
Package ‘lawn’
February 1, 2019

Title Client for 'Turfjs' for 'Geospatial' Analysis

Description Client for 'Turfjs' (<http://turfjs.org>) for
'geospatial' analysis. The package revolves around using 'GeoJSON'
data. Functions are included for creating 'GeoJSON' data objects,
measuring aspects of 'GeoJSON', and combining, transforming,
and creating random 'GeoJSON' data objects.

Type Package

Version 0.5.0

License MIT + file LICENSE

URL https://github.com/ropensci/lawn

BugReports https://github.com/ropensci/lawn/issues

LazyData true

VignetteBuilder knitr

Encoding UTF-8

Imports V8, jsonlite, magrittr

Suggests roxygen2 (>= 6.1.1), testthat, knitr, rmarkdown, leaflet

Enhances maps, geojsonio

RoxygenNote 6.1.1

NeedsCompilation no

Author Scott Chamberlain [aut, cre],
Jeff Hollister [aut],
Morgan Herlocker [cph]

Maintainer Scott Chamberlain <myrmecocystus@gmail.com>

Repository CRAN

Date/Publication 2019-02-01 05:33:25 UTC

1

https://github.com/ropensci/lawn
https://github.com/ropensci/lawn/issues

2 R topics documented:

R topics documented:
lawn-package . 4
as.feature . 4
as_feature . 5
data-types . 6
georandom . 9
lawn-defunct . 10
lawn_along . 11
lawn_area . 12
lawn_average . 13
lawn_bbox . 14
lawn_bbox_polygon . 14
lawn_bearing . 15
lawn_bezier . 16
lawn_boolean_clockwise . 17
lawn_boolean_contains . 18
lawn_boolean_crosses . 19
lawn_boolean_disjoint . 19
lawn_boolean_overlap . 20
lawn_boolean_pointonline . 21
lawn_boolean_within . 22
lawn_buffer . 22
lawn_center . 24
lawn_center_of_mass . 25
lawn_centroid . 26
lawn_circle . 27
lawn_collect . 28
lawn_collectionof . 29
lawn_combine . 30
lawn_concave . 31
lawn_convex . 33
lawn_coordall . 35
lawn_coordeach . 36
lawn_count . 37
lawn_data . 38
lawn_destination . 39
lawn_deviation . 40
lawn_difference . 41
lawn_dissolve . 42
lawn_distance . 44
lawn_envelope . 45
lawn_explode . 46
lawn_extent . 47
lawn_feature . 48
lawn_featurecollection . 49
lawn_featureeach . 52
lawn_featureof . 53

R topics documented: 3

lawn_filter . 54
lawn_flatten . 55
lawn_flip . 55
lawn_geometrycollection . 56
lawn_geosjontype . 58
lawn_getcoord . 59
lawn_hex_grid . 59
lawn_idw . 60
lawn_inside . 63
lawn_intersect . 64
lawn_isolines . 66
lawn_kinks . 67
lawn_linestring . 68
lawn_line_distance . 69
lawn_line_offset . 70
lawn_line_slice . 71
lawn_line_slice_along . 73
lawn_max . 74
lawn_median . 75
lawn_merge . 76
lawn_midpoint . 77
lawn_min . 78
lawn_multilinestring . 79
lawn_multipoint . 80
lawn_multipolygon . 81
lawn_nearest . 82
lawn_planepoint . 84
lawn_point . 85
lawn_point_grid . 86
lawn_point_on_line . 87
lawn_point_on_surface . 88
lawn_polygon . 89
lawn_propeach . 90
lawn_pt2line_distance . 91
lawn_random . 92
lawn_remove . 93
lawn_rewind . 94
lawn_sample . 95
lawn_simplify . 96
lawn_square . 97
lawn_square_grid . 98
lawn_sum . 99
lawn_tag . 100
lawn_tesselate . 101
lawn_tin . 102
lawn_transform_rotate . 103
lawn_transform_scale . 104
lawn_transform_translate . 106

4 as.feature

lawn_triangle_grid . 107
lawn_truncate . 108
lawn_union . 109
lawn_unkinkpolygon . 110
lawn_variance . 111
lawn_within . 112
print-methods . 113
view . 115

Index 118

lawn-package R client for turf.js for geospatial analysis

Description

turf.js uses GeoJSON for all geographic data, and expects the data to be standard WGS84 lon-
gitude,latitude coordinates. See http://geojson.io/ for a tool to easily create GeoJSON in a
browser.

Author(s)

Scott Chamberlain (<myrmecocystus@gmail.com>)

Jeff Hollister (<hollister.jeff@epa.gov>)

See Also

lawn-defunct

as.feature Coerce character strings or JSON to GeoJSON Feature

Description

Coerce character strings or JSON to GeoJSON Feature

Usage

as.feature(x, ...)

Arguments

x a character string or json class with a GeoJSON object, any of feature, point,
multipoint, linestring, multilinestring, polygon, or multipolygon. featurecollec-
tion and geometrycollection simply returned without alteration

... ignored

http://en.wikipedia.org/wiki/World_Geodetic_System
http://geojson.io/

as_feature 5

Value

a feature class object

Examples

poly <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[105.818939,21.004714],
[105.818939,21.061754],
[105.890007,21.061754],
[105.890007,21.004714],
[105.818939,21.004714]

]]
}

}'
as.feature(poly)

pt <- '{"type":"Point","coordinates":[-75.343,39.984]}'
as.feature(pt)

line <- '{
"type": "LineString",
"coordinates": [

[-77.031669, 38.878605],
[-77.029609, 38.881946],
[-77.020339, 38.884084],
[-77.025661, 38.885821],
[-77.021884, 38.889563],
[-77.019824, 38.892368]
]

}'
as.feature(line)

returns self if no match - note "Points" is not a GeoJSON type
pt <- '{"type":"Points","coordinates":[-75.343,39.984]}'
as.feature(pt)

as_feature Convert a FeatureCollection to a Feature

Description

Convert a FeatureCollection to a Feature

6 data-types

Usage

as_feature(x)

Arguments

x A data-FeatureCollection.

Details

If there are more than one feature within the featurecollection, each feature is split out into a separate
feature, returned in a list. Each feature is assigned a class matching it’s GeoJSON data type (e.g.,
point, polygon, linestring).

See Also

as.feature , which is similarly named, but has a different purpose

Examples

as_feature(lawn_random())
as_feature(lawn_random("polygons"))

data-types Description of GeoJSON data types

Description

GeoJSON types based on https://tools.ietf.org/html/rfc7946

GeoJSON object

GeoJSON always consists of a single object. This object (referred to as the GeoJSON object below)
represents a geometry, feature, or collection of features.

• The GeoJSON object may have any number of members (name/value pairs).

• The GeoJSON object must have a member with the name "type". This member’s value is a
string that determines the type of the GeoJSON object.

• The value of the type member must be one of: "Point", "MultiPoint", "LineString", "Multi-
LineString", "Polygon", "MultiPolygon", "GeometryCollection", "Feature", or "FeatureCol-
lection". The case of the type member values must be as shown here.

• A GeoJSON object may have an optional "crs" member, the value of which must be a coordi-
nate reference system object (see 3. Coordinate Reference System Objects).

• A GeoJSON object may have a "bbox" member, the value of which must be a bounding box
array (see 4. Bounding Boxes).

https://tools.ietf.org/html/rfc7946

data-types 7

Geometry

A Geometry object represents points, curves, and surfaces in coordinate space. Every Geometry
object is a GeoJSON object no matter where it occurs in a GeoJSON text.

• The value of a Geometry object’s "type" member MUST be one of the seven geometry types
(see Section 1.4).

• A GeoJSON Geometry object of any type other than "GeometryCollection" has a member with
the name "coordinates". The value of the "coordinates" member is an array. The structure of
the elements in this array is determined by the type of geometry. GeoJSON processors MAY
interpret Geometry objects with empty "coordinates" arrays as null objects.

Point

For type "Point", the "coordinates" member must be a single position.

Example JSON: { "type": "Point", "coordinates": [100.0, 0.0] }

In lawn: lawn_point(c(1, 2))

See: lawn_point

MultiPoint

For type "MultiPoint", the "coordinates" member must be an array of positions.

Example JSON: { "type": "MultiPoint", "coordinates": [[100.0, 0.0],[101.0, 1.0]] }

See: lawn_multipoint

Polygon

For type "Polygon", the "coordinates" member must be an array of LinearRing coordinate arrays.
For Polygons with multiple rings, the first must be the exterior ring and any others must be interior
rings or holes.

Example JSON: { "type": "Polygon", "coordinates": [[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]]] }

In lawn: lawn_polygon(list(list(c(-2, 52), c(-3, 54), c(-2, 53),c(-2, 52))))

See: lawn_polygon

MultiPolygon

For type "MultiPolygon", the "coordinates" member must be an array of Polygon coordinate arrays.

Example JSON:

{ "type": "MultiPolygon", "coordinates": [[[[102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]], [[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]], [[100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2]]]
] }

See: lawn_multipolygon

8 data-types

LineString

For type "LineString", the "coordinates" member must be an array of two or more positions. A
LinearRing is closed LineString with 4 or more positions. The first and last positions are equivalent
(they represent equivalent points). Though a LinearRing is not explicitly represented as a GeoJSON
geometry type, it is referred to in the Polygon geometry type definition.

Example JSON: { "type": "LineString", "coordinates": [[100.0, 0.0],[101.0, 1.0]] }

In lawn: lawn_linestring(list(c(-2, 52), c(-3, 54), c(-2, 53)))

See: lawn_linestring

MultiLineString

For type "MultiLineString", the "coordinates" member must be an array of LineString coordinate
arrays.

Example JSON: { "type": "MultiLineString", "coordinates": [[[-105, 39], [-105, 39]], [[-105, 39], [-105, 39]]
] }

See: lawn_multilinestring

Feature

A GeoJSON object with the type "Feature" is a feature object:

• A feature object must have a member with the name "geometry". The value of the geometry
member is a geometry object as defined above or a JSON null value.

• A feature object must have a member with the name "properties". The value of the properties
member is an object (any JSON object or a JSON null value).

• If a feature has a commonly used identifier, that identifier should be included as a member of
the feature object with the name "id".

See: lawn_feature

FeatureCollection

A GeoJSON object with the type "FeatureCollection" is a feature collection object. An object of
type "FeatureCollection" must have a member with the name "features". The value corresponding
to "features" is an array. Each element in the array is a feature object as defined above.

In lawn: lawn_featurecollection(lawn_point(c(-75, 39)))

See: lawn_featurecollection

GeometryCollection

Each element in the geometries array of a GeometryCollection is one of the geometry objects de-
scribed above.

Example JSON: { "type": "GeometryCollection", "geometries": [{ "type": "Point", "coordinates": [100.0, 0.0]
}, { "type": "LineString", "coordinates": [[101.0, 0.0], [102.0, 1.0]]
}] }

See: lawn_geometrycollection

georandom 9

georandom Return a FeatureCollection with N number of features with random
coordinates

Description

Return a FeatureCollection with N number of features with random coordinates

Usage

gr_point(n = 10, bbox = NULL)

gr_position(bbox = NULL)

gr_polygon(n = 1, vertices = 10, max_radial_length = 10,
bbox = NULL)

Arguments

n (integer) Number of features to create. Default: 10 (points), 1 (polygons)

bbox (numeric) A bounding box of length 4, of the form west, south, east, north order.
By default, no bounding box is passed in.

vertices (integer) Number coordinates each Polygon will contain. Default: 10

max_radial_length

(integer) Maximum number of decimal degrees latitude or longitude that a ver-
tex can reach out of the center of the Polygon. Default: 10

Details

These functions create either random points, polygons, or positions (single long/lat coordinate
pairs).

Value

A data-FeatureCollection for point and polygon, or numeric vector for position.

References

https://github.com/mapbox/geojson-random

See Also

lawn_random

https://github.com/mapbox/geojson-random

10 lawn-defunct

Examples

Random points
gr_point(5)
gr_point(10)
gr_point(1000)
with bounding box
gr_point(5, c(50, 50, 60, 60))

Random positions
gr_position()
with bounding box
gr_position(c(0, 0, 10, 10))

Random polygons
number of polygons, default is 1 polygon
gr_polygon()
gr_polygon(5)
number of vertices, 3 vs. 100
gr_polygon(1, 3)
gr_polygon(1, 100)
max radial length, compare the following three
gr_polygon(1, 10, 5)
gr_polygon(1, 10, 30)
gr_polygon(1, 10, 100)
use a bounding box
gr_polygon(1, 5, 5, c(50, 50, 60, 60))

lawn-defunct Defunct functions in lawn

Description

• lawn_size: Function removed. The size method in turf.js has been removed. See https:
//github.com/Turfjs/turf/issues/306

• lawn_reclass: Function removed. The reclass method in turf.js has been removed. See
https://github.com/Turfjs/turf/issues/306

• lawn_jenks: Function removed. The jenks method in turf.js has been removed. See https:
//github.com/Turfjs/turf/issues/306

• lawn_quantile: Function removed. The quantile method in turf.js has been removed. See
https://github.com/Turfjs/turf/issues/306

• lawn_aggregate: Function removed. The aggregate method in turf.js has been removed. See
https://github.com/Turfjs/turf/issues/306

https://github.com/Turfjs/turf/issues/306
https://github.com/Turfjs/turf/issues/306
https://github.com/Turfjs/turf/issues/306
https://github.com/Turfjs/turf/issues/306
https://github.com/Turfjs/turf/issues/306
https://github.com/Turfjs/turf/issues/306
https://github.com/Turfjs/turf/issues/306

lawn_along 11

lawn_along Get a point at a distance along a line

Description

Takes a data-LineString and returns a data-Point at a specified distance along the line.

Usage

lawn_along(line, distance, units, lint = FALSE)

Arguments

line An input data-LineString.

distance Distance along the line.

units Units for the distance argument. Can be degrees, radians, miles, or kilometers.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Point distance units along the line.

See Also

Other measurements: lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing, lawn_center_of_mass,
lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

pts <- '[
[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]

]'
lawn_along(lawn_linestring(pts), 1, 'miles')

line <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [
[-77.031669, 38.878605],
[-77.029609, 38.881946],

12 lawn_area

[-77.020339, 38.884084],
[-77.025661, 38.885821],
[-77.021884, 38.889563],
[-77.019824, 38.892368]
]

}
}'
lawn_along(line, distance = 1, units = 'miles')
Not run:
lawn_along(lawn_linestring(pts), 1, 'miles') %>% view
res <- lawn_along(lawn_linestring(pts), 1, 'miles')
lawn_featurecollection(list(res, lawn_linestring(pts))) %>% view

End(Not run)

lawn_area Calculate the area of a polygon or group of polygons

Description

Calculate the area of a polygon or group of polygons

Usage

lawn_area(input, lint = FALSE)

Arguments

input A data-Feature or data-FeatureCollection of polygons

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A numeric in square meters

See Also

Other measurements: lawn_along, lawn_bbox_polygon, lawn_bbox, lawn_bearing, lawn_center_of_mass,
lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

lawn_area(lawn_data$poly)
lawn_area(lawn_data$multipoly)

lawn_average 13

lawn_average Average of a field among points within polygons

Description

Calculate the average value of a field for a set of data-Points within a set of data-Polygons

Usage

lawn_average(polygons, points, in_field, out_field = "average",
lint = FALSE)

Arguments

polygons A data-FeatureCollection of data-Polygon’s

points A data-FeatureCollection of data-Point’s

in_field (character) The field in the points feature from which to pull values to average.

out_field (character) The field in polygons to put results of the averages.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

Polygons with the value of out_field set to the calculated averages

See Also

Other aggregations: lawn_collect, lawn_count, lawn_deviation, lawn_max, lawn_median, lawn_min,
lawn_sum, lawn_variance

Examples

Not run:
using data in the package
cat(lawn_data$points_average)
cat(lawn_data$polygons_average)
lawn_average(polygons = lawn_data$polygons_average,

points = lawn_data$points_average, 'population')

End(Not run)

14 lawn_bbox_polygon

lawn_bbox Make a bounding box from a polygon

Description

Takes a polygon data-Polygon and returns a bbox

Usage

lawn_bbox(x, lint = FALSE)

Arguments

x A FeatureCollection of data-Polygon features.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A bounding box.

