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bf Function to generate a basis function.

Description

This function is to construct a data-matrix of basis function using the n response observations.
The response can be continuous or categorical. The function returns a matrix of n rows and r
columns. The number of columns r depends on the choice of basis function. Polynomial, piecewise
polynomial continuous and discontinuous, and Fourier bases are implemented. For a polynomial
basis, r is the degree of the polynomial.

Usage

bf(y, case = c("poly", "categ", "fourier", "pcont", "pdisc"),
degree = 1, nslices = 1, scale = FALSE)

Arguments

y A response vector of n observations.

case Take values "poly" for polynomial, "categ" for categorical, "fourier" for
Fourier, "pcont" for piecewise continuous, and "pdisc" for piecewise discon-
tinuous bases.

degree For polynomial and piecewise polynomial bases, degree is the degree of the
polynomial. With "pdisc", degree=0 corresponds to piecewise constant.

nslices The number of slices for piecewise bases only. The range of the response is
partitioned into nslices parts with roughly equal numbers of observations. See
details on piecewise bases for more information.

scale If TRUE, the columns of the basis function are scaled to have unit variance.

Details

The basis function fy is a vector-valued function of the response y ∈ R. There is an infinite number
of basis functions, including the polynomial, piecewise polynomial, and Fourier. We implemented
the following:

1. Polynomial basis: fy = (y, y2, ..., yr)T . It corresponds to the "poly" argument of bf. The
argument degree is r of the polynomial is provided by the user. The subsequent n× r data-matrix
is column-wise centered.

2. Piecewise constant basis: It corresponds to pdisc with degree=0. It is obtained by first slicing
the range of y into h slices H1, ...,Hk. The kth component of fy ∈ Rh−1 is fyk

= J(y ∈
Hk)−nk/n, k = 1, ..., h− 1, where ny is the number of observations in Hk, and J is the indicator
function. We suggest using between two and fifteen slices without exceeding n/5.

3. Piecewise discontinuous linear basis: It corresponds to "pdisc" with degree=1. It is more
elaborate than the piecewise constant basis. A linear function of y is fit within each slice. Let
τi be the knots, or endpoints of the slices. The components of fy ∈ R2h−1 are obtained with
fy(2i−1)

= J(y ∈ Hi); fy2i
= J(y ∈ Hi)(y − τi−1) for i = 1, 2, ..., h − 1 and fy(2h−1)

= J(y ∈
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Hh)(y − τh−1). The subsequent n × (2h − 1) data-matrix is column-wise centered. We suggest
using fewer than fifteen slices without exceeding n/5.

4. Piecewise continuous linear basis: The general form of the components fyi
of fy ∈ Rh+1 is

given by fy1
= J(y ∈ H1) and fyi+1

= J(y ∈ Hi)(y − τi−1) for i = 1, ..., h.. The subsequent
n× (h−1) data-matrix is column-wise centered. This case corresponds to "pcont" with degree=1.
The number of slices to use may not exceed n/5.

5. Fourier bases: They consist of a series of pairs of sines and cosines of increasing frequency. A
Fourier basis is given by fy = (cos(2πy), sin(2πy), ..., cos(2πky), sin(2πky))T . The subsequent
n× 2k data-matrix is column-wise centered.

6. Categorical basis: It is obtained using "categ" option when y takes h distinct values 1, 2, ..., h,
corresponding to the number of sub-populations or sub-groups. The number of slices is naturally h.
The expression for the basis is identical to piecewise constant basis.

In all cases, the basis must be constructed such that FTF is invertible, where F is the n × r data-
matrix with its ith row being fy .

Value

fy A matrix with n rows and r columns.

scale Boolean. If TRUE, the columns of the output are standardized to have unit
variance.

Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

References

Adragni, KP (2009) PhD Dissertation, University of Minnesota.

Adragni, KP and Cook, RD (2009): Sufficient dimension reduction and prediction in regression.
Phil. Trans. R. Soc. A 367, 4385-4405.

Cook, RD (2007): Fisher Lecture - Dimension Reduction in Regression (with discussion). Statisti-
cal Science, Vol. 22, 1–26.

