
Package ‘lhs’
April 13, 2020

Title Latin Hypercube Samples

Version 1.0.2

Description Provides a number of methods for creating and augmenting Latin Hypercube Sam-
ples and Orthogonal Array Latin Hypercube Samples.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.4.0)

LinkingTo Rcpp

Imports Rcpp

Suggests testthat, DoE.base, knitr, rmarkdown, covr

URL https://github.com/bertcarnell/lhs

BugReports https://github.com/bertcarnell/lhs/issues

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation yes

Author Rob Carnell [aut, cre]

Maintainer Rob Carnell <bertcarnell@gmail.com>

Repository CRAN

Date/Publication 2020-04-13 12:10:02 UTC

R topics documented:
augmentLHS . 2
createAddelKemp . 3
createAddelKemp3 . 4
createAddelKempN . 5
createBose . 6
createBoseBush . 7

1

https://github.com/bertcarnell/lhs
https://github.com/bertcarnell/lhs/issues

2 augmentLHS

createBoseBushl . 8
createBush . 9
createBusht . 10
create_oalhs . 11
geneticLHS . 11
improvedLHS . 13
maximinLHS . 14
oa_to_oalhs . 16
optAugmentLHS . 17
optimumLHS . 18
optSeededLHS . 19
randomLHS . 20
runifint . 21

Index 22

augmentLHS Augment a Latin Hypercube Design

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design.

Usage

augmentLHS(lhs, m = 1)

Arguments

lhs The Latin Hypercube Design to which points are to be added. Contains an
existing latin hypercube design with a number of rows equal to the points in the
design (simulations) and a number of columns equal to the number of variables
(parameters). The values of each cell must be between 0 and 1 and uniformly
distributed

m The number of additional points to add to matrix lhs

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. Augmentation is perfomed in a random manner.

The algorithm used by this function has the following steps. First, create a new matrix to hold the
candidate points after the design has been re-partitioned into (n + m)2 cells, where n is number
of points in the original lhs matrix. Then randomly sweep through each column (1. . . k) in the
repartitioned design to find the missing cells. For each column (variable), randomly search for an
empty row, generate a random value that fits in that row, record the value in the new matrix. The
new matrix can contain more filled cells than m unles m = 2n, in which case the new matrix will
contain exactly m filled cells. Finally, keep only the first m rows of the new matrix. It is guaranteed

createAddelKemp 3

to have m full rows in the new matrix. The deleted rows are partially full. The additional candidate
points are selected randomly due to the random search for empty cells.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

Author(s)

Rob Carnell

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to gen-
erate Latin Hypercube Samples. [optAugmentLHS()] and [optSeededLHS()] to modify and aug-
ment existing designs.

Examples

set.seed(1234)
a <- randomLHS(4,3)
b <- augmentLHS(a, 2)

createAddelKemp Create an orthogonal array using the Addelman-Kempthorne algo-
rithm. The addelkemp program produces OA(2q^2, k, q, 2), k <=
2q+1, for odd prime powers q.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createAddelKemp(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

4 createAddelKemp3

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 S. Addelman and O. Kempthorne
(1961) Annals of Mathematical Statistics, Vol 32 pp 1167-1176.

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp3()],
[createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKemp(3, 3, TRUE)
B <- createAddelKemp(3, 5, FALSE)

createAddelKemp3 Create an orthogonal array using the Addelman-Kempthorne algo-
rithm with 2q^3 rows. The addelkemp3 program produces OA(2*q^3,
k, q, 2), k <= 2q^2+2q+1, for prime powers q. q may be an odd
prime power, or q may be 2 or 4.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createAddelKemp3(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Value

an orthogonal array

http://lib.stat.cmu.edu/designs/oa.c

createAddelKempN 5

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 S. Addelman and O. Kempthorne
(1961) Annals of Mathematical Statistics, Vol 32 pp 1167-1176.