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bearing, lawn_center_of_mass,
lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

bbox <- c(0, 0, 10, 10)
lawn_bbox(lawn_bbox_polygon(bbox))

lawn_bbox_polygon Make a polygon from a bounding box

Description

Takes a bbox and returns an equivalent polygon data-Polygon.

Usage

lawn_bbox_polygon(bbox)

Arguments

bbox An array of bounding box coordinates in the form: [xLow, yLow, xHigh, yHigh].

lawn_bearing 15

Value

A data-Polygon representation of the bounding box.

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox, lawn_bearing, lawn_center_of_mass,
lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

bbox <- c(0, 0, 10, 10)
lawn_bbox_polygon(bbox)
Not run:
lawn_bbox_polygon(bbox) %>% view
lawn_bbox_polygon(c(1, 3, 5, 50)) %>% view

End(Not run)

lawn_bearing Get geographic bearing between two points

Description

Takes two data-Point’s and finds the geographic bearing between them.

Usage

lawn_bearing(start, end, lint = FALSE)

Arguments

start Starting data-Feature with a single data-Point

end Ending data-Feature with a single data-Point

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A numeric value of the bearing in degrees.

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_center_of_mass,
lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

16 lawn_bezier

Examples

start <- '{
"type": "Feature",
"properties": {
"marker-color": "#f00"

},
"geometry": {

"type": "Point",
"coordinates": [-75.343, 39.984]

}
}'

end <- '{
"type": "Feature",
"properties": {

"marker-color": "#0f0"
},
"geometry": {

"type": "Point",
"coordinates": [-75.534, 39.123]

}
}'
lawn_bearing(start, end)

lawn_bezier Curve a linestring

Description

Takes a data-LineString and returns a curved version by applying a Bezier spline algorithm.

Usage

lawn_bezier(line, resolution = 10000L, sharpness = 0.85,
lint = FALSE)

Arguments

line A data-Feature with a single data-LineString

resolution Time in milliseconds between points

sharpness A measure of how curvy the path should be between splines

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-LineString curved line.

http://en.wikipedia.org/wiki/Bezier_spline

lawn_boolean_clockwise 17

See Also

Other transformations: lawn_buffer, lawn_concave, lawn_convex, lawn_difference, lawn_intersect,
lawn_merge, lawn_simplify, lawn_union

Examples

pts <- '[
[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]

]'
lawn_bezier(lawn_linestring(pts))
lawn_bezier(lawn_linestring(pts), 9000L)
lawn_bezier(lawn_linestring(pts), 9000L, 0.65)
Not run:
lawn_bezier(lawn_linestring(pts)) %>% view
lawn_featurecollection(list(lawn_linestring(pts),

lawn_bezier(lawn_linestring(pts)))) %>% view

End(Not run)

lawn_boolean_clockwise

Boolean clockwise

Description

Boolean clockwise

Usage

lawn_boolean_clockwise(line, lint = FALSE)

Arguments

line line data-Feature<(data-LineString)>

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

See Also

Other boolean functions: lawn_boolean_contains, lawn_boolean_crosses, lawn_boolean_disjoint,
lawn_boolean_overlap, lawn_boolean_pointonline, lawn_boolean_within

18 lawn_boolean_contains

Examples

l1 <- '[[0,0],[1,1],[1,0],[0,0]]'
l2 <- '[[0,0],[1,0],[1,1],[0,0]]'
lawn_boolean_clockwise(lawn_linestring(l1))
lawn_boolean_clockwise(lawn_linestring(l2))

lawn_boolean_contains Boolean contains

Description

Boolean contains

Usage

lawn_boolean_contains(feature1, feature2, lint = FALSE)

Arguments

feature1, feature2

any data-Geometry/data-Feature objects

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

See Also

Other boolean functions: lawn_boolean_clockwise, lawn_boolean_crosses, lawn_boolean_disjoint,
lawn_boolean_overlap, lawn_boolean_pointonline, lawn_boolean_within

Examples

l1 <- '[[1, 1], [1, 2], [1, 3], [1, 4]]'
pt1 <- '[1, 2]'
lawn_boolean_contains(feature1=lawn_linestring(l1), feature2=lawn_point(pt1))

lawn_boolean_crosses 19

lawn_boolean_crosses Boolean crosses

Description

Boolean crosses

Usage

lawn_boolean_crosses(feature1, feature2, lint = FALSE)

Arguments

feature1, feature2

any data-Geometry/data-Feature objects

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

See Also

Other boolean functions: lawn_boolean_clockwise, lawn_boolean_contains, lawn_boolean_disjoint,
lawn_boolean_overlap, lawn_boolean_pointonline, lawn_boolean_within

Examples

l1 <- '[[-2, 2], [4, 2]]'
l2 <- '[[1, 1], [1, 2], [1, 3], [1, 4]]'
lawn_boolean_crosses(lawn_linestring(l1), lawn_linestring(l2))

lawn_boolean_disjoint Boolean crosses

Description

Boolean crosses

Usage

lawn_boolean_disjoint(feature1, feature2, lint = FALSE)

20 lawn_boolean_overlap

Arguments

feature1, feature2

any data-Geometry/data-Feature objects

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

See Also

Other boolean functions: lawn_boolean_clockwise, lawn_boolean_contains, lawn_boolean_crosses,
lawn_boolean_overlap, lawn_boolean_pointonline, lawn_boolean_within

Examples

pt1 <- '[2, 2]'
l1 <- '[[1, 1], [1, 2], [1, 3], [1, 4]]'
lawn_boolean_disjoint(lawn_point(pt1), lawn_linestring(l1))

lawn_boolean_overlap Boolean overlap

Description

Boolean overlap

Usage

lawn_boolean_overlap(feature1, feature2, lint = FALSE)

Arguments

feature1, feature2

any data-Geometry/data-Feature objects

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

lawn_boolean_pointonline 21

See Also

Other boolean functions: lawn_boolean_clockwise, lawn_boolean_contains, lawn_boolean_crosses,
lawn_boolean_disjoint, lawn_boolean_pointonline, lawn_boolean_within

Examples

poly1 <- "[[[0,0],[0,5],[5,5],[5,0],[0,0]]]"
poly2 <- "[[[1,1],[1,6],[6,6],[6,1],[1,1]]]"
poly3 <- "[[[10,10],[10,15],[15,15],[15,10],[10,10]]]"
lawn_boolean_overlap(lawn_polygon(poly1), lawn_polygon(poly2))
lawn_boolean_overlap(lawn_polygon(poly2), lawn_polygon(poly3))

lawn_boolean_pointonline

Boolean overlap

Description

Boolean overlap

Usage

lawn_boolean_pointonline(point, linestring, ignoreEndVertices = FALSE,
lint = FALSE)

Arguments

point any data-Geometry/data-Feature
linestring any data-Geometry/data-Feature
ignoreEndVertices

(logical) whether to ignore the start and end vertices. Default: ‘FALSE
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

See Also

Other boolean functions: lawn_boolean_clockwise, lawn_boolean_contains, lawn_boolean_crosses,
lawn_boolean_disjoint, lawn_boolean_overlap, lawn_boolean_within

Examples

l1 <- "[[-1, -1],[1, 1],[1.5, 2.2]]"
lawn_boolean_pointonline(lawn_point("[0, 0]"), lawn_linestring(l1))

22 lawn_buffer

lawn_boolean_within Boolean within

Description

returns TRUE if the first geometry is completely within the second geometry

Usage

lawn_boolean_within(feature1, feature2, lint = FALSE)

Arguments

feature1, feature2

any data-Geometry/data-Feature objects

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a logical (TRUE/FALSE)

See Also

Other boolean functions: lawn_boolean_clockwise, lawn_boolean_contains, lawn_boolean_crosses,
lawn_boolean_disjoint, lawn_boolean_overlap, lawn_boolean_pointonline

Examples

pt1 <- '[1, 2]'
l1 <- '[[1, 1], [1, 2], [1, 3], [1, 4]]'
lawn_boolean_within(lawn_point(pt1), lawn_linestring(l1))

lawn_buffer Buffer a feature

Description

Calculates a buffer for input features for a given radius.

Usage

lawn_buffer(input, dist, units = "kilometers", lint = FALSE)

lawn_buffer 23

Arguments

input A data-Feature or data-FeatureCollection

dist (integer/numeric) Distance used to buffer the input.

units (character) Units of the dist argument. Can be miles, feet, kilometers (default),
meters, or degrees.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Author(s)

Jeff Hollister <hollister.jeff@epa.gov>

See Also

Other transformations: lawn_bezier, lawn_concave, lawn_convex, lawn_difference, lawn_intersect,
lawn_merge, lawn_simplify, lawn_union

Examples

From a Point
pt <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-90.548630, 14.616599]

}
}'
lawn_buffer(pt, 5)

From a FeatureCollection
dat <- lawn_random(n = 100)
lawn_buffer(dat, 100)

From a Feature
dat <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-112.072391,46.586591],
[-112.072391,46.61761],
[-112.028102,46.61761],
[-112.028102,46.586591],
[-112.072391,46.586591]

]]
}

}'

24 lawn_center

lawn_buffer(dat, 1, "miles")

buffer a point
lawn_buffer(lawn_point(c(-74.50,40)), 100, "meters")

lawn_center Get center point

Description

Takes a data-FeatureCollection and returns the absolute center point of all features.

Usage

lawn_center(features, properties = NULL, lint = FALSE)

Arguments

features Input features, as a data-Feature or data-FeatureCollection

properties A list of properties. Default: NULL

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Point feature at the absolute center point of all input features.

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_extent, lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance,
lawn_square

Examples

lawn_center(lawn_data$points_average)
lawn_center(lawn_data$points_average, properties = list(

foo = "bar", hello = "world"))
Not run:
lawn_center(lawn_data$points_average) %>% view
lawn_featurecollection(lawn_data$points_average) %>% view
lawn_center(lawn_data$points_average) %>% view

End(Not run)

lawn_center_of_mass 25

lawn_center_of_mass Center of mass

Description

Takes a data-Feature or a data-FeatureCollection and returns its center of mass using formula
https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon

Usage

lawn_center_of_mass(x, lint = FALSE)

Arguments

x a data-Feature or data-FeatureCollection

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-Feature<(data-Point)>

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

x <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-112.072391,46.586591],
[-112.072391,46.61761],
[-112.028102,46.61761],
[-112.028102,46.586591],
[-112.072391,46.586591]

]]
}

}'
lawn_center_of_mass(x)

lawn_center_of_mass(lawn_data$polygons_average)

https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon

26 lawn_centroid

lawn_centroid Centroid

Description

Takes one or more features and calculates the centroid using the arithmetic mean of all vertices. This
lessens the effect of small islands and artifacts when calculating the centroid of a set of polygons.

Usage

lawn_centroid(features, properties = NULL, lint = FALSE)

Arguments

features Input features, as a data-Feature or data-FeatureCollection
properties A list of properties. Default: NULL
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-Feature<(data-Point)> - centroid of the input features

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_destination, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

poly <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[105.818939,21.004714],
[105.818939,21.061754],
[105.890007,21.061754],
[105.890007,21.004714],
[105.818939,21.004714]
]]

}
}'
lawn_centroid(features = poly)
lawn_centroid(features = as.feature(poly))
lawn_centroid(features = poly, properties = list(foo = "bar"))

lawn_circle 27

lawn_circle circle

Description

Takes a data-Point and calculates the circle polygon given a radius in degrees, radians, miles, or
kilometers; and steps for precision

Usage

lawn_circle(center, radius, steps = FALSE, units = "kilometers",
lint = FALSE)

Arguments

center The center, a data-Feature<(data-Point)>

radius (integer) Radius of the circle.

steps (integer) Number of steps.

units (character) Miles, kilometers (default), degrees, or radians

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-Feature<(data-Polygon)>

See Also

Other assertions: lawn_dissolve, lawn_tesselate

Examples

pt <- '{
"type": "Feature",
"properties": {

"marker-color": "#0f0"
},
"geometry": {

"type": "Point",
"coordinates": [-75.343, 39.984]

}
}'

lawn_circle(pt, radius = 5, steps = 10)
Not run:
lawn_circle(pt, radius = 5, steps = 10) %>% view
lawn_circle(pt, radius = 4, steps = 10) %>% view

28 lawn_collect

lawn_circle(pt, radius = 3, steps = 10) %>% view
lawn_circle(pt, radius = 10, steps = 10) %>% view
lawn_circle(pt, radius = 5, steps = 5) %>% view
lawn_circle(pt, radius = 5, steps = 4) %>% view

End(Not run)

lawn_collect Collect method

Description

Given an inProperty on points and an outProperty for polygons, this finds every point that lies
within each polygon, collects the inProperty values from those points, and adds them as an array to
outProperty on the polygon.

Usage

lawn_collect(polygons, points, in_field, out_field, lint = FALSE)

Arguments

polygons a data-FeatureCollection of data-Polygon features

points a data-FeatureCollection of data-Point features

in_field (character) the field in input data to analyze

out_field (character) the field in which to store results

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A FeatureCollection of data-Polygon features with properties listed as out_field

Author(s)

Jeff Hollister <hollister.jeff@epa.gov>

See Also

Other aggregations: lawn_average, lawn_count, lawn_deviation, lawn_max, lawn_median, lawn_min,
lawn_sum, lawn_variance

lawn_collectionof 29

Examples

ex_polys <- lawn_data$polygons_aggregate
ex_pts <- lawn_data$points_aggregate
res <- lawn_collect(ex_polys, ex_pts, 'population', 'stuff')
res$type
res$features
res$features$properties

Not run:
lawn_collect(ex_polys, ex_pts, 'population', 'stuff') %>% view

End(Not run)

lawn_collectionof Enforce expectations about types of FeatureCollection inputs

Description

Enforce expectations about types of FeatureCollection inputs

Usage

lawn_collectionof(x, type, name, lint = FALSE)

Arguments

x a data-FeatureCollection for which features will be judged. required
type (character) expected GeoJSON type. required.
name (character) name of calling function. required.
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

nothing if no problems - error message if a problem

See Also

Other invariant: lawn_featureof, lawn_geosjontype

Examples

all okay
cat(lawn_data$points_count)
lawn_collectionof(lawn_data$points_count, 'Point', 'stuff')

error
lawn_collectionof(lawn_data$points_count, 'Polygon', 'stuff')

30 lawn_combine

lawn_combine Combine singular features into plural versions

Description

Combines a FeatureCollection of Point, LineString, or Polygon features into MultiPoint, Multi-
LineString, or MultiPolygon features.