Examples

data(bigmac)

# Piecewise constant basis with 5 slices
fy=bf(y=bigmac[,1], case="pdisc", degree=0, nslices=5)
fit1 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=fy, numdir=3, structure="aniso")
summary(fit1)

# Cubic polynomial basis
fy=bf(y=bigmac[,1], case="poly", degree=3)
fit2 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=fy, numdir=3, structure="aniso")
summary(fit2)

# Piecewise linear continuous with 3 slices
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fy=bf(y=bigmac[,1], case="pcont", degree=1, nslices=3)
fit3 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=fy, numdir=3, structure="unstr")
summary(fit3)

bigmac bigmac data

Description

The data give average values in 1991 on several economic indicators for 45 world cities. All prices
are in US dollars, using currency conversion at the time of publication.

Usage

data(bigmac)

Format

A data frame with 45 observations on the following 10 variables.

BigMac Minimum labor to buy a BigMac and fries

Bread Minimum labor to buy 1 kg bread

BusFare Lowest cost of 10k public transit

EngSal Electrical engineer annual salary, 1000s

EngTax Tax rate paid by engineer

Service Annual cost of 19 services

TeachSal Primary teacher salary, 1000s

TeachTax Tax rate paid by primary teacher

VacDays Average days vacation per year

WorkHrs Average hours worked per year

Source

Rudolf Enz, "Prices and Earnings Around the Globe", 1991 edition, Published by the Union Bank
of Switzerland.

References

Cook, RD and Weisberg, S (2004). Applied Regression Including Computing and Graphics, New
York: Wiley, http://www.stat.umn.edu/arc.

Examples

data(bigmac)
pairs(bigmac)
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core Covariance Reduction

Description

Method to reduce sample covariance matrices to an informational core that is sufficient to charac-
terize the variance heterogeneity among different populations.

Usage

core(X, y, Sigmas = NULL, ns = NULL, numdir = 2,
numdir.test = FALSE, ...)

Arguments

X Data matrix with n rows of observations and p columns of predictors. The pre-
dictors are assumed to have a continuous distribution.

y Vector of group labels. Observations with the same label are considered to be in
the same group.

Sigmas A list object of sample covariance matrices corresponding to the different popu-
lations.

ns A vector of number of observations of the samples corresponding to the different
populations.

numdir Integer between 1 and p. It is the number of directions to estimate for the reduc-
tion.

numdir.test Boolean. If FALSE, core computes the reduction for the specific number of
directions numdir. If TRUE, it does the computation of the reduction for the
numdir directions, from 0 to numdir. Likelihood ratio test and information
criteria are used to estimate the true dimension of the sufficient reduction.

... Other arguments to pass to GrassmannOptim.

Details

Consider the problem of characterizing the covariance matrices Σy, y = 1, ..., h, of a random vector
X observed in each of h normal populations. Let Sy = (ny − 1)Σ̃y where Σ̃y is the sample
covariance matrix corresponding to Σy , and ny is the number of observations corresponding to y.
The goal is to find a semi-orthogonal matrix Γ ∈ Rp×d, d < p, with the property that for any two
populations j and k

Sj |(Γ′SjΓ = B,nj = m) ∼ Sk|(Γ′SkΓ = B,nk = m).

That is, given Γ′SgΓ and ng , the conditional distribution of Sg must must depend on g. Thus Γ′SgΓ
is sufficient to account for the heterogeneity among the population covariance matrices. The central
subspace S, spanned by the columns of Γ is obtained by optimizing the following log-likelihood
function

L(S) = c− n

2
log |Σ̃|+ n

2
log |PSΣ̃PS | −

h∑
y=1

ny
2

log |PSΣ̃yPS |,
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where c is a constant depending only on p and ny , Σ̃y, y = 1, ..., h, denotes the sample covariance
matrix from population y computed with divisor ny , and Σ̃ =

∑h
y=1(ny/n)Σ̃. The optimization

is carried over G(d,p), the set of all d-dimensional subspaces in Rp, called Grassmann manifold of
dimension d(p− d).

The dimension d is to be estimated. A sequential likelihood ratio test and information criteria (AIC,
BIC) are implemented, following Cook and Forzani (2008).

Value

This command returns a list object of class ldr. The output depends on the argument numdir.test.
If numdir.test=TRUE, a list of matrices is provided corresponding to the numdir values (1 through
numdir) for each of the parameters Γ, Σ, and Σg . Otherwise, a single list of matrices for a single
value of numdir. A likelihood ratio test and information criteria are provided to estimate the dimen-
sion of the sufficient reduction when numdir.test=TRUE. The output of loglik, aic, bic, numpar
are vectors with numdir elements if numdir.test=TRUE, and scalars otherwise. Following are the
components returned:

Gammahat Estimate of Γ.

