Package 'lass0'

December 18, 2019

Type Package
Title Lasso-Zero for (High-Dimensional) Linear Regression
Version 1.1.0
Date 2019-12-18
Author Pascaline Descloux, Sylvain Sardy
Maintainer Pascaline Descloux <pascaline.descloux@unige.ch></pascaline.descloux@unige.ch>
Description Model selection for the (possibly high-dimensional) linear regression model with Lasso-Zero, an L1-based methodology relying on the repeated use of noise dictionaries, as described by Descloux, P. and Sardy, S. (2018) <arxiv:1805.05133>.</arxiv:1805.05133>
Depends stats, graphics
Imports lpSolve (>= 5.6.13), ismev (>= 1.42), foreach (>= 1.4.4), doRNG (>= 1.7.1)
License GPL-2
URL http://arxiv.org/abs/1805.05133
Encoding UTF-8
RoxygenNote 6.1.0
NeedsCompilation no

Repository CRAN

Date/Publication 2019-12-18 16:00:05 UTC

R topics documented:

lass0	
plot.lass0	
predict.lass0	
print.lass0	
qut.MC	
	10

Index

Variable selection for linear regression with Lasso-Zero

Description

Fits a (possibly high-dimensional) linear model with Lasso-Zero. Lasso-Zero aggregates several estimates obtained by solving the basis pursuit problem after concatenating random noise dictionaries to the input matrix. The procedure is described in more details in the paper linked to in the References section below.

Usage

```
lass0(X, y, tau, alpha, q = nrow(X), M = 30, sigma = NULL,
intercept = TRUE, standardizeX = TRUE, standardizeG = NULL,
qut.MC.output = NULL, GEVapprox = TRUE, parallel = FALSE,
soft.thresholding = FALSE, ols = TRUE, ...)
```

Arguments

Х	input matrix of dimension n x p; each row is an observation vector.
У	response vector of size n.
tau	a positive threshold value. If missing, then alpha must be supplied.
alpha	level of the quantile universal threshold (number between 0 and 1). If missing, then tau must be supplied.
q	size of noise dictionaries. A noise dictionary consists in a Gaussian matrix G of size $n \times q$ concatenated horizontally to the input matrix X. Default is $q = nrow(X)$.
М	number of noise dictionaries used.
sigma	standard deviation of the noise. If sigma = NULL (default) and tau = NULL, the quantile universal threshold is computed based on a pivotal statistic.
intercept	whether an intercept should be fitted. If TRUE (default), y and the columns of X are mean-centered before the analysis, and the intercept is estimated by mean(y) -colMeans(X) %*% coefficients.
standardizeX	whether the columns of X should be standardized to have unit standard deviation. Default is TRUE.
standardizeG	either a positive numerical value indicating the desired Euclidean norm of all columns of the noise dictionaries, or a logical value indicating whether the columns of the noise dictionaries should be standardized to have unit standard deviation. If NULL (default), then it is set to standardizeG = standardizeX.
qut.MC.output	an object of type "qut.MC" (output of qut.MC function), providing the result of Monte Carlo simulations necessary for the approximation of the Quantile Uni- versal Threshold. By default, qut.MC.output = NULL and the qut.MC function is called unless tau is supplied.

lass0

lass0

GEVapprox	whether to approximate the distribution of the null thresholding statistic by a GEV distribution (ignored if tau is supplied). Default is TRUE.
parallel	if TRUE, use parallel foreach to make computations with different noise dic- tionaries and to perform Monte Carlo simulations for estimating the quantile universal threshold. Must register parallel beforehand, e.g. with doParallel. Default is FALSE.
soft.thresholdi	ng
	if TRUE, the coefficients are soft thresholded (rather than hard thresholded) at level tau. Default is FALSE.
ols	whether to refit the nonzero coefficients with an ordinary least squares procedure. Default is TRUE.
	further arguments that can be passed to qut.MC.

Value

An object of class "lass0". It is a list containing the following components:

coefficients	estimated regression coefficients.
intercept	intercept value.
fitted.values	fitted values.
residuals	residuals.
selected	set of selected features.
tau	threshold value.
Betas	matrix of size p x M containing the values of the M estimates for the regression coefficients (on the standardized scale if standardizeX = TRUE).
Gammas	matrix of size q x M containing the values of the M obtained noise coefficient vectors (on the standardized scale unless standardizeG = FALSE).
madGammas	statistics based on the noise coefficients, corresponding to the MAD of all nonzero entries in Gammas
sdsX	standard deviations of all columns of X. Can be used to transform Betas to the original scale doing Betas / sdsX.
qut.MC.output	either the list returned by qut.MC, or a character string explaining why qut.MC was not called.
quant.type	if tau is NULL, indicates the type of quantile used: "GEV" or "empirical" (even when GEVapprox = TRUE, the empirical quantile is used when gev.fit returns an error)
call	matched call.