See Also

Other methods to create orthogonal arrays [createBushBush()], [createBose()], [createAddelKemp()],
[createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKemp3(3, 3, TRUE)
B <- createAddelKemp3(3, 5, FALSE)

createAddelKempN Create an orthogonal array using the Addelman-Kempthorne algo-
rithm with alternate strength

Description

Create an orthogonal array using the Addelman-Kempthorne algorithm with alternate strength

Usage

createAddelKempN(q, ncol, exponent, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

exponent the exponent on q

bRandom should the array be randomized

Value

an orthogonal array

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [cre-
ateAddelKemp()], [createAddelKemp3()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKempN(3, 4, 3, TRUE)
B <- createAddelKempN(3, 4, 4, TRUE)

http://lib.stat.cmu.edu/designs/oa.c

6 createBose

createBose Create an orthogonal array using the Bose algorithm. The bose pro-
gram produces OA(q^2, k, q, 2), k <= q+1 for prime powers q.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createBose(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 R.C. Bose (1938) Sankhya Vol 3
pp 323-338

See Also

Other methods to create orthogonal arrays [createBush()], [createBoseBush()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createBose(3, 3, FALSE)
B <- createBose(5, 4, TRUE)

http://lib.stat.cmu.edu/designs/oa.c

createBoseBush 7

createBoseBush Create an orthogonal array using the Bose-Bush algorithm. The bose-
bush program produces OA(2q^2, k, q, 2), k <= 2q+1, for powers
of 2, q=2^r.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createBoseBush(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 R.C. Bose and K.A. Bush (1952)
Annals of Mathematical Statistics, Vol 23 pp 508-524.

See Also

Other methods to create orthogonal arrays [createBush()], [createBose()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createBoseBush(4, 3, FALSE)
B <- createBoseBush(8, 3, TRUE)

http://lib.stat.cmu.edu/designs/oa.c

8 createBoseBushl

createBoseBushl Create an orthogonal array using the Bose-Bush algorithm with
alternate strength >= 3. The bosebushl program produces OA(
lambda*q^2, k, q, 2), k <= lambda*q+1, for prime powers q and
lambda > 1. Both q and lambda must be powers of the same prime.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createBoseBushl(q, ncol, lambda, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

lambda the lambda of the BoseBush algorithm

bRandom should the array be randomized

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in high
dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 R.C. Bose and K.A. Bush (1952)
Annals of Mathematical Statistics, Vol 23 pp 508-524.

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [cre-
ateAddelKemp()], [createAddelKemp3()], [createAddelKempN()], [createBusht()]

Examples

A <- createBoseBushl(3, 3, 3, TRUE)
B <- createBoseBushl(4, 4, 16, TRUE)

http://lib.stat.cmu.edu/designs/oa.c

createBush 9

createBush Create an orthogonal array using the Bush algorithm. The bush pro-
gram produces OA(q^3, k, q, 3), k <= q+1 for prime powers q.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createBush(q, ncol, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

bRandom should the array be randomized

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in
high dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 K.A. Bush (1952) Annals
of Mathematical Statistics, Vol 23 pp 426-434

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBusht()], [createBoseBushl()]

Examples

A <- createBush(3, 3, FALSE)
B <- createBush(4, 5, TRUE)

http://lib.stat.cmu.edu/designs/oa.c

10 createBusht

createBusht Create an orthogonal array using the Bush algorithm with alternate
strength. The bush program produces OA(q^t, k, q, t), k <= q+1,
t>=3, for prime powers q.

Description

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one
of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible
distinct rows, all appear the same number of times. This number is the index of the array, commonly
denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA(n,k,q,t).

Usage

createBusht(q, ncol, strength, bRandom = TRUE)

Arguments

q the number of symbols in the array

ncol number of parameters or columns

strength the strength of the array to be created

bRandom should the array be randomized

Value

an orthogonal array

References

Owen, Art. Orthogonal Arrays for: Computer Experiments, Visualizations, and Integration in
high dimenstions. http://lib.stat.cmu.edu/designs/oa.c. 1994 K.A. Bush (1952) Annals
of Mathematical Statistics, Vol 23 pp 426-434

See Also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createAddelKemp()],
[createAddelKemp3()], [createAddelKempN()], [createBoseBushl()]

Examples

set.seed(1234)
A <- createBusht(3, 4, 2, TRUE)
B <- createBusht(3, 4, 3, FALSE)
G <- createBusht(3, 4, 3, TRUE)

http://lib.stat.cmu.edu/designs/oa.c

create_oalhs 11

create_oalhs Create an orthogonal array Latin hypercube

Description

Create an orthogonal array Latin hypercube

Usage

create_oalhs(n, k, bChooseLargerDesign, bverbose)