Sigmahat Estimate of overall Σ.

Sigmashat Estimate of group-specific Σg’s.

loglik Maximized value of the CORE log-likelihood.

aic Akaike information criterion value.

bic Bayesian information criterion value.

numpar Number of parameters in the model.

Note

Currently loglik, AIC, and BIC are computed up to a constant. Therefore, these can be compared
relatively (e.g. two loglik’s can be subtracted to compute a likelihood ratio test), but they should
not be treated as absolute quantities.

Author(s)

Andrew Raim and Kofi P Adragni, University of Maryland, Baltimore County

References

Cook RD and Forzani L (2008). Covariance reducing models: An alternative to spectral modelling
of covariance matrices. Biometrika, Vol. 95, No. 4, 799–812.

See Also

lad, pfc
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Examples

data(flea)
fit1 <- core(X=flea[,-1], y=flea[,1], numdir.test=TRUE)
summary(fit1)

## Not run:
data(snakes)
fit2 <- ldr(Sigmas=snakes[-3], ns=snakes[[3]], numdir = 4,
model = "core", numdir.test = TRUE, verbose=TRUE,
sim_anneal = TRUE, max_iter = 200, max_iter_sa=200)
summary(fit2)

## End(Not run)

flea Flea-beetles data

Description

Six measurements on each of three species of flea-beetles: concinna, heptapotamica, and heikertin-
geri.

Usage

data(flea)

Format

A data frame with 74 observations on the following 7 variables.

species a factor with levels Concinna, Heikert., and Heptapot.

tars1 width of the first joint of the first tarsus in microns (the sum of measurements for both tarsi).

tars2 the same for the second joint.

head the maximal width of the head between the external edges of the eyes in 0.01 mm.

aede1 the maximal width of the aedeagus in the fore-part in microns.

aede2 the front angle of the aedeagus (1 unit = 7.5 degrees).

aede3 the aedeagus width from the side in microns.

Source

Lubischew, AA "On the Use of Discriminant Functions in Taxonomy", Biometrics, Dec. 1962, pp.
455-477.

References

Dianne Cook and Deborah F. Swayne, Interactive and Dynamic Graphics for Data Analysis: With
Examples Using R and GGobi. URL: http://www.ggobi.org/book/data/flea.xml
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Examples

data(flea)

lad Likelihood Acquired Directions

Description

Method to estimate the central subspace, using inverse conditional mean and conditional variance
functions.

Usage

lad(X, y, numdir = NULL, nslices = NULL, numdir.test = FALSE, ...)

Arguments

X Data matrix with n rows of observations and p columns of predictors. The pre-
dictors are assumed to have a continuous distribution.

y Response vector of n observations, possibly categorical or continuous. It is as-
sumed categorical if nslices=NULL.

numdir Integer between 1 and p. It is the number of directions of the reduction to es-
timate. If not provided then it will equal the number of distinct values of the
categorical response.

nslices Integer number of slices. It must be provided if y is continuous, and must be
less than n. It is used to discretize the continuous response.

numdir.test Boolean. If FALSE, core computes the reduction for the specific number of
directions numdir. If TRUE, it does the computation of the reduction for the
numdir directions, from 0 to numdir.

... Other arguments to pass to GrassmannOptim.

Details

Consider a regression in which the response Y is discrete with support SY = {1, 2, ..., h}. Fol-
lowing standard practice, continuous response can be sliced into finite categories to meet this con-
dition. Let Xy ∈ Rp denote a random vector of predictors distributed as X|(Y = y) and assume
that Xy ∼ N(µy,∆y), y ∈ SY . Let µ = E(X) and Σ = Var(X) denote the marginal mean
and variance of X and let ∆ = E(∆Y ) denote the average covariance matrix. Given ny indepen-
dent observations of Xy, y ∈ SY , the goal is to obtain the maximum likelihood estimate of the
d-dimensional central subspace SY |X , which is defined informally as the smallest subspace such
that Y is independent of X given its projection PSY |XX onto SY |X .