Usage

lawn_combine(fc, lint = FALSE)

Arguments

fc A data-FeatureCollection of any type.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Examples

combine points
fc1 <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [19.026432, 47.49134]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [19.074497, 47.509548]

}
}

]
}'
lawn_combine(fc1)

combine linestrings
fc2 <- '{
"type": "FeatureCollection",
"features": [

{

lawn_concave 31

"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]

]
}

}, {
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-21.929054, 64.127985],
[-21.912918, 64.134726],
[-21.916007, 64.141016],
[-21.930084, 64.14446]

]
}

}
]

}'
lawn_combine(fc2)
Not run:
fc1 %>% view
lawn_combine(fc1) %>% view
fc2 %>% view
lawn_combine(fc2) %>% view

End(Not run)

lawn_concave Concave hull polygon

Description

Takes a set of data-Point’s and returns a concave hull polygon. Internally, this implements a Mono-
tone chain algorithm

Usage

lawn_concave(points, maxEdge = 1, units = "miles", lint = FALSE)

32 lawn_concave

Arguments

points Input points in a data-FeatureCollection.

maxEdge The size of an edge necessary for part of the hull to become concave (in miles).

units Used for maxEdge distance (miles (default) or kilometers).

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a concave hull data-Polygon

See Also

Other transformations: lawn_bezier, lawn_buffer, lawn_convex, lawn_difference, lawn_intersect,
lawn_merge, lawn_simplify, lawn_union

Examples

Not run:
points <- '{

"type": "FeatureCollection",
"features": [
{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.601226, 44.642643]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.591442, 44.651436]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.580799, 44.648749]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.573589, 44.641788]

lawn_convex 33

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.587665, 44.64533]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.595218, 44.64765]

}
}
]

}'
lawn_concave(points, 1)

lawn_concave(points) %>% view

End(Not run)

lawn_convex Convex hull polygon

Description

Takes a set of data-Point’s and returns a convex hull polygon. Internally, this uses the convex-hull
module that implements a Monotone chain hull

Usage

lawn_convex(input, lint = FALSE)

Arguments

input Input points in a data-FeatureCollection.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a convex hull data-Polygon

https://github.com/mikolalysenko/convex-hull

34 lawn_convex

See Also

Other transformations: lawn_bezier, lawn_buffer, lawn_concave, lawn_difference, lawn_intersect,
lawn_merge, lawn_simplify, lawn_union

Examples

points <- '{
"type": "FeatureCollection",
"features": [
{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.601226, 44.642643]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.591442, 44.651436]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.580799, 44.648749]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.573589, 44.641788]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.587665, 44.64533]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-63.595218, 44.64765]

}
}

lawn_coordall 35

]
}'
lawn_convex(points)
Not run:
lawn_convex(points) %>% view

End(Not run)

lawn_coordall Get all coordinates from any GeoJSON object, returning an array of
coordinate arrays.

Description

Takes any data-GeoJSON and returns an array of coordinate arrays

Usage

lawn_coordall(x, lint = FALSE)

Arguments

x any data-GeoJSON object

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

matrix of coordinates, where each row in the matrix is a coordinate pair

Examples

lawn_point(c(-74.5, 40)) %>% lawn_coordall()

rings <- list(list(
c(-2.275543, 53.464547),
c(-2.275543, 53.489271),
c(-2.215118, 53.489271),
c(-2.215118, 53.464547),
c(-2.275543, 53.464547)

))
lawn_polygon(rings) %>% lawn_coordall()

36 lawn_coordeach

lawn_coordeach Iterate over property objects in any GeoJSON object

Description

Iterate over property objects in any GeoJSON object

Usage

lawn_coordeach(x, fun = NULL, excludeWrapCoord = FALSE, lint = FALSE)

Arguments

x any data-GeoJSON object

fun (character) a Javascript function. if not given, returns self
excludeWrapCoord

(logical) whether or not to include the final coordinate of LinearRings that wraps
the ring in its iteration.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

matrix of coordinates, where each row in the matrix is a coordinate pair

Examples

x <- "{ type: 'Point', coordinates: [10, 50] }"

don't apply any function, identity essentially
lawn_coordeach(x)

appply a function callback
lawn_coordeach(x, "z.length === 2")
lawn_coordeach(lawn_data$points_count, "z.length === 2")

z <- '{
"type": "FeatureCollection",
"features": [
{

"type": "Feature",
"properties": {

"population": 200,
"name": "things"

},
"geometry": {

"type": "Point",

lawn_count 37

"coordinates": [-112.0372, 46.608058]
}

}, {
"type": "Feature",
"properties": {

"population": 600,
"name": "stuff"

},
"geometry": {

"type": "Point",
"coordinates": [-112.045955, 46.596264]

}
}
]

}'
lawn_coordeach(z)
lawn_coordeach(z, "z.reduce(function(a, b) { return a + b; }, 0)")

lawn_count Count number of points within polygons

Description

Calculates the number of data-Point’s that fall within the set of data-Polygon’s

Usage

lawn_count(polygons, points, in_field, out_field = "count",
lint = FALSE)

Arguments

polygons a data-FeatureCollection of data-Polygon features

points a data-FeatureCollection of data-Point features

in_field (character) the field in input data to analyze

out_field (character) the field in which to store results

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-FeatureCollection

See Also

Other aggregations: lawn_average, lawn_collect, lawn_deviation, lawn_max, lawn_median,
lawn_min, lawn_sum, lawn_variance

38 lawn_data

Examples

Not run:
using data in the package
cat(lawn_data$points_count)
cat(lawn_data$polygons_count)
lawn_count(lawn_data$polygons_count, lawn_data$points_count, 'population')

End(Not run)

lawn_data Data for use in examples

Description

Data for use in examples

Format

A list of character strings of points or polygons in FeatureCollection or Feature Geojson formats.

Details

The data objects included in the list, accessible by name

• filter_features - FeatureCollection of points

• points_average - FeatureCollection of points

• polygons_average - FeatureCollection of polygons

• points_count - FeatureCollection of points

• polygons_count - FeatureCollection of polygons

• points_within - FeatureCollection of points

• polygons_within - FeatureCollection of polygons

• poly - Feature of a single 1 degree by 1 degree polygon

• multipoly - FeatureCollection of two 1 degree by 1 degree polygons

• polygons_aggregate - FeatureCollection of Polygons from turf.js examples

• points_aggregate - FeatureCollection of Points from turf.js examples

lawn_destination 39

lawn_destination Calculate destination point

Description

Takes a data-Point and calculates the location of a destination point given a distance in degrees,
radians, miles, or kilometers; and bearing in degrees. Uses the Haversine formula to account for
global curvature.

Usage

lawn_destination(start, distance, bearing, units, lint = FALSE)

Arguments

start Starting point, a data-Feature<data-Point>

distance Distance from the starting point.

bearing Ranging from -180 to 180.

units Miles, kilometers, degrees, or radians.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

the calculated destination, a data-Feature<data-Point>

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_distance, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

pt <- '{
"type": "Feature",
"properties": {

"marker-color": "#0f0"
},
"geometry": {

"type": "Point",
"coordinates": [-75.343, 39.984]

}
}'
lawn_destination(pt, 50, 90, "miles")
lawn_destination(pt, 100, 90, "miles")

http://en.wikipedia.org/wiki/Haversine_formula

40 lawn_deviation

lawn_destination(pt, 2, 45, "kilometers")
lawn_destination(pt, 2, 30, "degrees")
Not run:
pt %>% view
lawn_destination(pt, 200, 90, "miles") %>% view

End(Not run)

lawn_deviation Standard deviation of a field among points within polygons

Description

Calculates the population standard deviation (i.e. denominator = n, not n-1) of values from data-
Point’s within a set of data-Polygon’s

Usage

lawn_deviation(polygons, points, in_field, out_field = "deviation",
lint = FALSE)

Arguments

polygons Polygon(s) (data-FeatureCollection<(data-Polygon)>) defining area to aggre-
gate

points Points (data-FeatureCollection<(data-Point)>) with values to aggregate

in_field Character for the name of the field on pts on which you wish to perform the
aggregation.

out_field Character for the name of the field on the output polygon FeatureCollection that
will store the resultant value.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

polygons with appended field representing deviation, as a data-FeatureCollection

Author(s)

Jeff Hollister <hollister.jeff@epa.gov>

See Also

Other aggregations: lawn_average, lawn_collect, lawn_count, lawn_max, lawn_median, lawn_min,
lawn_sum, lawn_variance

lawn_difference 41

Examples

Not run:
ex_polys <- lawn_data$polygons_aggregate
ex_pts <- lawn_data$points_aggregate
lawn_deviation(ex_polys, ex_pts, "population")

End(Not run)

lawn_difference Difference

Description

Finds the difference between two data-Polygon’s by clipping the second polygon from the first.

Usage

lawn_difference(poly1, poly2, lint = FALSE)

Arguments

poly1 A data-Feature<(data-Polygon)> feature

poly2 data-Feature<(data-Polygon)> to erase from poly1

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-Feature<(data-Polygon)> feature showing the area of poly1 excluding the area of poly2

See Also

Other transformations: lawn_bezier, lawn_buffer, lawn_concave, lawn_convex, lawn_intersect,
lawn_merge, lawn_simplify, lawn_union

Examples

Not run:
skipping on cran
poly1 <- '{
"type": "Feature",
"properties": {
"fill": "#0f0"

},
"geometry": {

"type": "Polygon",
"coordinates": [[

42 lawn_dissolve

[-46.738586, -23.596711],
[-46.738586, -23.458207],
[-46.560058, -23.458207],
[-46.560058, -23.596711],
[-46.738586, -23.596711]

]]
}

}'

poly2 <- '{
"type": "Feature",
"properties": {

"fill": "#00f"
},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-46.650009, -23.631314],
[-46.650009, -23.5237],
[-46.509246, -23.5237],
[-46.509246, -23.631314],
[-46.650009, -23.631314]

]]
}

}'
lawn_difference(poly1, poly2)

End(Not run)
Not run:
lawn_featurecollection(list(poly1, poly2)) %>% view
lawn_difference(poly1, poly2) %>% view
fc <- lawn_featurecollection(list(

lawn_polygon(jsonlite::fromJSON(poly1)$geometry$coordinates),
lawn_polygon(jsonlite::fromJSON(poly2)$geometry$coordinates)

))
view(fc)

End(Not run)

lawn_dissolve Dissolves a FeatureCollection of polygons based on a property. Note
that multipart features within the collection are not supported

Description

Dissolves a FeatureCollection of polygons based on a property. Note that multipart features within
the collection are not supported

Usage

lawn_dissolve(features, key, lint = FALSE)

lawn_dissolve 43

Arguments

features A data-FeatureCollection<(data-Polygon)>

key (character) The property on which to filter

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-FeatureCollection<(data-Polygon)> containing the dissolved polygons

See Also

Other assertions: lawn_circle, lawn_tesselate

Examples

cat(lawn_data$filter_features)
x <- '{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {

"combine": "yes"
},
"geometry": {

"type": "Polygon",
"coordinates": [[[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]]]

}
},
{

"type": "Feature",
"properties": {

"combine": "yes"
},
"geometry": {

"type": "Polygon",
"coordinates": [[[0, -1], [0, 0], [1, 0], [1, -1], [0,-1]]]

}
},
{

"type": "Feature",
"properties": {

"combine": "no"
},
"geometry": {

"type": "Polygon",
"coordinates": [[[1,-1],[1, 0], [2, 0], [2, -1], [1, -1]]]

}
}

44 lawn_distance

]
}'
lawn_dissolve(x, key = 'combine')

lawn_distance Distance between two points

Description

Calculates the distance between two data-Points in degress, radians, miles, or kilometers. Uses the
Haversine formula to account for global curvature.

Usage

lawn_distance(from, to, units = "kilometers", lint = FALSE)

Arguments

from Origin data-Feature<(data-Point)>

to Destination data-Feature<(data-Point)>

units (character) Can be degrees, radians, miles, or kilometers (default).

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

Single numeric value

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_envelope, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

from <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-75.343, 39.984]

}
}'
to <- '{

"type": "Feature",
"properties": {},

http://en.wikipedia.org/wiki/Haversine_formula

lawn_envelope 45

"geometry": {
"type": "Point",
"coordinates": [-75.534, 39.123]

}
}'
lawn_distance(from, to)

lawn_envelope Calculate envelope around features

Description

Takes any number of features and returns a rectangular data-Polygon that encompasses all vertices.

Usage

lawn_envelope(fc, lint = FALSE)

Arguments

fc A data-Feature or data-FeatureCollection

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a rectangular data-Feature<(data-Polygon)> that encompasses all vertices

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_extent,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

fc <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {

"name": "Location A"
},
"geometry": {

"type": "Point",
"coordinates": [-75.343, 39.984]

}

46 lawn_explode

}, {
"type": "Feature",
"properties": {

"name": "Location B"
},
"geometry": {

"type": "Point",
"coordinates": [-75.833, 39.284]

}
}, {

"type": "Feature",
"properties": {

"name": "Location C"
},
"geometry": {

"type": "Point",
"coordinates": [-75.534, 39.123]

}
}

]
}'
lawn_envelope(fc)
Not run:
fc %>% view
lawn_envelope(fc) %>% view

End(Not run)

lawn_explode Explode vertices to points

Description

Takes a feature or set of features and returns all positions as points

Usage

lawn_explode(input, lint = FALSE)

Arguments

input data-Feature or data-FeatureCollection

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-FeatureCollection of points

lawn_extent 47

Examples

poly <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[177.434692, -17.77517],
[177.402076, -17.779093],
[177.38079, -17.803937],
[177.40242, -17.826164],
[177.438468, -17.824857],
[177.454948, -17.796746],
[177.434692, -17.77517]
]]

}
}'
lawn_explode(poly)
Not run:
lawn_data$polygons_average %>% view
lawn_explode(lawn_data$polygons_average) %>% view
lawn_data$polygons_within %>% view
lawn_explode(lawn_data$polygons_within) %>% view

End(Not run)

lawn_extent Get a bounding box

Description

Calculates the extent of all input features in a FeatureCollection, and returns a bounding box. The
returned bounding box is of the form (west, south, east, north).

Usage

lawn_extent(input, lint = FALSE)

Arguments

input A data-Feature or data-FeatureCollection

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A bounding box, numeric vector of length 4, in [minX, minY, maxX, maxY] order

48 lawn_feature

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

From a FeatureCollection
cat(lawn_data$points_average)
lawn_extent(lawn_data$points_average)

From a Feature
dat <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-112.072391,46.586591],
[-112.072391,46.61761],
[-112.028102,46.61761],
[-112.028102,46.586591],
[-112.072391,46.586591]

]]
}

}'
lawn_extent(dat)

lawn_feature Create a Feature

Description

Create a Feature

Usage

lawn_feature(geometry, properties = c(), lint = FALSE)

Arguments

geometry (character/json) Any geojson geometry.

properties (list) list of properties, must be named

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

lawn_featurecollection 49

See Also

Other data functions: lawn_featurecollection, lawn_filter, lawn_geometrycollection, lawn_linestring,
lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point, lawn_polygon,
lawn_random, lawn_remove, lawn_sample

Examples

Not run:
points
single point
pt <- '{"type":"Point","coordinates":[-75.343,39.984]}'
lawn_feature(pt)

with properties
lawn_feature(pt, properties = list(foo = "bar"))

many points in a list
pts <- list(

lawn_point(c(-75.343, 39.984))$geometry,
lawn_point(c(-75.833, 39.284))$geometry,
lawn_point(c(-75.534, 39.123))$geometry

)
lapply(pts, lawn_feature)

End(Not run)

lawn_featurecollection

Create a FeatureCollection

Description

Create a FeatureCollection

Usage

lawn_featurecollection(features)

Arguments

features Input features, can be json as json or character class, or a point, polygon, linestring,
or centroid class, or many of those things in a list.

