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1 Introduction

Consider the usnal regression setting where we have data (zi1,...,Tim. i), i — 1,2,... .7,
and the x;s are the regressor variables and y; the response for ﬂl(‘ ith observation. In this
situation, ordinary least squares tries to find the linear combi of the z;;s that

the residual sum of squares. However, if m is large or there are high correlations among the
regressor variables then the least-squares estimators often have high variance. Traditional
methods of addressing this problem include ridge regression and subset selection (see, among
others, Miller, 1990; Hocking, 1996; Draper and Smith, 1998).

Tibshirani (1996) proposes the “least absolute shrinkage and selection operator” (lasso) as
an alternative method for handling this problem. This approach amounts to minimising the
residual sum of squares under a constraint on the sum of the absolute values of regression
coefficient estimates. That is, the following optimisation problem has to be solved:

1 n m 2
minimise Z vi— Z-Tw”; (1a)
-1 =1
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subject to Z 18] <t (1b)
=1

for some t > 0. More specifically, Tibshirani (1996) proposes standardising each regressor so
that it has (sample) mean zero and (sample) variance one and standardising the dependent
variable to have mean zero. This standardisation amounts to incorporating an intercept term
that is orthogonal to all other regressors, not part of the penalty and estimated by the mean
of the dependent variable.

Tibshirani (1996) showed that this procedure has some interesting properties. Essentially, it
shrinks the ordinary least squares estimates towards zero, typically setting some of them to
be equal to zero. Thus, it seems to behave as a compromise between subset selection and
ridge regression and may therefore be a useful tool for variable selection. Code to fit models
of the form (1) is provided by Tibshirani (1995).

This manual describes an alternative S-PLUS library for fitting models of type (1). It is
based on the algorithm developed by (Osborne ef al., 1999) and the actual implementation
in C is described in Turlach (1998). A homotopy approach to calculate all solutions of (1)
sequentially is described in Osborne et al. (1998a). Osborne (1998) discusses the relationship
between variable selection and trust regions for (nonlinear) optimisation routines.

We claim the algorithm discussed by Osborne et al. (1999) has several advantages over the
algorithm used by Tibshirani (1995, 1996). For instance it can still be applied if there are
more regressors than observations (Osborne et al., 1998b).

The underlying engine of this library is described in Turlach (1998). Hows , the S-PLUS
interface adds much more functionality. Our library uses the modelling features of S-PLUS.
Also, the S-PLUS interface is designed for the more general case where some other variables
in addition to the intercept term are accepted d priori as important regressors and are not
included in the constraint. Some details are given in Section 2. Instead of discussing all rou-
tines of the library in detail, we shall give two examples in Section 3 and refer to the printout
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2 Some Details

Assume that the regressor variables are split up into (zj1,... ;i) and (z1,-.. , z,) and
we use the ‘lasso’ technique to select among the z-regressors only. If 3 denotes the vector
of parameters for the z-variables and ~ the vector of parameters for the z-variables, then we
may use (1) by placing a constraint on v only.

The S-PLUS interface allows one further extension of this approach. Specifically, let X and Z
denote the corresponding design matrices, Y the vector with the dependent variable and W
(n x n) a non-negative, diagonal weight matrix (possibly the identity). Then the central
fitting routine, 11ce, (L' constrained estimation) of this library proceeds as follows.
o Calelate # = (XTWX)~'XTWY and project the (weighted) other variables (both
dependent and independent) orthogonal to the column space of W/2X. That is

7 = {1 7wl/?x(x’f'wx)*lx'l'wl/z}w‘/zz and
Y= {1 - WI/QX(XTWX)’leW‘/Z}WI/ZY.

o Standardise the columns of Z* to have (sample) variance 1. (This standardisation may

be suppressed.)
o Solve
minimise  (Y* — Z*y)7(Y* — Z*7) (2a)
E

subject to  [lv[y <t (2b)

o Adjust 4 to take into account any standardisation of Z* and adjust j to take the
projection of Z orthogonal to X into account.

By default W is the identity matrix, py =1 and z;; = 1 for @ TN

There are two possibilities for specifying ¢ in (2b). If the user provides a relative bound, s,
(which must be between zero (exclusive) and one (inclusive)), then the maximum effective
value for ¢, namely to = [|(Z*7Z*)='Z*7Y*||, is calculated and ¢ = stg is used as constraint.
(Since tg is calculated using the S-PLUS commands gr and qr.fitted this option can also
be used if there are more regressors than observations. It is however unclear in this case
whether £y has any desirable properties.) The second possibility is for the user to provide an
absolute bound ¢ which is then used directly. In this latter case the argument absolute.t =
T must be specified.