Let Σ̃ denote the sample covariance matrix of X , let ∆̃y denote the sample covariance matrix for
the data with Y = y, and let ∆̃ =

∑h
y=1my∆̃y where my is the fraction of cases observed with

Y = y. The maximum likelihood estimator of SY |X maximizes over S ∈ G(d,p) the log-likelihood
function
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L(S) =
n

2
log |PSΣ̃PS |0 −

n

2
log |Σ̃| − 1

2

h∑
y=1

ny log |PS∆̃yPS |0,

where |A|0 indicates the product of the non-zero eigenvalues of a positive semi-definite symmetric
matrix A, PS indicates the projection onto the subspace S in the usual inner product, and G(d,p) is
the set of all d-dimensional subspaces in Rp, called Grassmann manifold. The desired reduction is
then Γ̂TX . Once the dimension of the reduction subspace is estimated, the columns of Γ̂ are a basis
for the maximum likelihood estimate of SY |X .

The dimension d of the sufficient reduction is to be estimated. A sequential likelihood ratio test,
and information criteria (AIC, BIC) are implemented, following Cook and Forzani (2009).

Value

This command returns a list object of class ldr. The output depends on the argument numdir.test.
If numdir.test=TRUE, a list of matrices is provided corresponding to the numdir values (1 through
numdir) for each of the parameters Γ, ∆, and ∆y; otherwise, a single list of matrices for a sin-
gle value of numdir. The output of loglik, aic, bic, numpar are vectors of numdir elements if
numdir.test=TRUE, and scalars otherwise. Following are the components returned:

R The reduction data-matrix of X obtained using the centered data-matrix X . The
centering of the data-matrix of X is such that each column vector is centered
around its sample mean.

Gammahat Estimate of Γ

Deltahat Estimate of ∆

Deltahat_y Estimate of ∆y

loglik Maximized value of the LAD log-likelihood.

aic Akaike information criterion value.

bic Bayesian information criterion value.

numpar Number of parameters in the model.

Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

References

Cook RD, Forzani L (2009). Likelihood-based Sufficient Dimension Reduction, J. of the American
Statistical Association, Vol. 104, No. 485, 197–208.

See Also

core, pfc
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Examples

data(flea)
fit <- lad(X=flea[,-1], y=flea[,1], numdir=2, numdir.test=TRUE)
summary(fit)
plot(fit)

ldr Likelihood-based Dimension Reduction

Description

Main function of the package. It creates objects of one of classes core, lad, or pfc to estimate
a sufficient dimension reduction subspace using covariance reducing models (CORE), likelihood
acquired directions (LAD), or principal fitted components (PFC).

Usage

ldr(X, y = NULL, fy = NULL, Sigmas = NULL, ns = NULL,
numdir = NULL, nslices = NULL, model = c("core", "lad", "pfc"),
numdir.test = FALSE, ...)

Arguments

X Design matrix with n rows of observations and p columns of predictors. The
predictors are assumed to have a continuous distribution.

y The response vector of length n. It can be continuous or categorical.

fy Basis function to be obtained using bf or defined by the user. It is a function
of y alone and has independent column vectors. It is used exclusively with pfc.
See bf for detail.

Sigmas A list object of sample covariance matrices corresponding to the different popu-
lations. It is used exclusively with core.

ns A vector of number of observations of the samples corresponding to the different
populations.

numdir The number of directions to be used in estimating the reduction subspace. When
calling pfc, the dimension numdir must be less than or equal to the minimum
of p and r, where r is the number of columns of fy. When calling lad and y is
continuous, numdir is the number of slices to use.

nslices Number of slices for a continuous response. It is used exclusively with lad.

model One of the following: "pfc", "lad", "core".

numdir.test Boolean. If FALSE, the chosen model fits with the provided numdir. If TRUE, the
model is fit for all dimensions less or equal to numdir.

... Additional arguments for specific models and/or Grassmannoptim.
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Details

Likelihood-based methods to sufficient dimension reduction are model-based inverse regression
approaches using the conditional distribution of the p-vector of predictors X given the response
Y = y. Three methods are implemented in this package: covariance reduction (CORE), principal
fitted components (PFC), and likelihood acquired directions (LAD). All three assume that X|(Y =
y) ∼ N(µy,∆y).

For CORE, given a set of h covariance matrices, the goal is to find a sufficient reduction that
accounts for the heterogeneity among the population covariance matrices. See the documentation
of "core" for details.

For PFC, µy = µ + Γβfy , with various structures of ∆. The simplest is the isotropic ("iso")
with ∆ = δ2Ip. The anisotropic ("aniso") PFC model assumes that ∆ = diag(δ2

1 , ..., δ
2
p), where

the conditional predictors are independent and on different measurement scales. The unstructured
("unstr") PFC model allows a general structure for ∆. Extended structures are considered. See
the help file of pfc for more detail.

