Package ‘linear.tools’

July 6, 2016

Type Package

Title Manipulate Formulas and Evaluate Marginal Effects
Version 1.3.0

Author Fan Yang

Maintainer Fan Yang <yfnol@msn.com>

Description Provides tools to manipulate formulas, such as getting x, y or con-
trasts from the model/formula, and functions to evaluate and check the marginal effects of a lin-
ear model.

License GPL-3

LazyData True

RoxygenNote 5.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports ggplot2, plyr, pryr, stringr, stats, utils, magrittr, scales
NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-06 09:50:47

R topics documented:

deleting_wrongeffect 2
effect e e e e 4
Enter_to_Continue 0 i e e e e e 7
focusing_var_coeff 8
gL CONLrast o it e e e e e e e e e e e e e 9
get_model_pair e e 10
get_model_with_coeff 11
get_model_with_raw L L 12
get_valid_rows 12
GELLX o i e e e e e e e 13
get_x_all . ..o 15

2 deleting_wrongeffect

BELY o e e e e e e e e e 16
paste_formula e 17
SEPWISEZ L e e 18
Index 21

deleting_wrongeffect check monotonicity of marginal impacts and re-estimate the model.

Description

check monotonicity of marginal impacts and re-estimate the model (optional) until we get correct
marginal impacts.

Usage

deleting_wrongeffect(model, focus_var_raw = NULL, focus_var_model = NULL,
Monoton_to_Match = 1, family = NULL, re_estimate = TRUE, data,

STOP = FALSE, PRINT = TRUE, PLOT = TRUE, ...)
Arguments
model, an output of Im or glm

focus_var_raw see effects.

focus_var_model
see effects.

Monoton_to_Match
1 or -1. 1 means you want monotonic increasing as the correct marginal effect,
-1 means negative

family family of glm, for example, can be gaussian "(link = ‘'identity')" or
"(link = 'logit')". If NULL, we will use the default family of the model

re_estimate a boolean with default as TRUE. This is to decide if the marginal impacts are
found to be incorrect, then whether to delete a model var that potentially cause
the wrong marginal impacts and re-estimate the model

data optional, a new dataset to show the marginal impacts and re-estimate the model.
If NULL, then use the data used in model itself.

STOP a boolean. When find a model with incorrect marginal impacts, whether to stop
there and wait to continue (call the Enter_to_Continue)

PRINT a boolean, whether to print messages and to plot.
PLOT a boolean, whether to plot.

additional arguments going to effect

deleting_wrongeftect 3

Details

This function first calls function effects and then checks the monotonicity of marginal impacts. If
the direction of marginal impacts are incorrect, it can delete a model var that potentially causes the
wrong marginal impacts and then re-estimate the model. We will keep doing this until the correct
marginal impacts are found

Details of evaluating the marginal impacts effects

Value

a model (1m or glm).

* If re_estimate == TRUE, then return will be an re-estimated model with correct marginal
impacts given we can find one.

 If re_estimate == FALSE, original model will be returned.

Examples

#H#

set.seed(413)

traing_data = ggplot2::diamonds[runif(nrow(ggplot2::diamonds))<0.05,]
nrow(traing_data)

diamond_Im3 = 1lm(formula = price ~ carat + I(carat”*2) + I(carat”3) + cut +
I(carat * depth) , data = traing_data)

test = deleting_wrongeffect(model = diamond_1lm3,
focus_var_raw = 'carat',
focus_var_model = c("I(carat”3)"”,"I(caratxdepth)”,
"I(carat”2)”,"I(carat)"),
focus_value = list(carat=seq(0.5,6,0.1)),
data = traing_data,
PRINT = TRUE,STOP = FALSE,
Reverse = FALSE)

two focus on vars
test =
deleting_wrongeffect(model = diamond_1m3 ,
focus_var_raw = c('carat',"cut"),
focus_var_model = c("I(carat*depth)”,"I(carat*3)"),
focus_value = list(carat=seq(0.5,6,0.1)),
data = traing_data,PRINT = TRUE,STOP =FALSE)

diamond_1lm3 = 1lm(formula = price ~ cut + depth +
I(carat * depth) , data = ggplot2::diamonds)
negative signs
deleting_wrongeffect(model = diamond_1lm3 ,
focus_var_raw = c('depth',"cut"),
focus_var_model = c("depth”),Monoton_to_Match = -1,