It should be noted that the approach leading to (2) yields in general a different result from
that found by solving the problem

minmise (Y - X3 —Z7)' (Y - X3 - Zv) (3a)
By

o



subject to ||yl < £ (3b)

It seems natural, however, first to project orthogonal (in the metric defined by weight matrix
‘W) to the space spanned by the columns of X and then to select those columns (variables) in
Z* that best explain the remaining variance. (Of course this approach is a mild and natural
generalisation of the way the intercept term alone is handled in Tibshirani (1996).)

3 Examples

In this section we demonstrate some of the routines of this library on two examples. The
first uses the prostate data (Stamey et al., 1989) which is also used in Tibshirani (1996) and
Osborne et al. (1999); the second uses the lowa wheat yield data from a multiple regres-
sion problem in Draper and Smith (1998) and shows that this methodology can have some
surprising effects.

Prostate Data

The prostate data (Stamey et al., 1989) is provided as a data frame called Prostate by this
library. We shall not discuss in detail how the results reported in Tibshirani (1996) and
Osborne et al. (1999) can be reproduced with this library. Due to some incompatibiliti
between our code and that of Tibshirani (1995) exact reproduction of these published results
roquires a major effort.

One of the incompatibilities is that Tibshirani (1995) returns parameters for the estimate on
the “standardised” and the “unstandardised” scale of the regressors. Our implementation
only returns the estimates on the scale on which the variables were specified. Hence, to get
the parameter estimates mentioned in Tibshirani (1996) and Osborne et al. (1999) we would
have to create a data frame in which the regressor variables are already centred. This can be
done by the following commands

> p.mean <- apply(Prostate, 2, mean)

> pros <- sweep(Prostate, 2, p.mean, "-")
> p.std <- apply(pros, 2, var)

> pros <- sweep(pros, 2, sqrt(p.std), "/")
> pros[, "lpsa"] <- Prostate[, "lpsa"l

After loading the library Lasso2 we can fit the model discussed by Tibshirani (1996) and
Osborne et al. (1999) as follows; (to get intermediate results on the progress of the fitting, we

may specify trace = T):

> lice(lpsa * ., pros, bound = 0.44)
Call:
lice(formula = lpsa ~ ., data = pros, bound = 0.44)

Coefficients:
(Intercept)  lcavol  lweight age lbph svi lcp gleason pgg45
2.478387 0.5587661 0.09699974 0 0 0.1555875 0 0 0
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Figure 1: (Standardised) coefficients for prostate data for varying (relative) bounds

The relative L1 bound was 1 0.44
The absolute L1 bound was : 0.8113534
The Lagrangian for the bound is: 17.89198

Note that you will get a warning message because pros is not a data frame. This can be

avoided by issuing the command
> pros <- as.data.frame(pros)

In the above example the argument bound was a single constraint and hence a single model
was fitted and 11ce returned an object of class "11ce”. We may also specify a vector of
constraints:

> res <- lice(lpsa ~ ., pros, bound = (1:40)/40)

In this case, an object of class "11celist" is returned which contains all the fitted model
objects corresponding to the specified bounds. The bounds may be specified in any order, and
50, for example, bound = (40:1)/40 is also permis that the
underlying C engine will solve the problems sequentially from smallest to largest bound. This
is the most efficient way of organising the calculations since each fit can utilise information
from the previous one. You may verify this by specifying trace = T. In the returned result,
however, the fitted models are ordered in the same way that bound was originally specified.

ible. The routine 1ice ensur

A plot method for objects of class "11celist" can be used to plot how the fitted parameters
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Figure 2: Coefficients for lowa wheat data for varying (relative) bounds

change with a changing constraint. The plot produced is typically not very helpful, though, as
it constructs a plot of all the coefficients, including those that were not under the constraint
(here only the intercept). The coefficients that are not under the constraint may be on quite
a different scale. Hence it is better to save the object returned by plot and tailor it so that
the final plot is useful given the context. This can be done using a technique demonstrated
by the following commands (the result is shown in Figure 1):

> plres <- plot(res)
> matplot(plres$bound[,"rel"], plres$mat[,-1], type =
> text(cbind(1.03, coef(res[40])[-1]), labels(res), adj = 0)

= ¢c(0, 1.1))

Iowa Wheat Data

Tibshirani (1996) has a figure similar to Figure 1 and remarks that “in this example, the
curves decrease in a monotone fashion to 0, but this does not always happen in general”. The
lowa wheat yield data of Draper and Smith (1998) (supplied in this library as data frame
Towa) provides an example where this monotone behaviour does not obtain.