See Also

Other data functions: lawn_feature, lawn_filter, lawn_geometrycollection, lawn_linestring,
lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point, lawn_polygon,
lawn_random, lawn_remove, lawn_sample

50 lawn_featurecollection

Examples

Not run:
points
single point
pt <- lawn_point(c(-75.343, 39.984), properties = list(name = 'Location A'))
lawn_featurecollection(pt)

many points in a list
features <- list(

lawn_point(c(-75.343, 39.984), properties = list(name = 'Location A')),
lawn_point(c(-75.833, 39.284), properties = list(name = 'Location B')),
lawn_point(c(-75.534, 39.123), properties = list(name = 'Location C'))

)
lawn_featurecollection(features)

polygons
rings <- list(list(

c(-2.275543, 53.464547),
c(-2.275543, 53.489271),
c(-2.215118, 53.489271),
c(-2.215118, 53.464547),
c(-2.275543, 53.464547)

))
single polygon
lawn_featurecollection(lawn_polygon(rings))

many polygons in a list
rings2 <- list(list(

c(-2.775543, 54.464547),
c(-2.775543, 54.489271),
c(-2.245118, 54.489271),
c(-2.245118, 54.464547),
c(-2.775543, 54.464547)

))
features <- list(

lawn_polygon(rings, properties = list(name = 'poly1', population = 400)),
lawn_polygon(rings2, properties = list(name = 'poly2', population = 5000))

)
lawn_featurecollection(features)

linestrings
pts1 <- list(

c(-2.364416, 53.448203),
c(-2.356176, 53.441316),
c(-2.33901, 53.435924),
c(-2.327337, 53.436673)

)
single linestring
lawn_featurecollection(lawn_linestring(pts1))

many linestring's in a list
pts2 <- rapply(pts1, function(x) x+0.1, how = "list")

lawn_featurecollection 51

features <- list(
lawn_linestring(pts1, properties = list(name = 'line1', distance = 145)),
lawn_linestring(pts2, properties = list(name = 'line2', distance = 145))

)
lawn_featurecollection(features)

mixed feature set: polygon, linestring, and point
features <- list(

lawn_polygon(rings, properties = list(name = 'poly1', population = 400)),
lawn_linestring(pts1, properties = list(name = 'line1', distance = 145)),
lawn_point(c(-2.25, 53.479271), properties = list(name = 'Location A'))

)
lawn_featurecollection(features)

Return self if a featurecollection class passed
res <- lawn_featurecollection(features)
lawn_featurecollection(res)

json featurecollection passed in
library("jsonlite")
str <- toJSON(unclass(res))
lawn_featurecollection(str)

from a centroid object
poly <- '{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[105.818939,21.004714],
[105.818939,21.061754],
[105.890007,21.061754],
[105.890007,21.004714],
[105.818939,21.004714]

]]
}

}'
cent <- lawn_centroid(poly)
lawn_featurecollection(cent)

from a feature
pt <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-90.548630, 14.616599]
}

}'
x <- lawn_buffer(pt, 5)
lawn_featurecollection(x)

52 lawn_featureeach

From a geo_list object from geojsonio package
library("geojsonio")
vecs <- list(c(100.0,0.0), c(101.0,0.0), c(101.0,1.0), c(100.0,1.0),
c(100.0,0.0))
x <- geojson_list(vecs, geometry="polygon")
lawn_featurecollection(x)

End(Not run)

lawn_featureeach Iterate over features in any GeoJSON object

Description

Iterate over features in any GeoJSON object

Usage

lawn_featureeach(x, fun = NULL, lint = FALSE)

Arguments

x any data-GeoJSON object

fun a Javascript function. if not given, returns self

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

matrix of coordinates, where each row in the matrix is a coordinate pair

Examples

x <- "{ type: 'Feature', geometry: null, properties: { foo: 1, bar: 3 } }"

don't apply any function, identity essentially
lawn_featureeach(x)

lawn_featureeach(lawn_data$points_count)

appply a function callback
lawn_featureeach(lawn_data$points_count, "z.geometry")
lawn_featureeach(lawn_data$points_count, "z.geometry.type")
lawn_featureeach(lawn_data$points_count, "z.properties")
lawn_featureeach(lawn_data$points_count, "z.properties.population")

lawn_featureof 53

lawn_featureof Enforce expectations about types of Feature inputs

Description

Enforce expectations about types of Feature inputs

Usage

lawn_featureof(x, type, name, lint = FALSE)

Arguments

x a data-Feature with an expected geometry type. required.

type (character) expected GeoJSON type. required.

name (character) name of calling function. required.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

nothing if no problems - error message if a problem

See Also

Other invariant: lawn_collectionof, lawn_geosjontype

Examples

all okay
x <- "{ type: 'Feature', properties: {}, geometry: { type: 'Point',

coordinates: [10, 50] } }"
lawn_featureof(x, 'Point', 'foobar')

error
lawn_featureof(x, 'MultiPoint', 'foobar')

54 lawn_filter

lawn_filter Filter a FeatureCollection by a given property and value

Description

Filter a FeatureCollection by a given property and value

Usage

lawn_filter(features, key, value, lint = FALSE)

Arguments

features A data-FeatureCollection

key (character) The property on which to filter.

value (character) The value of that property on which to filter.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

S filtered data-FeatureCollection with only features that match input key and value.

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point,
lawn_polygon, lawn_random, lawn_remove, lawn_sample

Examples

cat(lawn_data$filter_features)
lawn_filter(features = lawn_data$filter_features, key = 'species',

value = 'oak')
lawn_filter(lawn_data$filter_features, 'species', 'maple')
lawn_filter(lawn_data$filter_features, 'species', 'redwood')

lawn_flatten 55

lawn_flatten Flatten

Description

Flattens any GeoJSON to a FeatureCollection

Usage

lawn_flatten(x, lint = FALSE)

Arguments

x any valid GeoJSON with multi-geometry data-Feature’s

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-FeatureCollection

See Also

Other misc: lawn_truncate

Examples

x <- '{"type":"MultiPolygon","coordinates":[
[[[102,2],[103,2],[103,3],[102,3],[102,2]]],
[[[100,0],[101,0],[101,1],[100,1],[100,0]],
[[100.2,0.2],[100.2,0.8],[100.8,0.8],[100.8,0.2],[100.2,0.2]]]
]

}'
lawn_flatten(x)
lawn_flatten(x, TRUE)

lawn_flip Flip x,y to y,x, and vice versa

Description

Flip x,y to y,x, and vice versa

Usage

lawn_flip(input, lint = FALSE)

56 lawn_geometrycollection

Arguments

input data-Feature or data-FeatureCollection

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Feature or data-FeatureCollection

Examples

a point
serbia <- '{

"type": "Feature",
"properties": {"color": "red"},
"geometry": {
"type": "Point",
"coordinates": [20.566406, 43.421008]
}

}'
lawn_flip(serbia)

a featurecollection
pts <- lawn_random("points")
lawn_flip(pts)
Not run:
lawn_data$points_average %>% view
lawn_flip(lawn_data$points_average) %>% view
lawn_data$polygons_average %>% view
lawn_flip(lawn_data$polygons_average) %>% view

End(Not run)

lawn_geometrycollection

Create a geometrycollection

Description

Create a geometrycollection

Usage

lawn_geometrycollection(coordinates, properties = NULL)

lawn_geometrycollection 57

Arguments

coordinates A list of GeoJSON geometries, or in json.

properties A list of properties.

Value

A data-GeometryCollection feature.

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_linestring,
lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point, lawn_polygon,
lawn_random, lawn_remove, lawn_sample

Examples

x <- list(
list(
type = "Point",
coordinates = list(
list(100, 0)
)

),
list(

type = "LineString",
coordinates = list(
list(100, 0),
list(102, 1)
)

)
)
lawn_geometrycollection(x)
lawn_geometrycollection(x,

properties = list(city = 'Los Angeles', population = 400))

x <- '[
{

"type": "Point",
"coordinates": [100.0, 0.0]

},
{

"type": "LineString",
"coordinates": [[101.0, 0.0], [102.0, 1.0]]

}
]'
lawn_geometrycollection(x)

58 lawn_geosjontype

lawn_geosjontype Enforce expectations about types of GeoJSON objects.

Description

Enforce expectations about types of GeoJSON objects.

Usage

lawn_geosjontype(x, type, name, lint = FALSE)

Arguments

x value of any data-GeoJSON object. required.

type expected GeoJSON type. required.

name name of calling function. required.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

nothing if no problems - error message if a problem

See Also

Other invariant: lawn_collectionof, lawn_featureof

Examples

all okay
x <- "{ type: 'Point', coordinates: [10, 50] }"
lawn_geosjontype(x, 'Point', 'fooBar')

error
lawn_geosjontype(x, 'Polygon', 'fooBar')

lawn_getcoord 59

lawn_getcoord Unwrap a coordinate from a Feature with a Point geometry, or a single
coordinate.

Description

Unwrap a coordinate from a Feature with a Point geometry, or a single coordinate.

Usage

lawn_getcoord(x, lint = FALSE)

Arguments

x any data-GeoJSON object

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

matrix of coordinates, where each row in the matrix is a coordinate pair

Examples

x <- "{ type: 'Point', coordinates: [10, 50] }"
lawn_getcoord(x)

library(jsonlite)
x <- fromJSON(lawn_data$points_count, FALSE)$features
lawn_getcoord(x[[1]])
lawn_getcoord(x[[2]])
lawn_getcoord(x[[1]]$geometry)
lawn_getcoord(x[[1]]$geometry$coordinates)

fails
lawn_getcoord(x[[1]]$geometry$coordinates[[1]])

lawn_hex_grid Create a HexGrid

Description

Takes a bounding box and a cell size in degrees and returns a data-FeatureCollection of flat-topped
hexagons (data-Polygon features) aligned in an "odd-q" vertical grid as described in Hexagonal
Grids http://www.redblobgames.com/grids/hexagons/

http://www.redblobgames.com/grids/hexagons/

60 lawn_idw

Usage

lawn_hex_grid(extent, cellWidth, units)

Arguments

extent (numeric) Extent in [minX, minY, maxX, maxY] order.

cellWidth (integer) Width of each cell.

units (character) Units to use for cellWidth, one of ’miles’ or ’kilometers’.

Value

A data-FeatureCollection grid of points.

See Also

Other interpolation: lawn_isolines, lawn_planepoint, lawn_point_grid, lawn_square_grid,
lawn_tin, lawn_triangle_grid

Examples

lawn_hex_grid(c(-96,31,-84,40), 50, 'miles')
lawn_hex_grid(c(-96,31,-84,40), 30, 'miles')

lawn_idw IDW

Description

Takes a FeatureCollection of points with known value, a power parameter, a cell depth, a unit of
measurement and returns a FeatureCollection of polygons in a square-grid with an interpolated
value property "IDW" for each grid cell. It finds application when in need of creating a continuous
surface (i.e. rainfall, temperature, chemical dispersion surface...) from a set of spatially scattered
points.

Usage

lawn_idw(controlPoints, valueField, b, cellWidth, units = "kilometers",
lint = FALSE)

Arguments

controlPoints A data-FeatureCollection, Sampled points with known value

valueField (character) GeoJSON field containing the known value to interpolate on

b (integer) Exponent regulating the distance-decay weighting

cellWidth (integer) The distance across each cell

lawn_idw 61

units (character) used in calculating cellSize, can be degrees, radians, miles, or kilo-
meters

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-FeatureCollection containing the dissolved polygons

See Also

Other grids: lawn_unkinkpolygon

Examples

x <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {

"marker-color": "#7e7e7e",
"marker-size": "medium",
"marker-symbol": "",
"value": 4,
"id": 4

},
"geometry": {

"type": "Point",
"coordinates": [

9.155731201171875,
45.47216977418841

]
}

},
{

"type": "Feature",
"properties": {

"marker-color": "#7e7e7e",
"marker-size": "medium",
"marker-symbol": "",
"value": 99,
"id": 2

},
"geometry": {

"type": "Point",
"coordinates": [

9.195213317871094,
45.53689620055365

]
}

62 lawn_idw

},
{

"type": "Feature",
"properties": {

"marker-color": "#7e7e7e",
"marker-size": "medium",
"marker-symbol": "",
"value": 10,
"id": 1

},
"geometry": {

"type": "Point",
"coordinates": [

9.175300598144531,
45.49912810913339

]
}

},
{

"type": "Feature",
"properties": {

"marker-color": "#7e7e7e",
"marker-size": "medium",
"marker-symbol": "",
"value": 6,
"id": 3

},
"geometry": {

"type": "Point",
"coordinates": [

9.231605529785156,
45.49190839157102

]
}

},
{

"type": "Feature",
"properties": {

"marker-color": "#7e7e7e",
"marker-size": "medium",
"marker-symbol": "",
"value": 7,
"id": 5

},
"geometry": {

"type": "Point",
"coordinates": [

9.116249084472656,
45.4391764115696

]
}

}
]

lawn_inside 63

}'
lawn_idw(x, 'value', 0.5, 1)

lawn_inside Does a point reside inside a polygon

Description

Takes a data-Point and a data-Polygon or data-MultiPolygon and determines if the point resides
inside the polygon

Usage

lawn_inside(point, polygon, lint = FALSE)

Arguments

point Input point.

polygon Input polygon or multipolygon.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

The polygon can be convex or concave. The function accounts for holes.

Value

TRUE if the Point IS inside the Polygon, FALSE if the Point IS NOT inside the Polygon.

See Also

Other joins: lawn_tag, lawn_within

Examples

point1 <- '{
"type": "Feature",
"properties": {
"marker-color": "#f00"

},
"geometry": {

"type": "Point",
"coordinates": [-111.467285, 40.75766]

}
}'
point2 <- '{

64 lawn_intersect

"type": "Feature",
"properties": {

"marker-color": "#0f0"
},
"geometry": {

"type": "Point",
"coordinates": [-111.873779, 40.647303]

}
}'
poly <- '{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-112.074279, 40.52215],
[-112.074279, 40.853293],
[-111.610107, 40.853293],
[-111.610107, 40.52215],
[-112.074279, 40.52215]
]]

}
}'
lawn_inside(point1, poly)
lawn_inside(point2, poly)

lawn_intersect Intersection

Description

Finds the intersection of two data-Polygon’s and returns just the intersection of the two

Usage

lawn_intersect(poly1, poly2, lint = FALSE)

Arguments

poly1 A data-Polygon.

poly2 A data-Polygon.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

Polygons with just a shared boundary will return the boundary. Polygons that do not intersect will
return NULL.

lawn_intersect 65

Value

data-Polygon, data-MultiLineString, or undefined

Author(s)

Jeff Hollister <hollister.jeff@epa.gov>

See Also

Other transformations: lawn_bezier, lawn_buffer, lawn_concave, lawn_convex, lawn_difference,
lawn_merge, lawn_simplify, lawn_union

Examples

Not run:
poly1 <- '{
"type": "Feature",
"properties": {
"fill": "#0f0"

},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-122.801742, 45.48565],
[-122.801742, 45.60491],
[-122.584762, 45.60491],
[-122.584762, 45.48565],
[-122.801742, 45.48565]
]]

}
}'

poly2 <- '{
"type": "Feature",
"properties": {
"fill": "#00f"

},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-122.520217, 45.535693],
[-122.64038, 45.553967],
[-122.720031, 45.526554],
[-122.669906, 45.507309],
[-122.723464, 45.446643],
[-122.532577, 45.408574],
[-122.487258, 45.477466],
[-122.520217, 45.535693]
]]

}
}'
lawn_intersect(poly1, poly2)

66 lawn_isolines

view(poly1)
view(poly2)
lawn_intersect(poly1, poly2) %>% view()

x1 <- lawn_buffer(lawn_point(c(-122.6375, 45.53)), 1500, "meters")
x2 <- lawn_buffer(lawn_point(c(-122.6475, 45.53)), 1500, "meters")
lawn_intersect(x1, x2)
structure(x1, class = "featurecollection") %>% view()
structure(x2, class = "featurecollection") %>% view()
lawn_intersect(x1, x2) %>% view()

not overlapping
x3 <- lawn_buffer(lawn_point(c(-122.6375, 45.53)), 1500, "meters")
x4 <- lawn_buffer(lawn_point(c(-122.6975, 45.53)), 1500, "meters")
structure(x3, class = "featurecollection") %>% view()
structure(x4, class = "featurecollection") %>% view()
lawn_intersect(x3, x4)

End(Not run)

lawn_isolines Generate Isolines

Description

Takes data-Point’s with z-values and an array of value breaks and generates isolines

Usage

lawn_isolines(points, breaks, z, propertiesToAllIsolines = c(),
propertiesPerIsoline = list(), resolution = NULL, lint = FALSE)

Arguments

points Input points. a point grid, e.g., output of lawn_point_grid()

breaks (numeric) Where to draw contours.

z (character) The property name in points from which z-values will be pulled.
propertiesToAllIsolines

GeoJSON properties passed to ALL isolines
propertiesPerIsoline

GeoJSON properties passed, in order, to the correspondent isoline; the breaks
array will define the order in which the isolines are created

resolution (numeric) Resolution of the underlying grid. THIS PARAMETER IS DEFUNCT

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

http://en.wikipedia.org/wiki/Isoline

lawn_kinks 67

Details

Warning: this function seems to be broken, not sure why

Value

A data-FeatureCollection of isolines (data-LineString features).