LAD assumes that the response Y is discrete. A continuous response is sliced into finite categories
to meet this condition. It estimates the central subspace SY |X by modeling both µy and ∆y . See
lad for more detail.

Value

An object of one of the classes core, lad, or pfc . The output depends on the model used. See pfc,
lad, and core for further detail.

Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

References

Adragni, KP and Cook, RD (2009): Sufficient dimension reduction and prediction in regression.
Phil. Trans. R. Soc. A 367, 4385-4405.

Cook, RD (2007): Fisher Lecture - Dimension Reduction in Regression (with discussion). Statisti-
cal Science, 22, 1–26.

Cook, R. D. and Forzani, L. (2008a). Covariance reducing models: An alternative to spectral
modelling of covariance matrices. Biometrika 95, 799-812.

Cook, R. D. and Forzani, L. (2008b). Principal fitted components for dimension reduction in re-
gression. Statistical Science 23, 485–501.

Cook, R. D. and Forzani, L. (2009). Likelihood-based sufficient dimension reduction. Journal of
the American Statistical Association, Vol. 104, 485, pp 197–208.

See Also

pfc, lad, core
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Examples

data(bigmac)
fit1 <- ldr(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="pdisc",

degree=0, nslices=5), numdir=3, structure="unstr", model="pfc")
summary(fit1)
plot(fit1)

fit2 <- ldr(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="poly",
degree=2), numdir=2, structure="aniso", model="pfc")

summary(fit2)
plot(fit2)

fit3 <- ldr(X=as.matrix(bigmac[,-1]), y=bigmac[,1], model="lad", nslices=5)
summary(fit3)
plot(fit3)

ldr.slices Function to slice continuous response.

Description

Divides a vector of length n into slices of approximately equal size. It is used to construct the
piecewise bases, and internally used in lad functions.

Usage

ldr.slices(y, nslices = 3)

Arguments

y a vector of length n.

nslices the number of slices, no larger than n.

Details

The number of observations per slice m is computed as the largest integer less or equal to n/nslices.
The n observations of y are ordered in the increasing order. The first set of first m observations is
allocated to the first slice, the second set is allocated into the second slice, and so on.

Value

Returns a named list with four elements as follows:

bins Slices with their observations

nslices The actual number of slices produced.

slice.size The number of observations in each slice.
slice.indicator

Vector of length n indicating the slice number of each observed response value.
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Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

References

Cook, RD and Weisberg, S (1999), Applied Regression Including Computing and Graphics, New
York: Wiley.

OH OH dataset

Description

The hydroxyl OH group activity of compounds from molecular descriptors.

Usage

data(OH)

Format

A data frame with 719 observations on 294 descriptors/predictors. The response is act.

Source

The dataset was provided by Tomas Oberg.

Examples

data(OH)

pfc Principal fitted components

Description

Principal fitted components model for sufficient dimension reduction. This function estimates all
parameters in the model.

Usage

pfc(X, y, fy = NULL, numdir = NULL, structure = c("iso", "aniso",
"unstr", "unstr2"), eps_aniso = 1e-3, numdir.test = FALSE, ...)
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Arguments

X Design matrix with n rows of observations and p columns of predictors. The
predictors are assumed to have a continuous distribution.

y The response vector of n observations, continuous or categorical.

fy Basis function to be obtained using bf or defined by the user. It is a function of
y alone and has r independent column vectors. See bf, for detail.

numdir The number of directions to be used in estimating the reduction subspace. The
dimension must be less than or equal to the minimum of r and p. By default
numdir=min{r, p}.

structure Structure of var(X|Y). The following options are available: "iso" for isotropic
(predictors, conditionally on the response, are independent and on the same
measurement scale); "aniso" for anisotropic (predictors, conditionally on the
response, are independent and on different measurement scales); "unstr" for
unstructured variance. The fourth structure "unstr2" refers to an extended PFC
model with an heterogenous error structure.

eps_aniso Precision term used in estimating var(X|Y) for the anisotropic structure.

numdir.test Boolean. If FALSE, pfc fits with the numdir provided only. If TRUE, PFC models
are fit for all dimensions less than or equal to numdir.

... Additional arguments to Grassmannoptim.