The following commands, similar to those used in the last example, produced Figure 2:

> res <- lice(Yield™., Iowa, bound=(1:40)/40)
> plres <- plot(res, plot=F)
> matplot(plres$bound[,"rel"], plres$matl,-11, type =

, xlim = c(0, 1.1))
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Figure 3: Coefficients for Towa wheat data for varying (relative) bounds, if Year is not included
in the constraint

> text(cbind(1.03, coef(res[40])[-1]), labels(res), adj = 0)

Note the behaviour of the coefficient labelled Temp3. It first enters the model with a negative
coefficient, then drops out and later reappears with a positive coefficient when we are close
to the unconstrained linear model.

In this example the variable Year enters the model first and seems to be the only unequivocally
important variable for explaining Yield. It could be interesting, then, to see what happens if
accept it ab initio and exclude it from the constraint. This can be done using either command

> res <- lice(Yield ~ ., Iowa, sweep.out = “Year, bound = (1:40)/40)
or

> res <- update(res, sweep.out = “Year)

That is, we ‘sweep out’ the variable Year as well as the intercept before imposing the con-

straint. If we now plot the result with the following commands, we obtain Figure 3.

> plres <- plot(res, plot = F)

> matplot (plres$bound[,"rel"], plres$mat[,-11, type = "1", xlim = c(0, 1.1))
> text(cbind(1.03, coef(res[40])[-1]), labels(res), adj = 0)

Now we do not have the changing sign effect any longer, but note that the coefficient labelled
Tempé still shows slightly non-monotone behaviour.



4 Generalised Linear Models

glice is an extension to 1ice that allows to apply the LASSO techniques to generalised
linear models. The relationship between glice and lice is similar to that of the (more
standard) S-PLUS functions glm and 1m. Especially, glice uses the same way of specifying
the generalised linear model (family, link fimction etc.) as glm. This extension was part of
JL’s honours project and more details on this function (and its performance) can be found
in his honours report. You should find a (compressed) PostSeript file of that report the same
directory as this manual.

5 Incompatibilities

The code of Tibshirani (1995) also includes a routine for fitting Cox models. Such a routine
is ot (yet) implemented in our library. For normal regression models our library provides
the function 11ce and below we describe some incompatibilities with Tibshirani’s code. Gen-
eralised linear models can be handled via glice. Details on this function can be found in
JL’s honours report. However, the approach taken by glice is fundamentally different to
Tibshirani’s approach so that this routines are inherently incompatible.

Use of weights

If weights are used, a close inspection of the code of the routine lasso of Tibshirani (1995)
shows that it first centres and scales the design matrix. Then the centred/rescaled design
matrix and the y-vector are multiplied by (the square oot of) the weights and finally the
(now weighted) y-observations are centred. In our view this procedure is not an appropriate
way of handling weights, and is incompatible with the way our routine 11ce handles them.
Our procedure is described in Section 2.

The Lagrangian

In all calculations that involve the Lagrangian of the constraint our code uses the correct
Lagrangian as derived in Osborne et al. (1999). Tibshirani’s findlam routine searches for
the Lagrangian on the discrete grid seq(0, 2, length = 40). Hence any calenlations that
depend on the value of the Lagrangian will nearly certainly differ.

Covariance matrix of the estimators

For calculating the covariance matrix, our rontine veov uses by default the formula given
in Osborne et al. (1999). 1f type = "Tibshirani is used, then the formula of Tibshirani
(1996) is used with the Moore-Penrose generalised inverse. To obtain the same result as with
Tibshirani’s routine 1asso. se one would also have to specify gen. inverse.diag = le11and
modify the Lagrangian (see comments above).




The cross-validation function

Tibshirani’s routine lasso.gcv only centres and rescales the design matrix and omits to
centre the response variable. Thus, to obtain the same results with our gcv routine one
would have to construct a data frame that contains the centred and rescaled design matrix
and then call 11ce (with bound = seq(0, 1, length = 10)) with a formula that does not
include an intercept and sweep.out = NULL. Furthermore, it would be necessary to specify
type = "Tibshirani”, gen.inverse.diag = lell and to modify all the Lagrangians of the
different models.

Standard errors

Standard errors are caleulated and returned by the summary function. These standard errors
are caleulated by default using the formula given in Osborne et al. (1999). Thus, to use
the alternative formula of Tibshirani it is necessary to specify type = "Tibshirani® and
gen.inverse.diag = letl. Care must also be taken about the value of the Lagrangian

since these caleulations depend on it. Finally, our routine uses as estimate for
the residual standard error the (square root) of the residual sum of squares of the model
divided by the degrees of freedom (depending on the covariance formula used). By way of
contrast, Tibshirani’s routine lasso.se uses the residual standard error obtained by fit
an unconstrained linear model. Thus, to duplicate his results this estimate for the residual
standard error has to be provided to summary via the parameter signa.

ing

The distribution of the constrained parameter estimates will typically have a condensation
of probability at zero and so will be far from normal. This suggests that summarising the
uncertainty by standard errors is possibly not appropriate. We suggest that this point deserv
further theoretical investigation.
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