See Also

Other interpolation: lawn_hex_grid, lawn_planepoint, lawn_point_grid, lawn_square_grid,
lawn_tin, lawn_triangle_grid

Examples

Not run:
pts <- lawn_random(n = 100, bbox = c(0, 30, 20, 50))
pts <- lawn_point_grid(c(0, 30, 20, 50), 100, 'miles')
pts$features$properties <-

data.frame(temperature = round(rnorm(NROW(pts$features), mean = 5)),
stringsAsFactors = FALSE)

breaks <- c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
lawn_isolines(points = pts, breaks, z = 'temperature')

lawn_isolines(pts, breaks, 'temperature') %>% view

End(Not run)

lawn_kinks Get points at all self-intersections of a polygon

Description

Get points at all self-intersections of a polygon

Usage

lawn_kinks(input, lint = FALSE)

Arguments

input Feature of features.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

68 lawn_linestring

Examples

poly <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-12.034835, 8.901183],
[-12.060413, 8.899826],
[-12.03638, 8.873199],
[-12.059383, 8.871418],
[-12.034835, 8.901183]

]]
}

}'
lawn_kinks(poly)
lint input object
lawn_kinks(poly, TRUE)
Not run:
poly %>% view
lawn_kinks(poly) %>% view

End(Not run)

lawn_linestring Create a linestring

Description

Create a linestring

Usage

lawn_linestring(coordinates, properties = NULL)

Arguments

coordinates A list of positions.

properties A list of properties.

Value

A data-Feature<(data-LineString)>

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point, lawn_polygon,
lawn_random, lawn_remove, lawn_sample

lawn_line_distance 69

Examples

linestring1 <- '[
[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]

]'
linestring2 <- '[

[-21.929054, 64.127985],
[-21.912918, 64.134726],
[-21.916007, 64.141016],
[-21.930084, 64.14446]

]'
lawn_linestring(linestring1)
lawn_linestring(linestring2)

pts <- list(
c(-21.964416, 64.148203),
c(-21.956176, 64.141316),
c(-21.93901, 64.135924),
c(-21.927337, 64.136673)

)
lawn_linestring(pts, properties = list(name = 'line1', distance = 145))

completely non-sensical, but gets some data quickly
pts <- lawn_random()$features$geometry$coordinates
lawn_linestring(pts)

lawn_line_distance Measure a linestring

Description

Takes a data-LineString and measures its length in the specified units.

Usage

lawn_line_distance(line, units, lint = FALSE)

Arguments

line Line to measure, a data-Feature<(data-LineString)>, or data-FeatureCollection<(data-
LineString)>

units Can be degrees, radians, miles, or kilometers.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

70 lawn_line_offset

Value

Length of the input line (numeric).

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_extent, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

line <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-77.031669, 38.878605],
[-77.029609, 38.881946],
[-77.020339, 38.884084],
[-77.025661, 38.885821],
[-77.021884, 38.889563],
[-77.019824, 38.892368]

]
}

}'
lawn_line_distance(line, 'kilometers')
lawn_line_distance(line, 'miles')
lawn_line_distance(line, 'radians')
lawn_line_distance(line, 'degrees')

lawn_line_offset Offset a linestring

Description

Takes a data-LineString and returns a data-LineString at offset by the specified distance.

Usage

lawn_line_offset(line, distance, units, lint = FALSE)

Arguments

line Line to measure, a data-LineString.

distance (integer/numeric) Distance along the line.

units Can be degrees, radians, miles, kilometers, inches, yards, meters

lawn_line_slice 71

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-LineString

Examples

line <- '{
"type": "Feature",
"properties": {

"stroke": "#F00"
},
"geometry": {

"type": "LineString",
"coordinates": [[-83, 30], [-84, 36], [-78, 41]]

}
}'

lawn_line_offset(line, 2, 'miles')
lawn_line_offset(line, 200, 'miles')
lawn_line_offset(line, 0.5, 'radians')
lawn_line_offset(line, 4, 'yards')

line <- '{
"type": "LineString",
"coordinates": [[-83, 30], [-84, 36], [-78, 41]]

}'
lawn_line_offset(line, 4, 'yards')

lawn_line_slice Slice a line given two points

Description

Takes a line, a start Point, and a stop point and returns the line in between those points

Usage

lawn_line_slice(point1, point2, line, lint = FALSE)

Arguments

point1 Starting data-Feature<(data-Point)>

point2 Stopping data-Feature<(data-Point)>

line Line to slice, a data-Feature<(data-LineString)>

72 lawn_line_slice

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Feature<(data-LineString)>

Examples

start <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-77.029609, 38.881946]

}
}'
stop <- '{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-77.021884, 38.889563]

}
}'
line <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-77.031669, 38.878605],
[-77.029609, 38.881946],
[-77.020339, 38.884084],
[-77.025661, 38.885821],
[-77.021884, 38.889563],
[-77.019824, 38.892368]
]

}
}'
lawn_line_slice(start, stop, line)

lint input objects
lawn_line_slice(start, stop, line, TRUE)
Not run:
line %>% view
lawn_line_slice(point1 = start, point2 = stop, line) %>% view

End(Not run)

lawn_line_slice_along 73

lawn_line_slice_along Slice a line given two points

Description

Takes a line, a specified distance along the line to a start Point, and a specified distance along the
line to a stop point and returns a subsection of the line in-between those points. This can be useful
for extracting only the part of a route between two distances.

Usage

lawn_line_slice_along(startDist, stopDist, line, units = "kilometers",
lint = FALSE)

Arguments

startDist (numeric/integer) distance along the line to starting point

stopDist (numeric/integer) distance along the line to ending point

line Line to slice, a data-Feature<(data-LineString)>

units can be degrees, radians, miles, or kilometers (default)

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-LineString, the sliced line

Examples

line <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[7.66845703125, 45.058001435398296],
[9.20654296875, 45.460130637921004],
[11.348876953125, 44.48866833139467],
[12.1728515625, 45.43700828867389],
[12.535400390625, 43.98491011404692],
[12.425537109375, 41.86956082699455],
[14.2437744140625, 40.83874913796459],
[14.765625, 40.681679458715635]

]
}

}'
lawn_line_slice_along(12.5, 25, line)

74 lawn_max

Not run:
line %>% view
lawn_line_slice_along(12.5, 25, line) %>% view

End(Not run)

lawn_max Maximum value of a field among points within polygons

Description

Calculates the maximum value of a field for a set of data-Point’s within a set of data-Polygon’s.

Usage

lawn_max(polygons, points, in_field, out_field = "max", lint = FALSE)

Arguments

polygons a data-FeatureCollection of data-Polygon features

points a data-FeatureCollection of data-Point features

in_field (character) the field in input data to analyze

out_field (character) the field in which to store results

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A FeatureCollection of data-Polygon features with properties listed as out_field.

See Also

Other aggregations: lawn_average, lawn_collect, lawn_count, lawn_deviation, lawn_median,
lawn_min, lawn_sum, lawn_variance

Examples

Not run:
poly <- lawn_data$polygons_average
pt <- lawn_data$points_average
lawn_max(poly, pt, 'population')

End(Not run)

lawn_median 75

lawn_median Median value of a field among points within polygons

Description

Calculates the median value of a field for a set of data-Point’s within a set of data-Polygon’s.

Usage

lawn_median(polygons, points, in_field, out_field = "median",
lint = FALSE)

Arguments

polygons a data-FeatureCollection of data-Polygon features

points a data-FeatureCollection of data-Point features

in_field (character) the field in input data to analyze

out_field (character) the field in which to store results

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A FeatureCollection of data-Polygon features with properties listed as out_field.

See Also

Other aggregations: lawn_average, lawn_collect, lawn_count, lawn_deviation, lawn_max,
lawn_min, lawn_sum, lawn_variance

Examples

Not run:
poly <- lawn_data$polygons_average
pt <- lawn_data$points_average
lawn_median(polygons=poly, points=pt, in_field='population')

End(Not run)

76 lawn_merge

lawn_merge Merge polygons

Description

Takes a set of data-Polygon’s and returns a single merged polygon feature. If the input polygon
features are not contiguous, returns a data-MultiPolygon feature.

Usage

lawn_merge(fc, lint = FALSE)

Arguments

fc Input polygons, as data-FeatureCollection.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

Merged data-Polygon or multipolygon data-MultiPolygon.

See Also

lawn_union

Other transformations: lawn_bezier, lawn_buffer, lawn_concave, lawn_convex, lawn_difference,
lawn_intersect, lawn_simplify, lawn_union

Examples

polygons <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {

"fill": "#0f0"
},
"geometry": {

"type": "Polygon",
"coordinates": [[

[9.994812, 53.549487],
[10.046997, 53.598209],
[10.117721, 53.531737],
[9.994812, 53.549487]

]]
}

lawn_midpoint 77

}, {
"type": "Feature",
"properties": {

"fill": "#00f"
},
"geometry": {

"type": "Polygon",
"coordinates": [[

[10.000991, 53.50418],
[10.03807, 53.562539],
[9.926834, 53.551731],
[10.000991, 53.50418]

]]
}

}
]

}'
lawn_merge(polygons)
Not run:
lawn_featurecollection(polygons) %>% view
lawn_merge(polygons) %>% view

End(Not run)

lawn_midpoint Get a point midway between two points

Description

Takes two data-Point’s and returns a point midway between them

Usage

lawn_midpoint(pt1, pt2, lint = FALSE)

Arguments

pt1 First data-Feature<(data-Point)>

pt2 Second data-Feature<(data-Point)>

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Feature<(data-Point)> midway between pt1 and pt2

78 lawn_min

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_extent, lawn_line_distance, lawn_point_on_surface, lawn_pt2line_distance, lawn_square

Examples

pt1 <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [144.834823, -37.771257]

}
}'
pt2 <- '{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [145.14244, -37.830937]

}
}'
lawn_midpoint(pt1, pt2)
Not run:
lawn_midpoint(pt1, pt2) %>% view
lawn_featurecollection(list(

lawn_point(jsonlite::fromJSON(pt1)$geometry$coordinates),
lawn_point(jsonlite::fromJSON(pt2)$geometry$coordinates),
structure(lawn_midpoint(pt1, pt2), class = "point")

)) %>% view

End(Not run)

lawn_min Minimum value of a field among points within polygons

Description

Calculates the minimum value of a field for a set of data-Point’s within a set of data-Polygon’s

Usage

lawn_min(polygons, points, in_field, out_field = "min", lint = FALSE)

lawn_multilinestring 79

Arguments

polygons a data-FeatureCollection of data-Polygon features

points a data-FeatureCollection of data-Point features

in_field (character) the field in input data to analyze

out_field (character) the field in which to store results

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A FeatureCollection of data-Polygon features with properties listed as out_field.

See Also

Other aggregations: lawn_average, lawn_collect, lawn_count, lawn_deviation, lawn_max,
lawn_median, lawn_sum, lawn_variance

Examples

Not run:
poly <- lawn_data$polygons_average
pt <- lawn_data$points_average
lawn_min(poly, pt, 'population')

End(Not run)

lawn_multilinestring Create a multilinestring

Description

Create a multilinestring

Usage

lawn_multilinestring(coordinates, properties = NULL)

Arguments

coordinates A list of positions.

properties A list of properties.

Value

A data-Feature<(data-MultiLineString)>

80 lawn_multipoint

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multipoint, lawn_multipolygon, lawn_point, lawn_polygon, lawn_random,
lawn_remove, lawn_sample

Examples

mlstr <- '[
[
[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]
],
[
[-21.929054, 64.127985],
[-21.912918, 64.134726],
[-21.916007, 64.141016],
[-21.930084, 64.14446]
]

]'
lawn_multilinestring(mlstr)

lawn_multilinestring(mlstr,
properties = list(name = 'line1', distance = 145))

Make a FeatureCollection
lawn_featurecollection(lawn_multilinestring(mlstr))

Not run:
lawn_featurecollection(lawn_multilinestring(mlstr)) %>% view

End(Not run)

lawn_multipoint MultiPoint

Description

Create a multipoint

Usage

lawn_multipoint(coordinates, properties = NULL)

Arguments

coordinates A list of point pairs, either as a list or json, of the form e.g. list(c(longitude, latitude), c(longitude, latitude))
or as JSON e.g. [[longitude, latitude], [longitude, latitude]].

properties A list of properties. Default: NULL

lawn_multipolygon 81

Value

A data-Feature<(data-MultiPoint)>

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipolygon, lawn_point, lawn_polygon,
lawn_random, lawn_remove, lawn_sample

Examples

lawn_multipoint(list(c(-74.5, 40), c(-77.5, 45)))
lawn_multipoint("[[-74.5,40],[-77.5,45]]")
identical(

lawn_multipoint(list(c(-74.5, 40), c(-77.5, 45))),
lawn_multipoint("[[-74.5,40],[-77.5,45]]")

)
lawn_multipoint("[[-74.5,40],[-77.5,45]]",

properties = list(city = 'Boston', population = 400))

Make a FeatureCollection
lawn_featurecollection(

lawn_multipoint(list(c(-74.5, 40), c(-77.5, 45)))
)

lawn_multipolygon Create a multipolygon

Description

Create a multipolygon

Usage

lawn_multipolygon(coordinates, properties = NULL)

Arguments

coordinates A list of LinearRings, or in json.

properties A list of properties.

Value

A data-Feature<(data-MultiPolygon)>

82 lawn_nearest

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_point, lawn_polygon, lawn_random,
lawn_remove, lawn_sample

Examples

rings <- list(
list(list(
c(-2.27, 53.46),
c(-2.27, 53.48),
c(-2.21, 53.48),
c(-2.21, 53.46),
c(-2.27, 53.46)
)),
list(list(
c(-4.27, 55.46),
c(-4.27, 55.48),
c(-4.21, 55.48),
c(-4.21, 55.46),
c(-4.27, 55.46)
))

)
lawn_multipolygon(rings)
lawn_multipolygon(rings, properties = list(name = 'poly1', population = 400))

x <- '[
[[[102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]],
[[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]],
[[100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2]]]

]'
lawn_multipolygon(x)

lawn_multipolygon("[[[[0,0],[0,10],[10,10],[10,0],[0,0]]]]")

Make a FeatureCollection
lawn_featurecollection(lawn_multipolygon(rings))

Not run:
lawn_featurecollection(lawn_multipolygon(rings)) %>% view

End(Not run)

lawn_nearest Get nearest point

Description

Takes a reference data-Point and a set of points to compare it against and returns the point from the
set closest to the reference

lawn_nearest 83

Usage

lawn_nearest(point, against, lint = FALSE)

Arguments

point The reference point, a data-Feature<(data-Point)>

against Input point set, a data-FeatureCollection

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Feature<(data-Point)>

Examples

point <- '{
"type": "Feature",
"properties": {

"marker-color": "#0f0"
},
"geometry": {

"type": "Point",
"coordinates": [28.965797, 41.010086]

}
}'
against <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [28.973865, 41.011122]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [28.948459, 41.024204]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [28.938674, 41.013324]

}

84 lawn_planepoint

}
]

}'
lawn_nearest(point, against)

Not run:
lawn_nearest(point, against) %>% view

End(Not run)

lawn_planepoint Calculate a Planepoint

Description

Takes a triangular plane as a data-Polygon and a data-Point within that triangle and returns the
z-value at that point.