4 effect

data = ggplot2::diamonds,PRINT = TRUE,STOP =FALSE)

wrong variables names

deleting_wrongeffect(diamond_1m3, focus_var_raw = 'carat',
focus_var_model = c("I(cara79t*3)"),
data = ggplot2::diamonds,PRINT = TRUE)

deleting_wrongeffect(diamond_1m3, focus_var_raw = 'carat890',
focus_var_model = c("I(carat”*3)"),
data = ggplot2::diamonds, PRINT = TRUE)

effect evaluate the marginal effects of the selected raw variable on the de-
pendent.

Description

evaluate the marginal effects of the selected raw variable on the dependent.

Usage

effect(model, data = NULL, focus_var_raw, focus_var_coeff = NULL,
focus_var_model = NULL, focus_value = NULL, nonfocus_value = NULL,
transform_y = NULL, PRINT = TRUE, PLOT = TRUE, Reverse = FALSE,
bar_plot = NULL, intolerance_on_wrong_names = FALSE)

Arguments
model an output of Im or glm
data NULL (default) or a data.frame, a new dataset to evaluate the categorical vari-

ables. If NULL, then use the data used in model itself.

focus_var_raw NULL or a character vector with maximum length of 2, in which you can choose
raw vars you want to focus. See get_x for the meaning of raw var.

e If there is only one raw var in the vector focus_var_raw, then we will
check the marginal impact of that raw var.

e If there is only two raw vars in the vector focus_var_raw, then we will
check the marginal impact of the FIRST raw var (focus_var_raw[1]) un-
der different values of SECOND raw var (focus_var_raw[2]).

See the example code for details.

focus_var_coeff
NULL or a character vector. Must be coeff vars containing focus_var_raw[1].
See get_x for the meaning of coeff var. After you set up the focus_var_raw,
you can also choose to focus on effects of focus_var_raw[1] through only cer-
tain coeff vars, then all other unspecified coeff vars related focus_var_raw[1]
will have coeff 0 by default, focus_var_coeff is null, which means we will check
effect of focus_var_raw[1] on all coeff vars.
See the example code for details.

effect

focus_var_model

focus_value

nonfocus_value

transform_y

PRINT
PLOT
Reverse

bar_plot

NULL or a character vector. Must be model vars containing focus_var_raw[1].
See get_x for the meaning of model var. Similar use as argument focus_var_coeff,
except here you can specify which model vars you want to focus.

See the example code for details.

NULL or a list; each element of the list must have names in focus_var_raw. By

default, we will check marginal effects of focus_var_raw[1] through seq(@.05,0.95,by = 0.05)
quantiles of its values in the modelling data. But you can also specify the values

you want to check here. See the sample code.

NULL or a list; each element of the list must have names in non-focused raw vars
(not show up in focus_var_raw) The meaning of non-focus var is: When we
check the marginal effect of focus var on dependent, we let the focus var vary
and fix the non-focus vars. By default, for non-focused raw vars, we assume
their values are fixed at mean (if numeric) or mode (if factor or character) in the
modelling data. But you can also specify the fixed values you want. See the
sample code.

NULL or a function, used only for plot. Used as a function to recalculate y (a
function on y (ex. log(y))).

a boolean, whether to print messages AND to plot.
a bookean, whether to plot
a boolean, whether to use reverse order in x-axis when plot. Default is FALSE.

NULL or a boolean, choose bar plot or line plot. If NULL, we will choose
automatically.

intolerance_on_wrong_names

Details

a boolean. If a name is wrong, either in focus_var_raw, focus_var_model, fo-
cus_var_coeff, focus_value or nonfocus_value, whether we delete the wrong
names and go on (default), or report an error.

This function will evaluate marginal impacts and show the monotonicity of marginal impacts of a
selected variable on the dependent.

Note that the marginal impacts is not simply the sign of coeff: In a model like y~ x + x*2 + p + q,
marginal impacts of x on y requires an evaluation of both x and x*2 at the same time.

