lawn
is an R wrapper for the Javascript library turf.js for advanced geospatial analysis. In addition, we have a few functions to interface with the geojson-random Javascript library.
lawn
includes traditional spatial operations, helper functions for creating GeoJSON data, and data classification and statistics tools.
There is an additional helper function (see view()
) in this package to help visualize data with interactive maps via the leaflet
package (https://github.com/rstudio/leaflet). Note that leaflet
is not required to install lawn
- it’s in Suggests, not Imports or Depends.
If installing leaflet
devtools::install_github("rstudio/leaflet")
Stable lawn
version from CRAN
install.packages("lawn")
Or, the development version from Github
devtools::install_github("ropensci/lawn")
library("lawn")
Point
lawn_point(c(-74.5, 40))
#> <Point>
#> Bounding box: -74.5 40.0 -74.5 40.0
#> Coordinates: -74.5 40.0
#> Properties: NULL
Polygon
rings <- list(list(
c(-2.275543, 53.464547),
c(-2.275543, 53.489271),
c(-2.215118, 53.489271),
c(-2.215118, 53.464547),
c(-2.275543, 53.464547)
))
lawn_polygon(rings)
#> <Polygon>
#> Bounding box: -2.3 53.5 -2.2 53.5
#> No. points: 5
#> Properties: NULL
Count number of points within polygons
lawn_count(polygons = lawn_data$polygons_count, points = lawn_data$points_count, "population")
#> <FeatureCollection>
#> Bounding box: -112.1 46.6 -112.0 46.6
#> No. features: 2
#> No. points: 20
#> Properties:
#> values count
#> 1 200, 600 2
#> 2 0
Average value of a field for a set of points within a set of polygons
lawn_average(polygons = lawn_data$polygons_average,
points = lawn_data$points_average,
in_field = 'population')
#> <FeatureCollection>
#> Bounding box: 10.7 59.9 10.9 59.9
#> No. features: 2
#> No. points: 20
#> Properties:
#> values average
#> 1 200, 600, 100 300
#> 2 200, 300 250
Define two points
from <- '{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Point",
"coordinates": [-75.343, 39.984]
}
}'
to <- '{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Point",
"coordinates": [-75.534, 39.123]
}
}'
Calculate distance, default units is kilometers (default output: km
)
lawn_distance(from, to)
#> [1] 97.15958
lawn_random(n = 2)
#> <FeatureCollection>
#> Bounding box: -26.8 -84.1 86.5 21.6
#> No. features: 2
#> No. points: 4
#> Properties: NULL
lawn_random(n = 5)
#> <FeatureCollection>
#> Bounding box: -165.5 -62.1 53.1 87.6
#> No. features: 5
#> No. points: 10
#> Properties: NULL
Positions
gr_position()
#> [1] 17.02743 -38.50832
Points
gr_point(2)
#> <FeatureCollection>
#> Bounding box: -35.7 -43.7 84.4 -6.7
#> No. features: 2
#> No. points: 4
#> Properties: NULL
Polygons
gr_polygon(n = 1, vertices = 5, max_radial_length = 5)
#> <FeatureCollection>
#> Bounding box: 86.4 -50.0 92.0 -43.2
#> No. features: 1
#> No. points: 12
#> Properties: NULL
dat <- lawn_data$points_average
lawn_sample(dat, 1)
#> <FeatureCollection>
#> Bounding box: 10.7 59.9 10.7 59.9
#> No. features: 1
#> No. points: 2
#> Properties:
#> population
#> 1 600
lawn_sample(dat, 2)
#> <FeatureCollection>
#> Bounding box: 10.8 59.9 10.8 59.9
#> No. features: 2
#> No. points: 4
#> Properties:
#> population
#> 1 200
#> 2 300
lawn_sample(dat, 3)
#> <FeatureCollection>
#> Bounding box: 10.7 59.9 10.8 59.9
#> No. features: 3
#> No. points: 6
#> Properties:
#> population
#> 1 600
#> 2 300
#> 3 200
lawn_extent(lawn_data$points_average)
#> [1] 10.71579 59.90478 10.80643 59.93162
lawn_within(lawn_data$points_within, lawn_data$polygons_within)
#> <FeatureCollection>
#> Bounding box: -46.6 -23.6 -46.6 -23.6
#> No. features: 2
#> No. points: 4
#> Properties: NULL
dat <- '{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",
"coordinates": [[
[-112.072391,46.586591],
[-112.072391,46.61761],
[-112.028102,46.61761],
[-112.028102,46.586591],
[-112.072391,46.586591]
]]
}
}'
lawn_buffer(dat, 1, "miles")
#> <Feature>
#> Type: Polygon
#> Bounding box: -112.1 46.6 -112.0 46.6
#> No. points: 74
#> Properties: NULL
For most functions, you can lint your input geojson data to make sure it is proper geojson. We use the javascript library geojsonhint. See the lint
parameter where available.
Good GeoJSON
dat <- '{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {
"population": 200
},
"geometry": {
"type": "Point",
"coordinates": [10.724029, 59.926807]
}
},
{
"type": "Feature",
"properties": {
"population": 600
},
"geometry": {
"type": "Point",
"coordinates": [10.715789, 59.904778]
}
}
]
}'
lawn_extent(dat)
#> [1] 10.71579 59.90478 10.72403 59.92681
Bad GeoJSON
dat <- '{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {
"population": 200
},
"geometry": {
"type": "Point"
}
},
{
"type": "Feature",
"properties": {
"population": 600
},
"geometry": {
"type": "Point",
"coordinates": [10.715789, 59.904778]
}
}
]
}'
lawn_extent(dat, lint = TRUE)
#> Error: Line 1 - "coordinates" member required
lawn
includes a tiny helper function for visualizing geojson.
view(lawn_data$points_average)
map1
Here, we sample at random two points from the same dataset just viewed.
lawn_sample(lawn_data$points_average, 2) %>% view()
map1