Details

Let X be a column vector of p predictors, and Y be a univariate response variable. Principal fitted
components model is an inverse regression model for sufficient dimension reduction. It is an inverse
regression model given by X|(Y = y) ∼ N(µ + Γβfy,∆). The term ∆ is assumed independent
of y. Its simplest structure is the isotropic (iso) with ∆ = δ2Ip, where, conditionally on the
response, the predictors are independent and are on the same measurement scale. The sufficient
reduction is ΓTX . The anisotropic (aniso) PFC model assumes that ∆ =diag(δ2

1 , ..., δ
2
p), where

the conditional predictors are independent and on different measurement scales. The unstructured
(unstr) PFC model allows a general structure for ∆. With the anisotropic and unstructured ∆, the
sufficient reduction is ΓT ∆−1X . it should be noted that X ∈ Rp while the data-matrix to use is in
Rn×p.

The error structure of the extended structure has the following form

∆ = ΓΩΓT + Γ0Ω0ΓT
0 ,

where Γ0 is the orthogonal completion of Γ such that (Γ,Γ0) is a p × p orthogonal matrix. The
matrices Ω ∈ Rd×d and Ω0 ∈ R(p−d)×(p−d) are assumed to be symmetric and full-rank. The
sufficient reduction is ΓTX . Let SΓ be the subspace spanned by the columns of Γ. The parameter
space of SΓ is the set of all d dimensional subspaces inRp, called Grassmann manifold and denoted
by G(d,p). Let Σ̂, Σ̂fit be the sample variance of X and the fitted covariance matrix, and let Σ̂res =

Σ̂− Σ̂fit. The MLE of SΓ under unstr2 setup is obtained by maximizing the log-likelihood

L(SU ) = − log |UT Σ̂resU | − log |V T Σ̂V |

over G(d,p), where V is an orthogonal completion of U .
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The dimension d of the sufficient reduction must be estimated. A sequential likelihood ratio test
is implemented as well as Akaike and Bayesian information criterion following Cook and Forzani
(2008)

Value

This command returns a list object of class ldr. The output depends on the argument numdir.test.
If numdir.test=TRUE, a list of matrices is provided corresponding to the numdir values (1 through
numdir) for each of the parameters µ, β, Γ, Γ0, Ω, and Ω0. Otherwise, a single list of matrices for
a single value of numdir. The outputs of loglik, aic, bic, numpar are vectors of numdir elements
if numdir.test=TRUE, and scalars otherwise. Following are the components returned:

R The reduction data-matrix of X obtained using the centered data-matrix X . The
centering of the data-matrix of X is such that each column vector is centered
around its sample mean.

Muhat Estimate of µ.

Betahat Estimate of β.

Deltahat The estimate of the covariance ∆.

Gammahat An estimated orthogonal basis representative of ŜΓ, the subspace spanned by Γ.

Gammahat0 An estimated orthogonal basis representative of ŜΓ0
, the subspace spanned by

Γ0.

Omegahat The estimate of the covariance Ω if an extended model is used.

Omegahat0 The estimate of the covariance Ω0 if an extended model is used.

loglik The value of the log-likelihood for the model.

aic Akaike information criterion value.

bic Bayesian information criterion value.

numdir The number of directions to estimate.

numpar The number of parameters in the model.

evalues The first numdir largest eigenvalues of Σ̂fit.

Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

References

Adragni, KP and Cook, RD (2009): Sufficient dimension reduction and prediction in regression.
Phil. Trans. R. Soc. A 367, 4385-4405.

Cook, RD (2007): Fisher Lecture - Dimension Reduction in Regression (with discussion). Statisti-
cal Science, 22, 1–26.

Cook, RD and Forzani, L (2008): Principal fitted components for dimension reduction in regression.
Statistical Science 23, 485–501.

See Also

core, lad



16 screen.pfc

Examples

data(bigmac)
fit1 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="poly",

degree=3),numdir=3, structure="aniso")
summary(fit1)
plot(fit1)

fit2 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="poly",
degree=3), numdir=3, structure="aniso", numdir.test=TRUE)

summary(fit2)

screen.pfc Adaptive Screening of Predictors

Description

Given a set of p predictors and a response, this function selects all predictors that are statistically
related to the response at a specified significance level, using a flexible basis function.