Here the focus_var_rawis x, focus_var_coeff are x and x*2 nonfocus_value is p and q

Also the monotonicity of marginal impacts of x will be different for different range of x’s values.

Another interesting case is when x is interacting with other variables, then its marginal impacts will
also be dependent on the values of those interacted variables.

Level of marginal impacts: To make the level of marginal impacts of x realistic, by default we fixed
all other right-hand-side variables fixed at their mean (numeric) or mode (character or factor). You
can also provide fixed values for them. Also by default we let the interested variable (focused raw
var) x to vary between its seq(0.05,0.95,by = 0.05) quantiles.

This function will take care those cases above and make evaluating marginal impacts easier.

6 effect

Value
a list:
» Focus_values: show the values of focus_var_raw we used to evaluate the marginal effects.
* data_and_predict: full dataset used to evaluate the marginal effects.
e summmary_glm: a summary of Im or glm model.

* Monoton_Increase: whether the marginal impact is Monotonic Increase.

* Monoton_Decrease: whether the marginal impact is Monotonic Decrease.

Examples

##___ unit test

One Dimension: the most basic case

set.seed(413)
traing_data = ggplot2::diamonds[runif(nrow(ggplot2::diamonds))<0.05,]
nrow(traing_data)

diamond_1Im3 = 1lm(price~ cut + carat + I(carat”2) +
I(carat*3) + I(carat * depth) + cut:depth, traing_data) # a GLM

more carats, higher price.
effect(model = diamond_1m3,
data = traing_data,
focus_var_raw = c('carat'),
Reverse = TRUE) # value in x-axis is reverse

focus on only 'I(carat”3)', which means we will make all other coeff,
including 'carat' and 'I(carat”2)' into @
effect(model = diamond_1m3,
data =traing_data,
focus_var_raw =c('carat'),
focus_var_coeff = 'I(carat*3)')
One Dimension: Categorical

selected model-var to focus: here not focus on cut:depth, only focus on cut
suppressWarnings(
effect(model = diamond_1m3,
data = traing_data,
focus_var_raw = c('cut'),
focus_var_model = 'cut'

)

Double Dimensions

here focus_var_raw has two values: "carat” and "cut”

Enter_to_Continue

that means we will evaluate impact of "carat” on "price” through different value of "cut”

effect(model = diamond_1lm3,data = traing_data, focus_var_raw=c('carat',"cut”))

#

Provide Values to Focused vars

when evaluating impacts,
we can provide the range of values for key variables

effect(model = diamond_1lm3,data = traing_data,

focus_var_

raw = c('carat',"cut"),

focus_value = list(carat=seq(0.5,6,0.1)))

Enter_to_Continue

Enter_to_Continue: wait your response to continue

Description

wait your response to continue

Usage

Enter_to_Continue(df_input_output = NULL)

Arguments

df_input_output

Value

data.frame. df_input_output shall be either NULL or a two column data.frame
with characters as values, with first column as what you want to type, and second
column as what you want to return. If it is NULL, then it will return ’ Press
[enter] to continue; Type [s] to stop’. See the sample code for the df case.

Type through keyboard to continue in console.

Examples

Enter_to_Continue(rbind(c('small', 'small data'),c('n', 'normal'),c('w', 'weird curve')))

8 focusing_var_coeff

focusing_var_coeff focusing on selected variables in the model, and eliminating impacts
from other variables.

Description

focusing on selected variables in the model, and eliminating impacts from other variables.

Usage

focusing_var_coeff(model, focus_var_coeff = NULL, focus_var_raw = NULL,
intercept_include = TRUE, data = NULL)

Arguments

model an output of Im or glm

focus_var_coeff
NULL or a character vector, choose coeff vars you want to focus. The unselected
vars will have coeff values as 0. Default is NULL, which means to choosing
nothing.

focus_var_raw NULL or a character vector, choose raw vars you want to focus. The unselected
vars will have coeff values as 0. Default is NULL, which means to choosing
nothing.

intercept_include
a boolean, whether to include the intercept (default is TRUE).

data optional, a new dataset to evaluate the categorical variables. If NULL, then use
the data used in model itself.