Arguments

n the number of samples or rows in the LHS (integer)

k the number of parameters or columns in the LHS (integer)

bChooseLargerDesign

should a larger oa design be chosen than the n and k requested?

bverbose should information be printed with execution

Value

a numeric matrix which is an orthogonal array Latin hypercube sample

Examples

set.seed(34)
A <- create_oalhs(9, 4, TRUE, FALSE)
B <- create_oalhs(9, 4, TRUE, FALSE)

geneticLHS Latin Hypercube Sampling with a Genetic Algorithm

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function attempts to optimize the sample with respect to the S optimality
criterion through a genetic type algorithm.

12 geneticLHS

Usage

geneticLHS(
n = 10,
k = 2,
pop = 100,
gen = 4,
pMut = 0.1,
criterium = "S",
verbose = FALSE

)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

pop The number of designs in the initial population

gen The number of generations over which the algorithm is applied

pMut The probability with which a mutation occurs in a column of the progeny

criterium The optimality criterium of the algorithm. Default is S. Maximin is also sup-
ported

verbose Print informational messages. Default is FALSE

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once the
sample is generated, the uniform sample from a column can be transformed to any distribution by
using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

S-optimality seeks to maximize the mean distance from each design point to all the other points in
the design, so the points are as spread out as possible.

Genetic Algorithm:

1. Generate pop random latin hypercube designs of size n by k

2. Calculate the S optimality measure of each design

3. Keep the best design in the first position and throw away half of the rest of the population

4. Take a random column out of the best matrix and place it in a random column of each of the
other matricies, and take a random column out of each of the other matricies and put it in
copies of the best matrix thereby causing the progeny

improvedLHS 13

5. For each of the progeny, cause a genetic mutation pMut percent of the time. The mutation is
accomplished by swtching two elements in a column

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

Author(s)

Rob Carnell

References

Stocki, R. (2005) A method to improve design reliability using optimal Latin hypercube sampling
Computer Assisted Mechanics and Engineering Sciences 12, 87–105.

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to generate Latin Hy-
percube Samples. [optAugmentLHS()] [optSeededLHS()], and [augtmentLHS()] to modify and
augment existing designs.

Examples

set.seed(1234)
A <- geneticLHS(4, 3, 50, 5, .25)

improvedLHS Improved Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function attempts to optimize the sample with respect to an optimum
euclidean distance between design points.

Usage

improvedLHS(n, k, dup = 1)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

dup A factor that determines the number of candidate points used in the search. A
multiple of the number of remaining points than can be added.

14 maximinLHS

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once
the sample is generated, the uniform sample from a column can be transformed to any distribution
byusing the quantile functions, e.g. qnorm(). Different columns can have different distributions.

This function attempts to optimize the sample with respect to an optimum euclidean distance be-
tween design points.

Optimumdistance = fracnn
1.0
k

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Beachkofski, B., Grandhi, R. (2002) Improved Distributed Hypercube Sampling American Institute
of Aeronautics and Astronautics Paper 1274.

This function is based on the MATLAB program written by John Burkardt and modified 16 Feb
2005 http://www.csit.fsu.edu/~burkardt/m_src/ihs/ihs.m

See Also

[randomLHS()], [geneticLHS()], [maximinLHS()], and [optimumLHS()] to generate Latin Hyper-
cube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and aug-
ment existing designs.

Examples

set.seed(1234)
A <- improvedLHS(4, 3, 2)

maximinLHS Maximin Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function attempts to optimize the sample by maximizing the minium
distance between design points (maximin criteria).

http://www.csit.fsu.edu/~burkardt/m_src/ihs/ihs.m

maximinLHS 15

Usage

maximinLHS(
n,
k,
method = "build",
dup = 1,
eps = 0.05,
maxIter = 100,
optimize.on = "grid",
debug = FALSE

)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

method build or iterative is the method of LHS creation. build finds the next best
point while constructing the LHS. iterative optimizes the resulting sample on
[0,1] or sample grid on [1,N]

dup A factor that determines the number of candidate points used in the search. A
multiple of the number of remaining points than can be added. This is used
when method="build"

eps The minimum percent change in the minimum distance used in the iterative
method

maxIter The maximum number of iterations to use in the iterative method

optimize.on grid or result gives the basis of the optimization. grid optimizes the LHS on
the underlying integer grid. result optimizes the resulting sample on [0,1]

debug prints additional information about the process of the optimization

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once the
sample is generated, the uniform sample from a column can be transformed to any distribution by
using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

Here, values are added to the design one by one such that the maximin criteria is satisfied.