Usage

lawn_planepoint(pt, triangle, lint = FALSE)

Arguments

pt The Point for which a z-value will be calculated.

triangle A Polygon feature with three vertices.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

The Polygon needs to have properties a, b, and c that define the values at its three corners.

Value

The z-value for pt (numeric).

See Also

Other interpolation: lawn_hex_grid, lawn_isolines, lawn_point_grid, lawn_square_grid,
lawn_tin, lawn_triangle_grid

lawn_point 85

Examples

pt <- lawn_point(c(-75.3221, 39.529))
triangle <- '{

"type": "Feature",
"properties": {

"a": 11,
"b": 122,
"c": 44

},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-75.1221, 39.57],
[-75.58, 39.18],
[-75.97, 39.86],
[-75.1221, 39.57]

]]
}

}'
lawn_planepoint(pt, triangle)

lawn_point Create a point

Description

Create a point

Usage

lawn_point(coordinates, properties = NULL)

Arguments

coordinates A pair of points in a vector, list or json, of the form e.g., c(longitude,latitude).

properties A list of properties. Default: NULL

Value

A data-Feature<(data-Point)>

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_polygon,
lawn_random, lawn_remove, lawn_sample

86 lawn_point_grid

Examples

lawn_point(c(-74.5, 40))
lawn_point(list(-74.5, 40))
lawn_point('[-74.5, 40]')
lawn_point(c(-74.5, 40), properties = list(name = 'poly1', population = 400))

Make a FeatureCollection
lawn_featurecollection(lawn_point(c(-74.5, 40)))

lawn_point_grid Create a PointGrid

Description

Takes a bounding box and a cell depth and returns a set of data-Point’s in a grid

Usage

lawn_point_grid(extent, cellSide, units = "kilometers",
centered = TRUE, bboxIsMask = FALSE)

Arguments

extent (numeric) Extent in [minX, minY, maxX, maxY] order.

cellSide (integer) the distance between points

units (character) Units to use for cellWidth, one of ’miles’ or ’kilometers’ (default).

centered (logical) adjust points position to center the grid into bbox. This parameter is
going to be removed in the next major release, having the output always centered
into bbox. Default: TRUE

bboxIsMask if TRUE, and bbox is a Polygon or MultiPolygon, the grid Point will be created
only if inside the bbox Polygon(s). Default: FALSE

Value

data-FeatureCollection grid of points.

See Also

Other interpolation: lawn_hex_grid, lawn_isolines, lawn_planepoint, lawn_square_grid,
lawn_tin, lawn_triangle_grid

Examples

lawn_point_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 30, 'miles')
lawn_point_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 10, 'miles')
lawn_point_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 3, 'miles')

lawn_point_on_line 87

lawn_point_on_line Get closest point on linestring to reference point

Description

Takes a line, a start data-Point, and a stop point and returns the line in between those points

Usage

lawn_point_on_line(line, point, lint = FALSE)

Arguments

line data-Feature<(data-LineString)> to snap to

point data-Feature<(data-Point)> to snap from

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-Feature<(data-Point)>

Examples

line <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-77.031669, 38.878605],
[-77.029609, 38.881946],
[-77.020339, 38.884084],
[-77.025661, 38.885821],
[-77.021884, 38.889563],
[-77.019824, 38.892368]

]
}

}'
pt <- '{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-77.037076, 38.884017]

}
}'
lawn_point_on_line(line, pt)

88 lawn_point_on_surface

lint input objects
lawn_point_on_line(line, pt, TRUE)
Not run:
line %>% view
pt %>% view
lawn_point_on_line(line, pt) %>% view

End(Not run)

lawn_point_on_surface Get a point on the surface of a feature

Description

Finds a data-Point guaranteed to be on the surface of data-GeoJSON object.

Usage

lawn_point_on_surface(x, lint = FALSE)

Arguments

x Any data-GeoJSON object

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

What will be returned?

• Given a data-Polygon, the point will be in the area of the polygon

• Given a data-LineString, the point will be along the string

• Given a data-Point, the point will be the same as the input

Value

A data-Feature<(data-Point)> on the surface of x

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_extent, lawn_line_distance, lawn_midpoint, lawn_pt2line_distance, lawn_square

lawn_polygon 89

Examples

polygon
x <- lawn_random("polygon")
lawn_point_on_surface(x)
point
x <- lawn_random("point")
lawn_point_on_surface(x)
linestring
linestring <- '[

[-21.929054, 64.127985],
[-21.912918, 64.134726],
[-21.916007, 64.141016],
[-21.930084, 64.14446]

]'
lawn_point_on_surface(lawn_linestring(linestring))

lawn_polygon Create a polygon

Description

Create a polygon

Usage

lawn_polygon(coordinates, properties = NULL)

Arguments

coordinates A list of LinearRings, or in json.

properties A list of properties.

Value

A data-Polygon feature.

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point,
lawn_random, lawn_remove, lawn_sample

90 lawn_propeach

Examples

rings <- list(list(
c(-2.275543, 53.464547),
c(-2.275543, 53.489271),
c(-2.215118, 53.489271),
c(-2.215118, 53.464547),
c(-2.275543, 53.464547)

))
lawn_polygon(rings)
lawn_polygon(rings, properties = list(name = 'poly1', population = 400))

Make a FeatureCollection
lawn_featurecollection(lawn_polygon(rings))

Not run:
lawn_featurecollection(lawn_polygon(rings)) %>% view

End(Not run)

lawn_propeach Iterate over property objects in any GeoJSON object

Description

Iterate over property objects in any GeoJSON object

Usage

lawn_propeach(x, fun = NULL, lint = FALSE)

Arguments

x any data-GeoJSON object

fun a Javascript function. if not given, returns self

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

matrix of coordinates, where each row in the matrix is a coordinate pair

lawn_pt2line_distance 91

Examples

x <- "{ type: 'Feature', geometry: null, properties: { foo: 1, bar: 3 } }"

don't apply any function, identity essentially
lawn_propeach(x)

appply a function callback
lawn_propeach(x, "z.foo === 1")

lawn_propeach(lawn_data$points_count)

z <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {

"population": 200,
"name": "things"

},
"geometry": {

"type": "Point",
"coordinates": [-112.0372, 46.608058]

}
}, {

"type": "Feature",
"properties": {

"population": 600,
"name": "stuff"

},
"geometry": {

"type": "Point",
"coordinates": [-112.045955, 46.596264]

}
}
]

}'
lawn_propeach(z)
lawn_propeach(z, "z.population === 200")
lawn_propeach(z, "z.name === 'stuff'")

lawn_pt2line_distance Minimum distance between a point and a lineString

Description

Returns the minimum distance between a data-Point and a data-LineString, being the distance from
a line the minimum distance between the point and any segment of the LineString.

92 lawn_random

Usage

lawn_pt2line_distance(point, line, units = "kilometers",
mercator = FALSE, lint = FALSE)

Arguments

point (data-Feature<(data-Point)>) feature or geometry

line Line to measure, a data-Feature<(data-LineString)>, or data-FeatureCollection<(data-
LineString)>

units (character) Can be degrees, radians, miles, or kilometers (default)

mercator (logical) if distance should be on Mercator or WGS84 projection. Default:
FALSE

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

distance between point and line (numeric)

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_extent, lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_square

Examples

pt <- lawn_point("[0, 0]")
ln <- lawn_linestring("[[1, 1],[-1, 1]]")

lawn_pt2line_distance(pt, ln)
lawn_pt2line_distance(pt, ln, mercator = TRUE)

lawn_pt2line_distance(pt, ln, 'miles')
lawn_pt2line_distance(pt, ln, 'radians')
lawn_pt2line_distance(pt, ln, 'degrees')
lawn_pt2line_distance(pt, ln, mercator = TRUE)

lawn_random Generate random data

Description

Generates random data-GeoJSON data, including data-Point’s and data-Polygon’s, for testing and
experimentation

lawn_remove 93

Usage

lawn_random(type = "points", n = 10, bbox = NULL,
num_vertices = NULL, max_radial_length = NULL)

Arguments

type Type of features desired: ’points’ or ’polygons’.

n (integer) Number of features to generate.

bbox A bounding box inside of which geometries are placed. In the case of Point
features, they are guaranteed to be within this bounds, while Polygon features
have their centroid within the bounds.

num_vertices Number options.vertices the number of vertices added to polygon features.
max_radial_length

Number <optional> 10 The total number of decimal degrees longitude or lati-
tude that a polygon can extent outwards to from its center.

Value

A data-FeatureCollection.

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point,
lawn_polygon, lawn_remove, lawn_sample

Examples

set of points
lawn_random(n = 2)
lawn_random(n = 10)
set of polygons
lawn_random('polygons', 2)
lawn_random('polygons', 10)
with options
lawn_random(bbox = c(-70, 40, -60, 60))
lawn_random(num_vertices = 5)

lawn_remove Remove things from a FeatureCollection

Description

Takes a data-FeatureCollection of any type, a property, and a value and returns a data-FeatureCollection
with features matching that property-value pair removed.

94 lawn_rewind

Usage

lawn_remove(features, property, value, lint = FALSE)

Arguments

features A set of input features.

property Property to filter.

value Value to filter.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-FeatureCollection.

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point,
lawn_polygon, lawn_random, lawn_sample

Examples

cat(lawn_data$remove_features)
lawn_remove(lawn_data$remove_features, 'marker-color', '#00f')
lawn_remove(lawn_data$remove_features, 'marker-color', '#0f0')

lawn_rewind Rewind

Description

Rewind (Multi)LineString or (Multi)Polygon outer ring counterclockwise and inner rings clockwise
(Uses Shoelace Formula (https://en.wikipedia.org/wiki/Shoelace_formula)).

Usage

lawn_rewind(x, reverse = FALSE, mutate = FALSE, lint = FALSE)

https://en.wikipedia.org/wiki/Shoelace_formula

lawn_sample 95

Arguments

x A data-FeatureCollection or data-Feature with Polygon, MultiPolygon, LineString,
or MultiLineString

reverse (logical) enable reverse winding. Default: FALSE
mutate (logical) allows GeoJSON input to be mutated (significant performance increase

if true) Default: FALSE
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-FeatureCollection

Examples

x <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [
[[121, -29], [138, -29], [138, -18], [121, -18], [121, -29]]
]
}

}'
lawn_rewind(x, TRUE)
lawn_rewind(x, mutate = TRUE)
lawn_rewind(x, lint = TRUE)

lawn_sample Return features from FeatureCollection at random

Description

Takes a data-FeatureCollection and returns a data-FeatureCollection with given number of features
at random.

Usage

lawn_sample(features = NULL, n = 100, lint = FALSE)

Arguments

features A data-FeatureCollection
n (integer) Number of features to generate.
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

96 lawn_simplify

Value

A data-FeatureCollection

See Also

Other data functions: lawn_featurecollection, lawn_feature, lawn_filter, lawn_geometrycollection,
lawn_linestring, lawn_multilinestring, lawn_multipoint, lawn_multipolygon, lawn_point,
lawn_polygon, lawn_random, lawn_remove

Examples

lawn_sample(lawn_data$points_average, 1)
lawn_sample(lawn_data$points_average, 2)
lawn_sample(lawn_data$points_average, 3)

lawn_simplify Simplify GeoJSON data

Description

Takes a data-LineString or data-Polygon and returns a simplified version.

Usage

lawn_simplify(feature, tolerance = 0.01, high_quality = FALSE,
lint = FALSE)

Arguments

feature A data-Feature<(data-LineString, data-Polygon, data-MultiLineString, data-MultiPolygon)>,
or data-FeatureCollection, or data-GeometryCollection

tolerance (numeric) Simplification tolerance. Default value is 0.01.

high_quality (boolean) Whether or not to spend more time to create a higher-quality simpli-
fication with a different algorithm. Default: FALSE

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

Internally uses simplify-js (http://mourner.github.io/simplify-js/) to perform simplifica-
tion.

Value

A simplified feature.

A Feature of either data-Polygon or data-LineString.

http://mourner.github.io/simplify-js/

lawn_square 97

See Also

Other transformations: lawn_bezier, lawn_buffer, lawn_concave, lawn_convex, lawn_difference,
lawn_intersect, lawn_merge, lawn_union

Examples

feature <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-70.603637, -33.399918],
[-70.614624, -33.395332],
[-70.639343, -33.392466],
[-70.659942, -33.394759],
[-70.683975, -33.404504],
[-70.697021, -33.419406],
[-70.701141, -33.434306],
[-70.700454, -33.446339],
[-70.694274, -33.458369],
[-70.682601, -33.465816],
[-70.668869, -33.472117],
[-70.646209, -33.473835],
[-70.624923, -33.472117],
[-70.609817, -33.468107],
[-70.595397, -33.458369],
[-70.587158, -33.442901],
[-70.587158, -33.426283],
[-70.590591, -33.414248],
[-70.594711, -33.406224],
[-70.603637, -33.399918]

]]
}

}'

lawn_simplify(feature, tolerance = 0.01)
Not run:
lawn_simplify(feature, tolerance = 0.01) %>% view

End(Not run)

lawn_square Calculate a square bounding box

Description

Takes a bounding box and calculates the minimum square bounding box that would contain the
input.

98 lawn_square_grid

Usage

lawn_square(bbox)

Arguments

bbox A bounding box.

Value

A square surrounding bbox, numeric vector of length four.

See Also

Other measurements: lawn_along, lawn_area, lawn_bbox_polygon, lawn_bbox, lawn_bearing,
lawn_center_of_mass, lawn_center, lawn_centroid, lawn_destination, lawn_distance, lawn_envelope,
lawn_extent, lawn_line_distance, lawn_midpoint, lawn_point_on_surface, lawn_pt2line_distance

Examples

bbox <- c(-20, -20, -15, 0)
lawn_square(bbox)
Not run:
sq <- lawn_square(bbox)
lawn_featurecollection(list(lawn_bbox_polygon(bbox),

lawn_bbox_polygon(sq))) %>% view

End(Not run)

lawn_square_grid Create a SquareGrid

Description

Takes a bounding box and a cell depth and returns a set of square data-Polygon’s in a grid.

Usage

lawn_square_grid(extent, cellWidth, units)

Arguments

extent (numeric) Extent in [minX, minY, maxX, maxY] order.

cellWidth (integer) Width of each cell.

units (character) Units to use for cellWidth, one of ’miles’ or ’kilometers’.

Value

data-FeatureCollection grid of polygons.

lawn_sum 99

See Also

Other interpolation: lawn_hex_grid, lawn_isolines, lawn_planepoint, lawn_point_grid, lawn_tin,
lawn_triangle_grid

Examples

lawn_square_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 30, 'miles')
lawn_square_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 10, 'miles')
lawn_square_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 3, 'miles')

lawn_sum Sum of a field among points within polygons

Description

Calculates the sum of a field for a set of data-Point’s within a set of data-Polygon’s.