Details

Inamodely ~ a + b. Sometimes you want to fix value of a and see the variations of b in y. The
most straightforward way to code this, as we did in this function, is to make a’s coefficients as 0,
and then use the predict().

Value

a new model with only focused vars having coeff unchanged, and all other vars having coeff as 0.

Examples

focus_var_raw = 'carat'

model = 1lm(price~ cut + carat + I(carat”2) + I(carat”3) +
I(carat * depth) + depth,ggplot2::diamonds)

all coeffs except carat's will be @

focusing_var_coeff(model, focus_var_coeff = 'carat')

get_contrast 9

all coeffs except cut.L's will be 0
focusing_var_coeff(model, focus_var_coeff = 'cut.L')

all coeffs without raw vars cut or carat will be @
focusing_var_coeff(model, focus_var_raw = c('cut', 'carat'))

if you didn't specify anything, then all vars' coeff will become @ except intercept
focusing_var_coeff(model)

if cannot find the focus_var_coeff or focus_var_raw in the model

tryCatch(focusing_var_coeff(model, focus_var_coeff = 'caratdsd'),
error = function(err) warning(err))
tryCatch(focusing_var_coeff(model, focus_var_raw = '3213'),

error = function(err) warning(err))

get_contrast get contrast of categorical variables in a model

Description

get contrast of categorical variables in a model

Usage

get_contrast(model, data = NULL, PRINT = TRUE, return_method = FALSE,
delete.minus.var = TRUE)

Arguments
model a model, either 1m or glm.
data dataframe, to provide new data to evaluate the model. If NULL (default), then
we use the default data in the model.
PRINT a boolean, whether to print messages. Default is TRUE.

return_method a boolean, whether to return the method of contrast, rather than the contrast
itself. Default is FALSE.
delete.minus.var

a boolean. whether to delete x2 iny ~ x1 - x2. Default is TRUE.
Details

When R put categorical vars in the linear model, R will transform them into set of *contrast’ using
certain contrast encoding schedule. See example code and the reference link below for details.

Value

contrasts of the categorical vars in the model, or the contrast method if return_method is TRUE.

10 get_model_pair

References

http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm

Examples

get_contrast(lm(price ~ carat + I(carat*2) + cut:carat +
color,ggplot2: :diamonds))

get_contrast(lm(price ~ carat + I(carat”2) + cut:carat +
color,ggplot2: :diamonds), return_method = TRUE)

dirty formulas: all categorical vars are with minus sign
no categorical vars, thus no contast
get_contrast(Ilm(price ~ carat + I(carat*2) ,ggplot2::diamonds))

model_dirty = lm(price ~ carat + I(carat*2) - cut:carat - color,
ggplot2: :diamonds)
get_contrast(model = model_dirty)

diamond_1m3 = 1lm(price~ I(cut) + depth,ggplot2::diamonds) # a GLM
get_contrast(model = diamond_1m3)

get_model_pair get a list of model vars with their corresponding coeff vars or raw vars.

Description

get a list of model vars with their corresponding coeff vars or raw vars.

Usage

get_model_pair(model, data = NULL, pair_with = c("coeff”, "raw"))

Arguments
model a lm or glm output
data NULL (default) or data.frame, a new dataset to evaluate the categorical vari-
ables. If NULL, then use the data used in model itself.
pair_with either ‘raw’ (default) or ’coeff’, to decide the elements of list are raw vars or
coeff vars. See get_x for the meaning of model var, coeff var and raw var.
Details

get a list of model vars with their corresponding coeff vars or raw vars. See get_x for the meaning
of model var, coeff var and raw var.

http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm

get_model_with_coeff

Value

a list with names as model vars and elements as their corresponding coeff/raw vars

Examples

return coeff

11

get_model_pair(model = price~ I(carat”2) + cut + caratxtable, data = ggplot2::diamonds)

return raw vars

get_model_pair(price~ I(carat”2) + cut + carat*table, data= ggplot2::diamonds, pair_with = 'raw')

correctly deal with irregular formulas

model_dirty = lm(price~ I(carat® 2) + cut - carat:table - cut ,ggplot2::diamonds)

get_model_pair(model_dirty,pair_with = 'raw')

get_model_with_coeff get a list of model variables with their corresponding coeff vars.

