr stands for the training matrix and X=Va for the validation matrix. In
both cases, Y=Pr stands for the pre-kernel matrix, which stores the distances
between the samples. If <Tr_mm_Pr> is set, then the other three flags <X_mm_Y>
need to be set, too. The values <sizeY> must only be set if a cache is chosen.
NOTICE: Not all possible combinations are allowed.

Allowed values:

<type>: integer between 0 and 3
<X_mm_Y>: integer between 0 and 3
<size_Y>: integer not smaller than 1
Default values:

<type>=10

<X _mm_Y>=1
<size_Y>=1024
<size> =512

e 1=c(<size>,<min_lambda>, <max_lambda>, [<scale>])

e 1=c(<lambda_list>,[<interpret_as_C>])
The first variant sets the size <size> of the lambda grid and its endpoints

<min_lambda> and <max_lambda>.
The second variant uses <lambda_list>, after ordering, for the lambda grid.
Meaning of specific values:

<scale> Flag indicating whether <min_lambda> is internally
devided by the average number of samples per fold.
<interpret_as_C> Flag indicating whether the lambda list should be
interpreted as a list of C values

Allowed values:

<size>: integer >= 1
<min_lambda>: float > 0.0
<max_lambda>: float > 0.0
<scale>: bool
<interpret_as_C>: bool
Default values:

<size> =10
<min_lambda> = 0.001
<max_lambda> = 0.100
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<scale> =1
<scale>=0

L=c(<loss>, [<clipp>], [<neg_weight>,<pos_weight>])
Sets the loss that is used to compute empirical errors. The optional <clipp> value

specifies where the predictions are clipped during validation. The optional weights
can only be set if <loss> specifies a loss that has weights.
Meaning of specific values:

<loss> = 0 => binary classification loss

<loss> =2 => least squares loss

<loss> = 3 => weighted least squares loss

<loss> = 4 => pinball loss

<loss> =5 => hinge loss

<loss> = 6 => your own template loss

<clipp> = -1.0 => clipp at smallest possible value (depends on labels)
<clipp> = 0.0 => no clipping is applied

Allowed values:

<loss>: values listed above
<neg_weight>: float >=-1.0
<neg_weight>: float > 0.0
<pos_weight>: float > 0.0
Default values:

<loss> = native loss of solver chosen by option -S
<clipp> =-1.000

<neg_weight> = <weight1> set by option -W
<pos_weight> = <weight2> set by option -W

P=c(1,[<size>])

P=c(2, [<number>])

P=c(3, [<radius>], [<subset_size>])

P=c(4,[<size>], [<reduce>], [<subset_size>])
P=c(5,[<size>],[<ignore_fraction>], [<subset_size>], [<covers>])

P=c(6,[<size>], [<reduce>],[<subset_size>], [<covers>], [<shrink_factor>1)
[<max_width>] [<max_depth>]
Selects the working set partition method.

Meaning of specific values:

<type> = 0 => do not split the working sets
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<type> = 1 => split the working sets in random chunks using maximum <size> of
each chunk.

Default values are:

<size> = 2000

<type> = 2 => split the working sets in random chunks using <number> of

chunks.
Default values are:
<size> =10

<type> = 3 => split the working sets into Voronoi subsets of radius <radius>.
If [subset_size] is set, a subset of this size is used to faster

create the Voronoi partition. If subset_size == 0, the entire

data set is used, otherwise, the radius is only approximately

ensured.

Default values are:

<radius> = 1.000

<subset_size> =0

<type> = 4 => split the working sets into Voronoi subsets of maximal size
<size>. The optional flag <reduce> controls whether a heuristic

to reduce the number of cells is used. If [subset_size] is set,

a subset of this size is used to faster create the Voronoi

partition. If subset_size == 0, the entire data set is used,

otherwise, the maximal size is only approximately ensured.

Default values are:

<size> = 2000

<reduce> =1

<subset_size> = 50000

<type> =5 => devide the working sets into overlapping regions of maximal
size <size>. The process of creating regions is stopped when

<size> * <ignore_{fraction> samples have not been assigned to

aregion. These samples will then be assigned to the closest

region. If <subset_size> is set, a subset of this size is

used to find the regions. If subset_size == 0, the entire

data set is used. Finally, <covers> controls the number of

times the process of finding regions is repeated.

Default values are:.

<size> = 2000

<ignore_fraction>= 0.5

<subset_size> = 50000

<covers>= 1

<type> = 6 => split the working sets into Voronoi subsets of maximal size
<size>. The optional flag <reduce> controls whether a heuristic

to reduce the number of cells is used. If [subset_size] is set,

a subset of this size is used to faster create the Voronoi

partition. If subset_size == 0, the entire data set is used,

otherwise, the maximal size is only approximately ensured.

Unlike for <type> = 4, the centers for the Voronoi partition are

found by a recursive tree approach, which in many cases may be

faster. <shrink_factor> describes by which factor the number of
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samples should at least be decreased. The recursion is stoppend
when either <max_width> * <size> is greater than the current
working subset or the <max_tree_depth> is reached. For both
parameters, a value of 0 means that the corresponding condition
above is ignored.