Usage

lawn_sum(polygons, points, in_field, out_field = "sum", lint = FALSE)

Arguments

polygons a data-FeatureCollection of data-Polygon features
points a data-FeatureCollection of data-Point features
in_field (character) the field in input data to analyze
out_field (character) the field in which to store results
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A FeatureCollection of data-Polygon features with properties listed as out_field.

See Also

Other aggregations: lawn_average, lawn_collect, lawn_count, lawn_deviation, lawn_max,
lawn_median, lawn_min, lawn_variance

Examples

Not run:
poly <- lawn_data$polygons_average
pt <- lawn_data$points_average
lawn_sum(poly, pt, 'population')

End(Not run)

100 lawn_tag

lawn_tag Spatial join of points and polygons

Description

Takes a set of data-Point’s and a set of data-Polygon’s and performs a spatial join.

Usage

lawn_tag(points, polygons, field, out_field, lint = FALSE)

Arguments

points Input data-FeatureCollection<(data-Point)>

polygons Input data-FeatureCollection<(data-Polygon)> or data-FeatureCollection<(data-
MultiPolygon)>

field Property in polygons to add to joined Point features.

out_field Property in points in which to store joined property from polygons.

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

Points with containing_polyid property containing values from poly_id, as data-FeatureCollection<(data-
Point)>

See Also

Other joins: lawn_inside, lawn_within

Examples

bbox <- c(0, 0, 10, 10)
pts <- lawn_random(n = 30, bbox = bbox)
polys <- lawn_triangle_grid(bbox, 50, 'miles')
polys$features$properties$fill <- "#f92"
polys$features$properties$stroke <- 0
polys$features$properties$`fill-opacity` <- 1
lawn_tag(pts, polys, 'fill', 'marker-color')
Not run:
lawn_tag(pts, polys, 'fill', 'marker-color') %>% view

End(Not run)

lawn_tesselate 101

lawn_tesselate Tesselate

Description

Tesselates a data-Polygon into a data-FeatureCollection of triangles using earcut (https://github.
com/mapbox/earcut)

Usage

lawn_tesselate(polygon, lint = FALSE)

Arguments

polygon Input data-Feature<(data-Polygon)>

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A data-FeatureCollection

See Also

Other assertions: lawn_circle, lawn_dissolve

Examples

poly <- '{
"type": "Feature",
"properties": {

"fill": "#0f0"
},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-46.738586, -23.596711],
[-46.738586, -23.458207],
[-46.560058, -23.458207],
[-46.560058, -23.596711],
[-46.738586, -23.596711]

]]
}

}'
lawn_tesselate(poly)

xx <- jsonlite::fromJSON(lawn_data$polygons_within, FALSE)
lawn_tesselate(xx$features[[1]])

https://github.com/mapbox/earcut
https://github.com/mapbox/earcut

102 lawn_tin

Not run:
lawn_tesselate(xx$features[[1]]) %>% view
lawn_tesselate(poly) %>% view

End(Not run)

lawn_tin Create a Triangulated Irregular Network

Description

Takes a set of data-Point’s and the name of a z-value property and creates a Triangulated Irregular
Network (TIN).

Usage

lawn_tin(pt, propertyName = NULL, lint = FALSE)

Arguments

pt Input points.

propertyName (character) Name of the property from which to pull z values. This is optional:
if not given, then there will be no extra data added to the derived triangles

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

Data returned as a collection of Polygons. These are often used for developing elevation contour
maps or stepped heat visualizations.

This triangulates the points, as well as adds properties called a, b, and c representing the value of
the given propertyName at each of the points that represent the corners of the triangle.

Value

TIN output, as a data-FeatureCollection.

See Also

Other interpolation: lawn_hex_grid, lawn_isolines, lawn_planepoint, lawn_point_grid, lawn_square_grid,
lawn_triangle_grid

lawn_transform_rotate 103

Examples

pts <- lawn_random(bbox = c(-70, 40, -60, 60))
lawn_tin(pts)
Not run:
lawn_tin(pts) %>% view
lawn_tin(lawn_random(bbox = c(-70, 40, -60, 10))) %>% view

End(Not run)

lawn_transform_rotate Rotate a GeoJSON feature

Description

Rotates any geojson Feature or Geometry of a specified angle, around its centroid or a given pivot
point

Usage

lawn_transform_rotate(x, angle, pivot = c(0, 0), mutate = FALSE,
lint = FALSE)

Arguments

x a feature

angle (integer/numeric) number of rotation (along the vertical axis), from North in
decimal degrees, negative clockwise

pivot (integer/numeric) point around which the rotation will be performed (optional,
default centroid)

mutate (logical) allows GeoJSON input to be mutated (significant performance increase
if true) (optional). Default: FALSE

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a rotated data-Feature

Note

all rotations follow the right-hand rule: https://en.wikipedia.org/wiki/Right-hand_rule

https://en.wikipedia.org/wiki/Right-hand_rule

104 lawn_transform_scale

Examples

x <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [
[

[0, 29], [3.5, 29], [2.5, 32], [0, 29]
]

]
}

}'
lawn_transform_rotate(x, angle = 100, pivot = c(15, 15))

lawn_transform_rotate(x, angle = 100)
lawn_transform_rotate(x, angle = 100, mutate = TRUE)

Not run:
view(lawn_featurecollection(x))
view(lawn_featurecollection(lawn_transform_rotate(x, angle = 100)))
view(lawn_featurecollection(

lawn_transform_rotate(x, angle = 100, pivot = c(15, 15))
))
view(lawn_featurecollection(

lawn_transform_rotate(x, angle = 150, pivot = c(15, 15))
))
view(lawn_featurecollection(

lawn_transform_rotate(x, angle = 300, pivot = c(0, 4))
))

End(Not run)

lawn_transform_scale Scale a GeoJSON feature

Description

Scale a GeoJSON from a given point by a factor of scaling (ex: factor=2 would make the GeoJSON
200 the origin point will be calculated based on each individual Feature.

Usage

lawn_transform_scale(x, factor, origin = "centroid", mutate = FALSE,
lint = FALSE)

lawn_transform_scale 105

Arguments

x a feature
factor (integer/numeric) of scaling, positive or negative values greater than 0
origin (integer/numeric) Point from which the scaling will occur (string options: sw/se/nw/ne/center/centroid)

(optional, default "centroid")
mutate (logical) allows GeoJSON input to be mutated (significant performance increase

if true) (optional). Default: FALSE
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a scaled data-Feature

Examples

x <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [
[

[0, 29], [3.5, 29], [2.5, 32], [0, 29]
]

]
}

}'
lawn_transform_scale(x, factor = 3)

lawn_transform_scale(x, factor = 100)
lawn_transform_scale(x, factor = 100, mutate = TRUE)

Not run:
view(lawn_featurecollection(x))
view(lawn_featurecollection(

lawn_transform_scale(x, factor = 2)
))
view(lawn_featurecollection(

lawn_transform_scale(x, factor = 3)
))
view(lawn_featurecollection(

lawn_transform_scale(x, factor = 2, origin = "sw")
))
view(lawn_featurecollection(

lawn_transform_scale(x, factor = 2, origin = "ne")
))

End(Not run)

106 lawn_transform_translate

lawn_transform_translate

Translate a GeoJSON feature

Description

Moves any geojson Feature or Geometry of a specified distance along a Rhumb Line on the provided
direction angle.

Usage

lawn_transform_translate(x, distance, direction, units = "kilometers",
zTranslation = 0, mutate = FALSE, lint = FALSE)

Arguments

x a feature

distance (integer/numeric) length of the motion; negative values determine motion in
opposite direction

direction (integer/numeric) of the motion; angle from North in decimal degrees, positive
clockwise

units (character) in which distance will be express; miles, kilometers, degrees, or ra-
dians (optional, default kilometers)

zTranslation (integer/numeric) length of the vertical motion, same unit of distance (optional,
default 0)

mutate (logical) allows GeoJSON input to be mutated (significant performance increase
if true) (optional). Default: FALSE

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a changed data-Feature

Examples

x <- '{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",
"coordinates": [
[

[0, 29], [3.5, 29], [2.5, 32], [0, 29]
]

lawn_triangle_grid 107

]
}

}'
lawn_transform_translate(x, distance = 100, direction = 35)

lawn_transform_translate(x, distance = 100, direction = 24)
lawn_transform_translate(x, distance = 100, direction = 24, mutate = TRUE)

Not run:
view(lawn_featurecollection(x))
view(lawn_featurecollection(

lawn_transform_translate(x, distance = 130, direction = 35,
units = "kilometers")

))
view(lawn_featurecollection(

lawn_transform_translate(x, distance = 130, direction = -35,
units = "kilometers")

))
view(lawn_featurecollection(

lawn_transform_translate(x, distance = 130, direction = 35,
units = "kilometers", zTranslation = 10)

))
view(lawn_featurecollection(

lawn_transform_translate(x, distance = 130, direction = 35,
units = "kilometers", mutate = TRUE)

))

End(Not run)

lawn_triangle_grid Create a TriangleGrid

Description

Takes a bounding box and a cell depth and returns a set of triangular data-Polygon’s in a grid.

Usage

lawn_triangle_grid(extent, cellWidth, units)

Arguments

extent (numeric) Extent in [minX, minY, maxX, maxY] order.

cellWidth (integer) Width of each cell.

units (character) Units to use for cellWidth, one of ’miles’ or ’kilometers’.

Value

data-FeatureCollection grid of data-Polygon’s

108 lawn_truncate

See Also

Other interpolation: lawn_hex_grid, lawn_isolines, lawn_planepoint, lawn_point_grid, lawn_square_grid,
lawn_tin

Examples

lawn_triangle_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 30, 'miles')
lawn_triangle_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 10, 'miles')
lawn_triangle_grid(c(-77.3876, 38.7198, -76.9482, 39.0277), 3, 'miles')

lawn_truncate Truncate

Description

Takes a GeoJSON Feature or FeatureCollection and truncates the precision of the geometry.

Usage

lawn_truncate(x, precision = 6, coordinates = 2, lint = FALSE)

Arguments

x any data-Feature or data-FeatureCollection

precision (integer) coordinate decimal precision. default: 6

coordinates (integer) maximum number of coordinates (primarily used to remove z coordi-
nates). default: 2

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-Feature or data-FeatureCollection with truncated geometry

See Also

Other misc: lawn_flatten

Examples

cat(lawn_data$filter_features)
lawn_coordall(lawn_data$filter_features)
lawn_truncate(lawn_data$filter_features, 4) %>% lawn_coordall
lawn_truncate(lawn_data$filter_features, 2) %>% lawn_coordall
lawn_truncate(lawn_data$filter_features, 4, 1) %>% lawn_coordall

lawn_union 109

lawn_union Merge polygons

Description

Finds the intersection of two data-Polygon’s and returns the union of the two

Usage

lawn_union(poly1, poly2, lint = FALSE)

Arguments

poly1 A data-Feature<(data-Polygon)>

poly2 A data-Feature<(data-Polygon)>

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Details

Contiguous polygons are combined, non-contiguous polygons are returned as MultiPolygon.

Value

data-Feature<(data-Polygon)> or data-Feature<(data-MultiPolygon)>

Author(s)

Jeff Hollister <hollister.jeff@epa.gov>

See Also

lawn_merge

Other transformations: lawn_bezier, lawn_buffer, lawn_concave, lawn_convex, lawn_difference,
lawn_intersect, lawn_merge, lawn_simplify

Examples

Not run:
poly1 <- '{
"type": "Feature",
"properties": {

"fill": "#0f0"
},
"geometry": {

"type": "Polygon",
"coordinates": [[

110 lawn_unkinkpolygon

[-122.801742, 45.48565],
[-122.801742, 45.60491],
[-122.584762, 45.60491],
[-122.584762, 45.48565],
[-122.801742, 45.48565]
]]

}
}'

poly2 <- '{
"type": "Feature",
"properties": {
"fill": "#00f"

},
"geometry": {

"type": "Polygon",
"coordinates": [[

[-122.520217, 45.535693],
[-122.64038, 45.553967],
[-122.720031, 45.526554],
[-122.669906, 45.507309],
[-122.723464, 45.446643],
[-122.532577, 45.408574],
[-122.487258, 45.477466],
[-122.520217, 45.535693]
]]

}
}'
lawn_union(poly1, poly2)

view(poly1)
view(poly2)
lawn_union(poly1, poly2) %>% view()

x1 <- lawn_buffer(lawn_point(c(-122.6375, 45.53)), 1500, "meters")
x2 <- lawn_buffer(lawn_point(c(-122.6475, 45.53)), 1500, "meters")
lawn_union(x1, x2)
view(x1)
view(x2)
lawn_union(x1, x2) %>% view()

End(Not run)

lawn_unkinkpolygon Unkink polygon

Description

Takes a kinked polygon and returns a feature collection of polygons that have no kinks.

lawn_variance 111

Usage

lawn_unkinkpolygon(x, lint = FALSE)

Arguments

x A data-FeatureCollection<(data-Polygon)> or data-FeatureCollection<(data-MultiPolygon)>

lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object
to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

a data-FeatureCollection<(data-Polygon)>

See Also

Other grids: lawn_idw

Examples

x <- '{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",

"coordinates": [[[0, 0], [2, 0], [0, 2], [2, 2], [0, 0]]]
}

}'
lawn_unkinkpolygon(x)
view(x)
view(lawn_unkinkpolygon(x))

lawn_variance Variance of a field among points within polygons

Description

Calculates the variance value of a field for a set of data-Point’s within a set of data-Polygon’s.

Usage

lawn_variance(polygons, points, in_field, out_field = "variance",
lint = FALSE)

112 lawn_within

Arguments

polygons a data-FeatureCollection of data-Polygon features
points a data-FeatureCollection of data-Point features
in_field (character) the field in input data to analyze
out_field (character) the field in which to store results
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

Value

A FeatureCollection of data-Polygon features with properties listed as out_field.

A FeatureCollection of data-Polygon features with properties listed as out_field.

See Also

Other aggregations: lawn_average, lawn_collect, lawn_count, lawn_deviation, lawn_max,
lawn_median, lawn_min, lawn_sum

Examples

Not run:
poly <- lawn_data$polygons_average
pt <- lawn_data$points_average
lawn_variance(poly, pt, 'population')

End(Not run)

lawn_within Return points that fall within polygons

Description

Takes a set of data-Point’s and a set of data-Polygon’s and returns points that fall within the poly-
gons.

Usage

lawn_within(points, polygons, lint = FALSE)

Arguments

points data-FeatureCollection of points.
polygons data-FeatureCollection of polygons.
lint (logical) Lint or not. Uses geojsonhint. Takes up increasing time as the object

to get linted increases in size, so probably use by default for small objects, but
not for large if you know they are good geojson objects. Default: FALSE

print-methods 113

Value

Points that land within at least one polygon, as a data-FeatureCollection.

See Also

Other joins: lawn_inside, lawn_tag

Examples

Not run:
cat(lawn_data$points_within)
cat(lawn_data$polygons_within)
lawn_within(lawn_data$points_within, lawn_data$polygons_within)

pt <- '{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [-90.548630, 14.616599]

}
}'
poly <- lawn_featurecollection(lawn_buffer(pt, 5))
pts <- lawn_featurecollection(lawn_point(c(-90.55, 14.62)))

lawn_within(pts, poly)

End(Not run)

print-methods Lawn print methods to provide summary view

Description

Lawn print methods to provide summary view

Arguments

x Input.

n (integer) Number of rows to print, when properties is large object.

... Print options.