Description

a wrap up function of get_model_pair

Usage

get_model_with_coeff(model, data = NULL)

Arguments
model See get_model_pair
data See get_model_pair
Details

See get_model_pair

Value

a list with names as model vars and elements as their corresponding coeff

Examples

get_model_with_coeff(price~ I(carat® 2) + cut + caratxtable, data= ggplot2::diamonds)

12 get_valid_rows

get_model_with_raw get a list of model vars with their corresponding raw vars.

Description

a warp up function of get_model_pair

Usage

get_model_with_raw(model, data = NULL)

Arguments
model, See get_model_pair
data, See get_model_pair
Details

See get_model_pair

Value

a list with names as model vars and elements as their raw coeff

Examples

get_model_with_raw(price~ I(carat” 2) + cut + caratxtable, data= ggplot2::diamonds)

get_valid_rows identify missing rows for model/formula.

Description

identify missing rows for model/formula.

Usage

get_valid_rows(model, data)

Arguments

model a formula or an output of Im or glm

data the data.frame supposed to be used in modelling

get_x 13

Details

Data often contains missing values and 1m() or glm() often skip those rows. This function is to
identify which rows that Im() or glm() skips.

Value

a boolean vector with same length as the number of rows of data, with TRUE if a row has full data
for the modelling and FALSE if not.

Examples

model = Im(price ~ carat, head(ggplot2::diamonds,1000))
data = head(ggplot2::diamonds,10)

so observation 1, 4, 7 will be not valid rows
datalc(1,4,7),"price"] = NA

data

get_valid_rows(model,data)

error message as no "price” is found in the data
datal, "price”] = NULL
tryCatch(get_valid_rows(model,data),
error = function(x){
print(x)
1))

get_x get x (left hand of var) from model or formula

Description

get x (left hand of var) from model or formula

Usage

get_x(model, method = c("raw”, "model”, "coeff"), data = NULL)

Arguments
model a formula or a model.
method either 'raw', 'model’, or 'coeff', to decide what kind variables to show. De-
fault is ‘raw’. See section Detials below.
data a dataframe, to provide new data to evaluate the model. If NULL (default), then

we use the default data in the model.

14

Details

What do ‘raw’ variable, ’'model’ variable, and ’coeff’ variable mean?

 raw var is the underlying variable without any calculation or transformation.

* model var is the underlying variable with calculations or transformation.

* coeff var is the coefficient variable in the model output. So only evaluated model has coeff
vars. Most of the time one categorical variable will have several coeff vars according to their

contrast encoding. see get_contrast

Example:

In the model, log(price) ~ cut + I(carat”2) in diamonds data, we have:

e ’raw’ variables of X: carat and cut.
* model’ variables of x: I(carat”2) and cut.

e ’coeff’ variables of x: cut.L,"cut.Q"”,"cut.C","cut*4" and I(carat*2).

See the sample code below for more examples.

Value

X variables in the formula or model

Examples

use the sample code from get_x_hidden

#

data = ggplot2::diamonds

diamond_Im = 1m(price~ I(carat” 2) + cut + caratxtable ,ggplot2::diamonds)
#__ input as model

get_x(model = diamond_lm,method = 'raw')

get_x(diamond_1lm,method = 'model")
get_x(diamond_1lm,method = 'coeff"')

#__ input as formula

get_x(formula(diamond_1m),method = 'model')

data is required when input is formula

get_x(formula(diamond_1lm), data = ggplot2::diamonds, method = 'coeff')

tryCatch(
get_x(formula(diamond_1lm),method = 'coeff'),
error =function(err){
print(err)

}

get_x_all 15

model_dirty = model = Im(price~ I(carat® 2) + cut - carat:table - cut ,ggplot2::diamonds)