16 oa_to_oalhs

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

This function is motivated by the MATLAB program written by John Burkardt and modified 16 Feb
2005 http://www.csit.fsu.edu/~burkardt/m_src/ihs/ihs.m

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()] and [optimumLHS()] to generate Latin Hyper-
cube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and aug-
ment existing designs.

Examples

set.seed(1234)
A1 <- maximinLHS(4, 3, dup=2)
A2 <- maximinLHS(4, 3, method="build", dup=2)
A3 <- maximinLHS(4, 3, method="iterative", eps=0.05, maxIter=100, optimize.on="grid")
A4 <- maximinLHS(4, 3, method="iterative", eps=0.05, maxIter=100, optimize.on="result")

oa_to_oalhs Create a Latin hypercube from an orthogonal array

Description

Create a Latin hypercube from an orthogonal array

Usage

oa_to_oalhs(n, k, oa)

Arguments

n the number of samples or rows in the LHS (integer)

k the number of parameters or columns in the LHS (integer)

oa the orthogonal array to be used as the basis for the LHS (matrix of integers) or
data.frame of factors

Value

a numeric matrix which is a Latin hypercube sample

http://www.csit.fsu.edu/~burkardt/m_src/ihs/ihs.m

optAugmentLHS 17

Examples

oa <- createBose(3, 4, TRUE)
B <- oa_to_oalhs(9, 4, oa)

optAugmentLHS Optimal Augmented Latin Hypercube Sample

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function attempts to add the points to the design in an optimal
way.

Usage

optAugmentLHS(lhs, m = 1, mult = 2)

Arguments

lhs The Latin Hypercube Design to which points are to be added

m The number of additional points to add to matrix lhs

mult m*mult random candidate points will be created.

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function attempts to add the points to the design in a way that
maximizes S optimality.

S-optimality seeks to maximize the mean distance from each design point to all the other points in
the design, so the points are as spread out as possible.

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to gen-
erate Latin Hypercube Samples. [optSeededLHS()] and [augmentLHS()] to modify and augment
existing designs.

18 optimumLHS

Examples

set.seed(1234)
a <- randomLHS(4,3)
b <- optAugmentLHS(a, 2, 3)

optimumLHS Optimum Latin Hypercube Sample

Description

Draws a Latin Hypercube Sample from a set of uniform distributions for use in creating a Latin
Hypercube Design. This function uses the Columnwise Pairwise (CP) algorithm to generate an
optimal design with respect to the S optimality criterion.

Usage

optimumLHS(n = 10, k = 2, maxSweeps = 2, eps = 0.1, verbose = FALSE)

Arguments

n The number of partitions (simulations or design points or rows)

k The number of replications (variables or columns)

maxSweeps The maximum number of times the CP algorithm is applied to all the columns.

eps The optimal stopping criterion. Algorithm stops when the change in optimality
measure is less than eps*100% of the previous value.

verbose Print informational messages

Details

Latin hypercube sampling (LHS) was developed to generate a distribution of collections of parame-
ter values from a multidimensional distribution. A square grid containing possible sample points is
a Latin square iff there is only one sample in each row and each column. A Latin hypercube is the
generalisation of this concept to an arbitrary number of dimensions. When sampling a function of
k variables, the range of each variable is divided into n equally probable intervals. n sample points
are then drawn such that a Latin Hypercube is created. Latin Hypercube sampling generates more
efficient estimates of desired parameters than simple Monte Carlo sampling.

This program generates a Latin Hypercube Sample by creating random permutations of the first n
integers in each of k columns and then transforming those integers into n sections of a standard
uniform distribution. Random values are then sampled from within each of the n sections. Once the
sample is generated, the uniform sample from a column can be transformed to any distribution by
using the quantile functions, e.g. qnorm(). Different columns can have different distributions.