Usage

screen.pfc(X, fy, cutoff=0.1)

Arguments

X Matrix or data frame with n rows of observations and p columns of predictors of
continuous type.

fy Function of y. Basis function to be used to capture the dependency between
individual predictors and the response. See bf for detail.

cutoff The level of significance to be used for the cutoff, by default 0.1.

Details

For each predictor Xj , write the equation

Xj = µ+ φfy + ε

where fy is a flexible basis function provided by the user. The basis function is constructed using
the function bf. The screening procedure uses a test statistic on the null hypothesis φ = 0 against
the alternative φ 6= 0. Given the r components of the basis function fy , the above model is a
linear model where Xj is the response and fy constitutes the predictors. The hypothesis test on φ
is essentially an F-test. Specifically, given the data, let φ̂ be the ordinary least squares estimator of
φ. We consider the usual test statistic

Fj =
n− r − 1

r
.

∑n
i=1[(Xji − X̄j.)

2 − (Xji − X̄j. − φ̂jfyi
)2]∑n

i=1(Xji − X̄j. − φ̂jfyi
)2

where X̄j. =
∑n

i=1Xji/n. The statistic Fj follows an F distribution with (r, n − r − 1) degrees
of freedom. The sample size n is expected to be larger than r.
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Value

Return a data frame object with p rows corresponding to the variables with the following columns

F F statistic for testing the above hypotheses.

P-value The p-value of the test statistic. The F test has 1 and n-2 degrees of freedom

Index Index of the variable, as its position j.

Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

References

Adragni, KP and Cook, RD (2008) Discussion on the Sure Independence Screening for Ultrahigh
Dimensional Feature Space of Jianqing Fan and Jinchi Lv (2007) Journal of the Royal Statistical
Society Series B, 70, Part5, pp1:35

Examples

data(OH)
X <- OH[, -c(1,295)]; y=OH[,295]

# Correlation screening
out <- screen.pfc(X, fy=bf(y, case="poly", degree=1))
head(out)

# Special basis function
out1 <- screen.pfc(X, fy=scale(cbind(y, sqrt(y)), center=TRUE, scale=FALSE))
head(out1)

# Piecewise constant basis with 10 slices
out2 <- screen.pfc(X, fy=bf(y, case="pdisc", degree=0, nslices=10))
head(out2)

snakes Snakes data

Description

Genetic covariance matrices for six genetic traits of two female garter snake populations, one from
a coastal and the other from inland site in northern California. The data set was initially studied by
Phillips and Arnold (1999).

Usage

data(snakes)
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Format

List format of 3 components.

snakes[[1]] sample genetic covariance matrix for the inland population, obtained.

snakes[[2]] sample genetic covariance matrix for the coastal population.

snakes[[3]] vector of sample sizes, respectively for inland and coastal samples.

Details

Both genetic variance-covariances are obtained on six traits of the snakes.

References

Phillips P, Arnold S (1999). Hierarchical Comparison of Genetic variance-Covariance matrix using
the Flury Hierarchy." Evolution, 53, 1506–1515.

Examples

data(snakes)

structure.test Test of covariance structure for PFC models

Description

Information criterion and likelihood ratio test for the structure of the covariance matrix of PFC
models.

Usage

structure.test(object1, object2)

Arguments

object1 An object of class pfc

object2 A second object of class pfc, fitted exactly as for object1 except for the covari-
ance structure ∆.

Details

Consider two PFC modelsM1 andM2, with the same parameters, except for the conditional covari-
ance that is ∆1 forM1 and ∆2 forM2 such that modelM1 is nested in modelM2. We implemented
the likelihood ratio test for the hypotheses: H0 : ∆ = ∆1 versus Ha : ∆ = ∆2. The test is im-
plemented for the isotropic, anisotropic, and the unstructured PFC models. One may test isotropic
against either anisotropic or unstructured, or test anisotropic against unstructured. The degrees of
freedom are given by the difference in the number of parameters in the covariances. Information
criterion AIC and BIC are also provided.
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Author(s)

Kofi Placid Adragni <kofi@umbc.edu>

Examples

data(bigmac)
fit1 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="poly",

degree=3), numdir=3, structure="iso")
fit2 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="poly",

degree=3), numdir=3, structure="aniso")
fit3 <- pfc(X=bigmac[,-1], y=bigmac[,1], fy=bf(y=bigmac[,1], case="poly",

degree=3), numdir=3, structure="unstr")
structure.test(fit1, fit3)
structure.test(fit2, fit3)
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