Default values (so far, they are only a brave guess) are:

<size> = 2000

<reduce> =1

<subset_size> = 50000

<shrink_factor> = 2.0000

<max_width> =20

<max_tree_depth> =4

Allowed values:

<type>: integer between 0 and 6
<size>: positive integer

<number>: positive integer
<radius>: positive real
<subset_size>: non-negative integer
<reduce>: bool

<covers>: positive integer
<shrink_factor>: real > 1.0
<max_width>: non-negative integer
<max_tree_depth>: non-negative integer
Default values:

<type>=10

r=<seed>
Initializes the random number generator with <seed>.

Meaning of specific values:

<seed> = -1 => a random seed based on the internal timer is used
Allowed values:

<seed>: integer between -1 and 2147483647
Default values:

<seed> = -1

s=c(<clipp>, [<stop_eps>])

Sets the value at which the loss is clipped in the solver to <value>. The

optional parameter <stop_eps> sets the threshold in the stopping criterion

of the solver.
Meaning of specific values:

<clipp> = -1.0 => Depending on the solver type clipp either at the
smallest possible value (depends on labels), or

trainSVMs
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do not clipp.
<clipp> = 0.0 => no clipping is applied
Allowed values:

<clipp>: -1.0 or float >=0.0.

In addition, if <clipp> > 0.0, then <clipp> must not be smaller
than the largest absolute value of the samples.

<stop_eps>: float > 0.0

Default values:

<clipp>=-1.0
<stop_eps> = 0.0010

* S=c(<solver>,[<NNs>])
Selects the SVM solver <solver> and the number <NNs> of nearest neighbors used

in the working set selection strategy (2D-solvers only).
Meaning of specific values:

<solver> = 0 => kernel rule for classification

<solver> = 1 => LS-SVM with 2D-solver

<solver> = 2 => HINGE-SVM with 2D-solver

<solver> = 3 => QUANTILE-SVM with 2D-solver

<solver> = 4 => EXPECTILE-SVM with 2D-solver

<solver> =5 => Your SVM solver implemented in template_svm.*
Allowed values:

<solver>: integer between 0 and 5
<NNs>: integer between 0 and 100
Default values:

<solver> =2
<NNs> = depends on the solver

e T=c(<threads>, [<thread_id_offset>])
Sets the number of threads that are going to be used. Each thread is

assigned to a logical processor on the system, so that the number of
allowed threads is bounded by the number of logical processors. On
systems with activated hyperthreading each physical core runs one thread,
if <threads> does not exceed the number of physical cores. Since hyper-
threads on the same core share resources, using more threads than cores
does usually not increase the performance significantly, and may even
decrease it. The optional <thread_id_offset> is added before distributing
the threads to the cores. This makes it possible to avoid that two or more
independent processes use the same physical cores.

Example: To run 2 processes with 3 threads each on a 6-core system call
the first process with -T 3 0 and the second one with -T 3 3 .

Meaning of specific values:
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<threads> = 0 => 4 threads are used (all physical cores run one thread)
<threads> = -1 => 3 threads are used (all but one of the physical cores
run one thread)

Allowed values:

<threads>: integer between -1 and 4
<thread_id_offset>: integer between O and 4
Default values:

<threads>=0
<thread_id_offset> =0

w=c(<neg_weight>,<pos_weight>)

w=c(<min_weight>,<max_weight>,<size>, [<geometric>,<swap>])

w=c(<weight_list>, [<swap>])
Sets values for the weights, solvers should be trained with. For solvers

that do not have weights this option is ignored.

The first variants sets a pair of values.

The second variant computes a sequence of weights of length <size>.
The third variant takes the list of weights.

Meaning of specific values:

size> = 1 => <weight1> is the negative weight and <weight2> is the
positive weight.

<size> > | => <size> many pairs are computed, where the positive
weights are between <min_weight> and <max_weight> and

the negative weights are 1 - pos_weight.

<geometric> Flag indicating whether the intermediate positive
weights are geometrically or arithmetically distributed.

<swap> Flag indicating whether the role of the positive and
negative weights are interchanged.

Allowed values:

<... weight ...>: float > 0.0 and < 1.0
<size>: integer > 0

<geometric>: bool

<swap>: bool

Default values:

<weight]1>=1.0
<weight2>=1.0
<size>=1
<geometric> =0
<swap>=0
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e W=<type>
Selects the working set selection method.

Meaning of specific values:

<type> = 0 => take the entire data set

<type> = 1 => multiclass ’all versus all’

<type> = 2 => multiclass "one versus all’

<type> = 3 => bootstrap with <number> resamples of size <size>
Allowed values:

<type>: integer between 0 and 3
Default values:

<type>=10

See Also

command-args, svm, init.liquidSVM, selectSVMs, predict.liquidSVM, test.liquidSVM and
clean.liquidSwM

write.liquidData Write Smldata

Description

Write liquidData in such a way that it is understood by liquidSVM command line utilities.

Usage

write.liquidData(data, location = ".", label = 1, name = NULL,
type = "csv")

Arguments
data the liquidData to write
location the location to write name. train.csv and name.test.csv
label the column with this index or this name will become the label column, and be
written as the first column.
name the name of the file. If NULL (default) then takes the data$name

type the format of output. At the moment only "csv” is supported.
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