S-optimality seeks to maximize the mean distance from each design point to all the other points in
the design, so the points are as spread out as possible.

This function uses the CP algorithm to generate an optimal design with respect to the S optimality
criterion.

optSeededLHS 19

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stocki, R. (2005) A method to improve design reliability using optimal Latin hypercube sampling
Computer Assisted Mechanics and Engineering Sciences 12, 87–105.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()] and [maximinLHS()] to generate Latin Hyper-
cube Samples. [optAugmentLHS()], [optSeededLHS()], and [augmentLHS()] to modify and aug-
ment existing designs.

Examples

A <- optimumLHS(4, 3, 5, .05)

optSeededLHS Optimum Seeded Latin Hypercube Sample

Description

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function then uses the columnwise pairwise (CP) algoritm to
optimize the design. The original design is not necessarily maintained.

Usage

optSeededLHS(seed, m = 0, maxSweeps = 2, eps = 0.1, verbose = FALSE)

Arguments

seed The number of partitions (simulations or design points)

m The number of additional points to add to the seed matrix seed. default value is
zero. If m is zero then the seed design is optimized.

maxSweeps The maximum number of times the CP algorithm is applied to all the columns.

eps The optimal stopping criterion

verbose Print informational messages

Details

Augments an existing Latin Hypercube Sample, adding points to the design, while maintaining the
latin properties of the design. This function then uses the CP algoritm to optimize the design. The
original design is not necessarily maintained.

20 randomLHS

Value

An n by k Latin Hypercube Sample matrix with values uniformly distributed on [0,1]

References

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics. 29, 143–151.

See Also

[randomLHS()], [geneticLHS()], [improvedLHS()], [maximinLHS()], and [optimumLHS()] to gen-
erate Latin Hypercube Samples. [optAugmentLHS()] and [augmentLHS()] to modify and augment
existing designs.

Examples

set.seed(1234)
a <- randomLHS(4,3)
b <- optSeededLHS(a, 2, 2, .1)

randomLHS Construct a random Latin hypercube design

Description

randomLHS(4,3) returns a 4x3 matrix with each column constructed as follows: A random per-
mutation of (1,2,3,4) is generated, say (3,1,2,4) for each of K columns. Then a uniform random
number is picked from each indicated quartile. In this example a random number between .5 and
.75 is chosen, then one between 0 and .25, then one between .25 and .5, finally one between .75 and
1.

Usage

randomLHS(n, k, preserveDraw = FALSE)

Arguments

n the number of rows or samples
k the number of columns or parameters/variables
preserveDraw should the draw be constructed so that it is the same for variable numbers of

columns?

Value

a Latin hypercube sample

Examples

a <- randomLHS(5, 3)

runifint 21

runifint Create a Random Sample of Uniform Integers

Description

Create a Random Sample of Uniform Integers

Usage

runifint(n = 1, min_int = 0, max_int = 1)

Arguments

n The number of samples

min_int the minimum integer x >= min_int

max_int the maximum integer x <= max_int

Value

the sample sample of size n

Index

∗Topic design
augmentLHS, 2
geneticLHS, 11
improvedLHS, 13
maximinLHS, 14
optAugmentLHS, 17
optimumLHS, 18
optSeededLHS, 19

augmentLHS, 2

create_oalhs, 11
createAddelKemp, 3
createAddelKemp3, 4
createAddelKempN, 5
createBose, 6
createBoseBush, 7
createBoseBushl, 8
createBush, 9
createBusht, 10

geneticLHS, 11

improvedLHS, 13

maximinLHS, 14

oa_to_oalhs, 16
optAugmentLHS, 17
optimumLHS, 18
optSeededLHS, 19

randomLHS, 20
runifint, 21

22

	augmentLHS
	createAddelKemp
	createAddelKemp3
	createAddelKempN
	createBose
	createBoseBush
	createBoseBushl
	createBush
	createBusht
	create_oalhs
	geneticLHS
	improvedLHS
	maximinLHS
	oa_to_oalhs
	optAugmentLHS
	optimumLHS
	optSeededLHS
	randomLHS
	runifint
	Index