CORRECT for raw vars
get_x(model_dirty)

correct for model vars

get_x(price~ I(carat”*2) + cut - carat:table - cut,data = ggplot2::diamonds, method ='model')
get_x(model_dirty,method = 'model')

get_x(model_dirty,data = ggplot2::diamonds, method = 'model')

get_x(model_dirty, method = 'model')

clean method for model vars

terms((price~ I(carat”2) + cut - carat:table - cut)) %>% attr(.,"factors") %>% colnames()
model_dirty %>% terms %>% attr(.,"factors”) %>% colnames()

formula(model_dirty) %>% terms %>% attr(.,"factors”) %>% colnames()

get_x_all a unique combinations of model vars, coeff vars and raw vars

Description

a unique combinations of model vars, coeff vars and raw vars

Usage

get_x_all(model, data = NULL)

Arguments
model Imor glm
data NULL (default) or data.frame, a new dataset to evaluate the categorical vari-
ables. If NULL, then use the data used in model itself.
Details

For the differences between raw var, model var, and coeff var: see get_x

Value

a data.frame, a unique combinations of model vars, coeff vars and raw vars See get_x for the
meaning of model var, coeff var or raw var.

The column 'n_raw_in_model' is a numeric field showing how many raw variables are in the
corresponding model variables. For example, the model variable *I(carat*table)’ contains two raw
variables: ’carat’ and ’table’. See example code for details.

16 get y

Examples

get_x_all(model = price~ I(carat® 2) + cut + I(carat*table),data = ggplot2::diamonds)

#__ irregular formulas

model_dirty = lm(price~ I(carat® 2) + cut - carat:table - cut ,ggplot2::diamonds)
test = get_x_all(model_dirty)

test
test$coeff
errors

tryCatch(get_x_all(model = price~ I(carat” 2) + cut + I(caratxtable)),
error = function(x){

print(x)
)]
get_y get y (right hand of var)
Description
get y (right hand of var)
Usage

get_y(Formula, method = c("raw”, "model”, "coeff"))

Arguments
Formula a formula to be paste.
method either 'raw', 'model’, or 'coeff', to decide what kind variables to show. De-
fault is 'raw’. See section Detials below.
Details

‘What do ‘raw’ variable, ’'model’ variable, and ’coeff’ variable mean?

 raw var is the underlying variable without any calculation or transformation.
* model var is the underlying variable with calculations or transformation.

* coeff var is the coefficient variable in the model output. So only evaluated model has coeff
var.

In the formula, log(y) ~ x1 + x2, we have: ’raw’ variable for y: y 'model’ variable for y: log(y)
*coeff’ variable for y: log(y)

More examples see the sample code below.

paste_formula 17

Value

y in formula

Examples

get_y(log(price) ~sdfsf + dsa)
get_y(log(price) ~ sdfsf + dsa, method = "model"”)
get_y(log(price) ~ sdfsf + dsa, method = "coeff”) # same as model var in the get_y() case

can deal with un-regular formula

get_y(log(price) ~sdfsf + dsa ~ dsad)

get_y(log(price) ~ sdfsf + dsa ~ dsad, method = "coeff")
get_y(log(price) ~ sdfsf + dsa ~ dsad, method = "model")

model_dirty = model = Im(price~ I(carat® 2) + cut - carat:table - cut ,ggplot2::diamonds)
get_y(model_dirty)

paste_formula paste a formula as string

Description

paste a formula as string

Usage

paste_formula(Formula, exclude_y = FALSE, clean = FALSE)

Arguments
Formula a formula to be pasted.
exclude_y a boolean, whether to exclude y when paste. Default is FALSE.
clean a boolean, whether to clean dirty formula: for example — price ~ cut + carat -
cut will be cleaned into price ~ carat. Default is FALSE.
Details

a pasted formula in string, with all spaces deleted. This function uses get_y and get_x behind the
scene.

Value

a pasted formula in string, with all spaces deleted.

18 stepwise2

Examples

paste_formula(price~carat +cut)
paste_formula(price~carat + cut)

paste_formula(price~carat +cut,exclude_y = TRUE)
paste_formula(Formula = price ~ cut + carat, clean = TRUE)

paste_formula(price~carat +cut - cut, clean = TRUE)
irregular formulas: cross lines
paste_formula(price~carat +

cut ~ dsad)

paste_formula(price~carat +
cut ~ dsad,exclude_y = TRUE)

stepwise?2 same as step() in R, but able to check marginal effects.