Examples

point
lawn_point(c(-74.5, 40))

polygon

114 print-methods

rings <- list(list(
c(-2.275543, 53.464547),
c(-2.275543, 53.489271),
c(-2.215118, 53.489271),
c(-2.215118, 53.464547),
c(-2.275543, 53.464547)

))
lawn_polygon(rings, properties = list(name = 'poly1', population = 400))

linestring
linestring1 <- '[

[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]

]'
lawn_linestring(linestring1)
lawn_linestring(linestring1, properties = list(name = 'line1',

distance = 145))

featurecollection
lawn_featurecollection(lawn_data$featurecollection_eg1)

feature
serbia <- '{

"type": "Feature",
"properties": {"color": "red"},
"geometry": {
"type": "Point",
"coordinates": [20.566406, 43.421008]
}

}'
lawn_flip(serbia)

multipoint
mpt <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [19.026432, 47.49134]

}
}, {

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [19.074497, 47.509548]

}
}

view 115

]
}'
x <- lawn_combine(mpt)
x$properties <- data.frame(color = c("red", "green"),

size = c("small", "large"),
popultion = c(5000, 10000L))

x

multilinestring
mlstring <- '{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-21.964416, 64.148203],
[-21.956176, 64.141316],
[-21.93901, 64.135924],
[-21.927337, 64.136673]

]
}

}, {
"type": "Feature",
"properties": {},
"geometry": {

"type": "LineString",
"coordinates": [

[-21.929054, 64.127985],
[-21.912918, 64.134726],
[-21.916007, 64.141016],
[-21.930084, 64.14446]

]
}

}
]

}'
x <- lawn_combine(mlstring)
x$properties <- data.frame(color = c("red", "green"),

size = c("small", "large"),
popultion = c(5000, 10000L))

x

view Visualize geojson

Description

Visualize geojson

116 view

Usage

view(x)

view_(...)

Arguments

x Input, a geojson character string or list.

... Any geojson object, as list, json, or point, polygon, etc. class.

Details

view_ is a special interface to view to accept arbitrary input via

Value

Opens a map with the geojson object(s).

Examples

Not run:
from character string
view(lawn_data$polygons_average)
view(lawn_data$filter_features)
view(lawn_data$polygons_within)
view(lawn_data$polygons_count)

from json (a jsonlite class)
library(jsonlite)
x <- minify(lawn_data$points_count)
class(x)
view(x)

from a list (a single object)
library("jsonlite")
x <- fromJSON(lawn_data$polygons_average, FALSE)
view(x)

From a list of many objects
x <- list(
lawn_point(c(-75.343, 39.984), properties = list(name = 'Location A')),
lawn_point(c(-75.833, 39.284), properties = list(name = 'Location B')),
lawn_point(c(-75.534, 39.123), properties = list(name = 'Location C'))

)
view(x)

Use view_ to pass in arbitrary objects that will be combined
view_(
lawn_point(c(-75.343, 39.984), properties = list(name = 'Location A')),
lawn_point(c(-75.833, 39.284), properties = list(name = 'Location B')),
lawn_point(c(-75.534, 39.123), properties = list(name = 'Location C'))

view 117

)

another eg, smile :)
l1 <- list(

c(-69.9609375, 35.460669951495305),
c(-78.75, 39.095962936305504),
c(-87.1875, 39.36827914916011),
c(-92.46093749999999, 36.03133177633189)

)
l2 <- list(

c(-46.0546875, 8.7547947),
c(-33.0468750, -0.7031074),
c(-14.0625000, 0.0000000),
c(-0.3515625, 9.4490618)

)
l3 <- list(

c(-1.40625, 38.81152),
c(14.76562, 45.33670),
c(23.20312, 45.58329),
c(33.04688, 39.63954)

)
view_(lawn_point(c(-30, 20)),

lawn_linestring(l1),
lawn_linestring(l2),
lawn_linestring(l3)

)

From a geo_list object from geojsonio package
library("geojsonio")
vecs <- list(c(100.0,0.0), c(101.0,0.0), c(101.0,1.0),
c(100.0,1.0), c(100.0,0.0))
x <- geojson_list(vecs, geometry="polygon")
view_(x)
view_(x, lawn_point(c(101, 0)))

End(Not run)

Index

∗Topic datasets
lawn_data, 38

as.feature, 4, 6
as_feature, 5

data-Feature, 12, 15–20, 22–27, 39, 41,
44–47, 53, 55, 56, 68, 69, 71–73, 77,
79, 81, 83, 85, 87, 88, 92, 95, 96,
101, 103, 105, 106, 108, 109

data-Feature (data-types), 6
data-FeatureCollection, 6, 9, 12, 13,

23–26, 29, 30, 32, 33, 37, 40, 43,
45–47, 54–56, 59–61, 67, 69, 76, 83,
86, 92–96, 98, 100–102, 107, 108,
111–113

data-FeatureCollection (data-types), 6
data-GeoJSON, 35, 36, 52, 58, 59, 88, 90, 92
data-GeoJSON (data-types), 6
data-Geometry, 18–22
data-Geometry (data-types), 6
data-GeometryCollection, 57, 96
data-GeometryCollection (data-types), 6
data-LineString, 11, 16, 17, 67–73, 87, 88,

91, 92, 96
data-LineString (data-types), 6
data-MultiLineString, 65, 79, 96
data-MultiLineString (data-types), 6
data-MultiPoint, 81
data-MultiPoint (data-types), 6
data-MultiPolygon, 63, 76, 81, 96, 100, 109,

111
data-MultiPolygon (data-types), 6
data-Point, 11, 13, 15, 24–27, 31, 33, 37, 39,

40, 44, 63, 66, 71, 74, 75, 77, 78,
82–88, 91, 92, 99, 100, 102, 111, 112

data-Point (data-types), 6
data-Polygon, 13–15, 27, 28, 32, 33, 37, 40,

41, 43, 45, 59, 63–65, 74–76, 78, 79,

84, 88, 89, 92, 96, 98–101, 107, 109,
111, 112

data-Polygon (data-types), 6
data-types, 6

georandom, 9
gr_point (georandom), 9
gr_polygon (georandom), 9
gr_position (georandom), 9

lawn (lawn-package), 4
lawn-defunct, 4, 10
lawn-package, 4
lawn_aggregate, 10
lawn_along, 11, 12, 14, 15, 24–26, 39, 44, 45,

48, 70, 78, 88, 92, 98
lawn_area, 11, 12, 14, 15, 24–26, 39, 44, 45,

48, 70, 78, 88, 92, 98
lawn_average, 13, 28, 37, 40, 74, 75, 79, 99,

112
lawn_bbox, 11, 12, 14, 15, 24–26, 39, 44, 45,

48, 70, 78, 88, 92, 98
lawn_bbox_polygon, 11, 12, 14, 14, 15,

24–26, 39, 44, 45, 48, 70, 78, 88, 92,
98

lawn_bearing, 11, 12, 14, 15, 15, 24–26, 39,
44, 45, 48, 70, 78, 88, 92, 98

lawn_bezier, 16, 23, 32, 34, 41, 65, 76, 97,
109

lawn_boolean_clockwise, 17, 18–22
lawn_boolean_contains, 17, 18, 19–22
lawn_boolean_crosses, 17, 18, 19, 20–22
lawn_boolean_disjoint, 17–19, 19, 21, 22
lawn_boolean_overlap, 17–20, 20, 21, 22
lawn_boolean_pointonline, 17–21, 21, 22
lawn_boolean_within, 17–21, 22
lawn_buffer, 17, 22, 32, 34, 41, 65, 76, 97,

109
lawn_center, 11, 12, 14, 15, 24, 25, 26, 39,

44, 45, 48, 70, 78, 88, 92, 98

118

INDEX 119

lawn_center_of_mass, 11, 12, 14, 15, 24, 25,
26, 39, 44, 45, 48, 70, 78, 88, 92, 98

lawn_centroid, 11, 12, 14, 15, 24, 25, 26, 39,
44, 45, 48, 70, 78, 88, 92, 98

lawn_circle, 27, 43, 101
lawn_collect, 13, 28, 37, 40, 74, 75, 79, 99,

112
lawn_collectionof, 29, 53, 58
lawn_combine, 30
lawn_concave, 17, 23, 31, 34, 41, 65, 76, 97,

109
lawn_convex, 17, 23, 32, 33, 41, 65, 76, 97,

109
lawn_coordall, 35
lawn_coordeach, 36
lawn_count, 13, 28, 37, 40, 74, 75, 79, 99, 112
lawn_data, 38
lawn_destination, 11, 12, 14, 15, 24–26, 39,

44, 45, 48, 70, 78, 88, 92, 98
lawn_deviation, 13, 28, 37, 40, 74, 75, 79,

99, 112
lawn_difference, 17, 23, 32, 34, 41, 65, 76,

97, 109
lawn_dissolve, 27, 42, 101
lawn_distance, 11, 12, 14, 15, 24–26, 39, 44,

45, 48, 70, 78, 88, 92, 98
lawn_envelope, 11, 12, 14, 15, 24–26, 39, 44,

45, 48, 70, 78, 88, 92, 98
lawn_explode, 46
lawn_extent, 11, 12, 14, 15, 24–26, 39, 44,

45, 47, 70, 78, 88, 92, 98
lawn_feature, 8, 48, 49, 54, 57, 68, 80–82,

85, 89, 93, 94, 96
lawn_featurecollection, 8, 49, 49, 54, 57,

68, 80–82, 85, 89, 93, 94, 96
lawn_featureeach, 52
lawn_featureof, 29, 53, 58
lawn_filter, 49, 54, 57, 68, 80–82, 85, 89,

93, 94, 96
lawn_flatten, 55, 108
lawn_flip, 55
lawn_geometrycollection, 8, 49, 54, 56, 68,

80–82, 85, 89, 93, 94, 96
lawn_geosjontype, 29, 53, 58
lawn_getcoord, 59
lawn_hex_grid, 59, 67, 84, 86, 99, 102, 108
lawn_idw, 60, 111
lawn_inside, 63, 100, 113

lawn_intersect, 17, 23, 32, 34, 41, 64, 76,
97, 109

lawn_isolines, 60, 66, 84, 86, 99, 102, 108
lawn_jenks, 10
lawn_kinks, 67
lawn_line_distance, 11, 12, 14, 15, 24–26,

39, 44, 45, 48, 69, 78, 88, 92, 98
lawn_line_offset, 70
lawn_line_slice, 71
lawn_line_slice_along, 73
lawn_linestring, 8, 49, 54, 57, 68, 80–82,

85, 89, 93, 94, 96
lawn_max, 13, 28, 37, 40, 74, 75, 79, 99, 112
lawn_median, 13, 28, 37, 40, 74, 75, 79, 99,

112
lawn_merge, 17, 23, 32, 34, 41, 65, 76, 97, 109
lawn_midpoint, 11, 12, 14, 15, 24–26, 39, 44,

45, 48, 70, 77, 88, 92, 98
lawn_min, 13, 28, 37, 40, 74, 75, 78, 99, 112
lawn_multilinestring, 8, 49, 54, 57, 68, 79,

81, 82, 85, 89, 93, 94, 96
lawn_multipoint, 7, 49, 54, 57, 68, 80, 80,

82, 85, 89, 93, 94, 96
lawn_multipolygon, 7, 49, 54, 57, 68, 80, 81,

81, 85, 89, 93, 94, 96
lawn_nearest, 82
lawn_planepoint, 60, 67, 84, 86, 99, 102, 108
lawn_point, 7, 49, 54, 57, 68, 80–82, 85, 89,

93, 94, 96
lawn_point_grid, 60, 67, 84, 86, 99, 102, 108
lawn_point_grid(), 66
lawn_point_on_line, 87
lawn_point_on_surface, 11, 12, 14, 15,

24–26, 39, 44, 45, 48, 70, 78, 88, 92,
98

lawn_polygon, 7, 49, 54, 57, 68, 80–82, 85,
89, 93, 94, 96

lawn_propeach, 90
lawn_pt2line_distance, 11, 12, 14, 15,

24–26, 39, 44, 45, 48, 70, 78, 88, 91,
98

lawn_quantile, 10
lawn_random, 9, 49, 54, 57, 68, 80–82, 85, 89,

92, 94, 96
lawn_reclass, 10
lawn_remove, 49, 54, 57, 68, 80–82, 85, 89,

93, 93, 96
lawn_rewind, 94

120 INDEX

lawn_sample, 49, 54, 57, 68, 80–82, 85, 89,
93, 94, 95

lawn_simplify, 17, 23, 32, 34, 41, 65, 76, 96,
109

lawn_size, 10
lawn_square, 11, 12, 14, 15, 24–26, 39, 44,

45, 48, 70, 78, 88, 92, 97
lawn_square_grid, 60, 67, 84, 86, 98, 102,

108
lawn_sum, 13, 28, 37, 40, 74, 75, 79, 99, 112
lawn_tag, 63, 100, 113
lawn_tesselate, 27, 43, 101
lawn_tin, 60, 67, 84, 86, 99, 102, 108
lawn_transform_rotate, 103
lawn_transform_scale, 104
lawn_transform_translate, 106
lawn_triangle_grid, 60, 67, 84, 86, 99, 102,

107
lawn_truncate, 55, 108
lawn_union, 17, 23, 32, 34, 41, 65, 76, 97, 109
lawn_unkinkpolygon, 61, 110
lawn_variance, 13, 28, 37, 40, 74, 75, 79, 99,

111
lawn_within, 63, 100, 112

print-methods, 113

view, 115
view_ (view), 115

	lawn-package
	as.feature
	as_feature
	data-types
	georandom
	lawn-defunct
	lawn_along
	lawn_area
	lawn_average
	lawn_bbox
	lawn_bbox_polygon
	lawn_bearing
	lawn_bezier
	lawn_boolean_clockwise
	lawn_boolean_contains
	lawn_boolean_crosses
	lawn_boolean_disjoint
	lawn_boolean_overlap
	lawn_boolean_pointonline
	lawn_boolean_within
	lawn_buffer
	lawn_center
	lawn_center_of_mass
	lawn_centroid
	lawn_circle
	lawn_collect
	lawn_collectionof
	lawn_combine
	lawn_concave
	lawn_convex
	lawn_coordall
	lawn_coordeach
	lawn_count
	lawn_data
	lawn_destination
	lawn_deviation
	lawn_difference
	lawn_dissolve
	lawn_distance
	lawn_envelope
	lawn_explode
	lawn_extent
	lawn_feature
	lawn_featurecollection
	lawn_featureeach
	lawn_featureof
	lawn_filter
	lawn_flatten
	lawn_flip
	lawn_geometrycollection
	lawn_geosjontype
	lawn_getcoord
	lawn_hex_grid
	lawn_idw
	lawn_inside
	lawn_intersect
	lawn_isolines
	lawn_kinks
	lawn_linestring
	lawn_line_distance
	lawn_line_offset
	lawn_line_slice
	lawn_line_slice_along
	lawn_max
	lawn_median
	lawn_merge
	lawn_midpoint
	lawn_min
	lawn_multilinestring
	lawn_multipoint
	lawn_multipolygon
	lawn_nearest
	lawn_planepoint
	lawn_point
	lawn_point_grid
	lawn_point_on_line
	lawn_point_on_surface
	lawn_polygon
	lawn_propeach
	lawn_pt2line_distance
	lawn_random
	lawn_remove
	lawn_rewind
	lawn_sample
	lawn_simplify
	lawn_square
	lawn_square_grid
	lawn_sum
	lawn_tag
	lawn_tesselate
	lawn_tin
	lawn_transform_rotate
	lawn_transform_scale
	lawn_transform_translate
	lawn_triangle_grid
	lawn_truncate
	lawn_union
	lawn_unkinkpolygon
	lawn_variance
	lawn_within
	print-methods
	view
	Index