Description

same as step() in R, but able to check marginal effects.

Usage

stepwise2(model, scope, trace = 1, steps = 1000, k = 2, data,
family = NULL, IC_method = c("AIC", "BIC"), test_suit = NULL,
STOP = FALSE)

Arguments

model an output of 1Imor glm

scope, trace, steps, k
see step()

data a data.frame used in regression.

family used as the argument for family of glm, default is NULL, which means we will
use the family imbedded in the model.

IC_method either AIC’ or 'BIC’, will overwrite the k argument above.

test_suit used to specify the correct marginal effect you want to check. It is a list with

names as raw variable and values as arguments of the function deleting_wrongeffect
If NULL (default), then not check any marginal effect See example code for de-
tails.

STOP whether stop and wait your response for each step.

stepwise2 19

Details

For each step of regression, you can first choose the models with correct marginal effect and then
choose the one with highest AIC/BIC within them

Value

a stepwise-selected model. If test_suit is specified, then the returned model is the one with
highest AIC/BIC within those that get correct marginal impact.

The silde effect is to print a data.frame containing diagnostic informations for each step. The
*correct_effect_ind’ column is a boolean vector to show whether the model has correct marginal
effect or not.

Examples

starting model:
can have a dirty formula like below

set.seed(413)
traing_data = ggplot2::diamonds[runif(nrow(ggplot2::diamonds))<0.05,]
nrow(traing_data)

diamond_Im3 = 1m(formula = price ~ cut + carat - cut , data = traing_data)

scope = list(lower = price ~ 1,
upper = price ~ I(carat*2) + I(carat*3) + I(carat * depth) + depth + carat)

traditional stepwise regression with no marginal effect check

modell = stepwise2(model = diamond_lm3, scope = scope,k = 2,
trace = TRUE, data = traing_data, STOP = TRUE)

modell

result is exactly same using the default step() function.

model2 = suppressWarnings(step(diamond_1lm3,scope = scope, k = 2))

model2

#__ How to Specify the Correct Marginal Effects in Stepwise Regression

this test_suit means we will check the marginal effect of both 'carat' and 'depth'
for 'carat', we will only focus on 4 coeff vars :
"I(carat”3)","I(carat*depth)"”,"I(carat*2)","carat”
for 'depth', as we do not specify any particular coeff vars there,
we will check all coeff var related to 'depth'

test_suit = list(
carat = list(
the list name must be the raw var
focus_var_raw = "carat”,
must specify the focus_var_raw (see deleting_wrongeffect()) as the raw var
focus_var_coeff = c("I(carat*3)"”,"I(caratxdepth)”,
"I(carat*2)","carat") ,

20 stepwise2

optional # If not defined, then we to check all coeffs related to the raw var
focus_value =list(carat = seq(0.5,6,0.1)),
Monoton_to_Match = 1 # optional. Default is 1

),

depth = list(
focus_var_raw = "depth”,
Monoton_to_Match = 1

)

)

model3 = stepwise2(model = diamond_1lm3, scope = scope, trace = TRUE,
data = traing_data,
STOP = FALSE, test_suit = test_suit)

see the difference from modell
effect(model3, focus_var_raw = "carat”, focus_value =list(carat = seq(0.5,6,0.1)))

Index

deleting_wrongeffect, 2

effect, 2,4
effects, 2, 3
Enter_to_Continue, 2,7

focusing_var_coeff, 8

get_contrast, 9, 14
get_model_pair, 10, 11, 12
get_model_with_coeff, 11
get_model_with_raw, 12
get_valid_rows, 12
get_x,4, 5,10,13, 15,17
get_x_all, 15
get_y, 16, 17

paste_formula, 17

stepwise2, 18

21

	deleting_wrongeffect
	effect
	Enter_to_Continue
	focusing_var_coeff
	get_contrast
	get_model_pair
	get_model_with_coeff
	get_model_with_raw
	get_valid_rows
	get_x
	get_x_all
	get_y
	paste_formula
	stepwise2
	Index