References

Descloux, P., & Sardy, S. (2018). Model selection with lasso-zero: adding straw to the haystack to better find needles. arXiv preprint arXiv:1805.05133. https://arxiv.org/abs/1805.05133

See Also

qut.MC

Examples

```
#### EXAMPLE 1: fast example with 5x10 input matrix and a small number
##### (MCrep = 50) of Monte Carlo replications for computing QUT.
set.seed(201)
## design matrix
n <- 5
p <- 10
X <- matrix(rnorm(n*p), n, p)</pre>
## sparse vector
S0 <- 1:2 # support
beta0 <- rep(0, p)
beta0[S0] <- 2
## response:
y <- X[, S0] %*% beta0[S0] + rnorm(n)</pre>
## lasso-zero:
lass0.obj <- lass0(X, y, alpha = 0.05, MCrep = 50)</pre>
betahat <- lass0.obj$coefficients</pre>
plot(lass0.obj)
#### EXAMPLE 2: with 50x100 input matrix
set.seed(202)
## design matrix
n <- 50
p <- 100
X <- matrix(rnorm(n*p), n, p)</pre>
## sparse vector
S0 <- 1:3 # support
beta0 <- rep(0, p)
beta0[S0] <- 2
## response:
y <- X[, S0] %*% beta0[S0] + rnorm(n)</pre>
## 1) lasso-zero tuned by QUT with unknown noise level
lass0.obj1 <- lass0(X, y, alpha = 0.05)</pre>
betahat1 <- lass0.obj1$coefficients</pre>
plot(lass0.obj1)
## 2) lasso-zero tuned by QUT with known noise level
lass0.obj2 <- lass0(X, y, alpha = 0.05, sigma = 1)</pre>
betahat2 <- lass0.obj2$coefficients</pre>
## 3) lasso-zero with fixed threshold tau = 1
lass0.obj3 <- lass0(X, y, tau = 1)</pre>
betahat3 <- lass0.obj3$coefficients</pre>
```

4

plot.lass0

Description

Plots the regression coefficients obtained by Lasso-Zero.

Usage

S3 method for class 'lass0'
plot(x, ...)

Arguments

х	a "lass0" object
	further arguments that can be passed to plot

Details

For a "lass0" object, produces boxplots of the M obtained estimates for each regression coefficient and indicates the threshold level tau. Coefficients whose median is larger than tau is absolute value are the ones selected by Lasso-Zero. Note that if lass0 was called with standardizeX = TRUE, the coefficients and threshold are represented on the standardized scale.

References

Descloux, P., & Sardy, S. (2018). Model selection with lasso-zero: adding straw to the haystack to better find needles. arXiv preprint arXiv:1805.05133. https://arxiv.org/abs/1805.05133

See Also

lass0 and qut.MC

predict.lass0 Predict method for a Lasso-Zero fit

Description

Predicted values for the response given a new input matrix Xnew, based on a lass0 fit.

Usage

```
## S3 method for class 'lass0'
predict(object, Xnew, ...)
```

Arguments

object	a "lass0" object
Xnew	a new input matrix whose number of columns equals the number of coefficients returned in obj.
	further arguments passed to or from other methods.

Value

vector of predictions

References

Descloux, P., & Sardy, S. (2018). Model selection with lasso-zero: adding straw to the haystack to better find needles. arXiv preprint arXiv:1805.05133. https://arxiv.org/abs/1805.05133

See Also

lass0

print.lass0	Print a lass0 object	
-------------	----------------------	--

Description

Print a summary of the Lasso-Zero estimate

Usage

S3 method for class 'lass0'
print(x, ...)

Arguments

х	a "lass0" object.
	additional print arguments.

Details

The call that produced the object x is printed, followed by the estimated regression coefficients and intercept.

References

Descloux, P., & Sardy, S. (2018). Model selection with lasso-zero: adding straw to the haystack to better find needles. arXiv preprint arXiv:1805.05133. https://arxiv.org/abs/1805.05133

See Also

lass0 and plot.lass0

qut.MC

Description

Performs a Monte Carlo simulation to estimate the distribution of the null thresholding statistic required for computation of the quantile universal threshold, and computes its upper alpha-quantile if alpha is provided.

Usage

```
qut.MC(X, q = nrow(X), M = 30, alpha = NULL, sigma = NULL,
intercept = TRUE, standardizeX = TRUE, standardizeG = NULL,
MCrep = 100, GEVapprox = TRUE, parallel = FALSE,
var.subset = 1:ncol(X))
```

Arguments

X	input matrix of dimension n x p, previously mean-centered and standardized if necessary!
q	size of noise dictionaries. A noise dictionary consists in a Gaussian matrix G of size $n \times q$ concatenated horizontally to the input matrix X. Default is $q = nrow(X)$.
Μ	number of noise dictionaries used.
alpha	level of the quantile universal threshold. By default alpha = NULL and no quan- tile is returned.
sigma	standard deviation of the noise. If $sigma = NULL$ (default), the statistic of interest if pivotized.
intercept	if TRUE (default), the columns of X are mean-centered before the analysis.
standardizeX	whether the columns of X should be standardized to have unit standard deviation. Default is TRUE.
standardizeG	either a positive numerical value indicating the desired Euclidean norm of all columns of the noise dictionaries, or a logical value indicating whether the columns of the noise dictionaries should be standardized to have unit standard deviation. If NULL (default), then it is set to standardizeG = standardizeX.
MCrep	number of Monte Carlo replications. Default is MCrep = 100.
GEVapprox	whether to approximate the distribution of the null thresholding statistic by a GEV distribution. If TRUE, the maximum likelihood estimates of the GEV parameters are computed on the Monte Carlo sample. Default if TRUE.
parallel	if TRUE, use parallel foreach to perform the Monte Carlo simulation. Must register parallel beforehand, e.g. with doParallel. Default is FALSE.
var.subset	subset of variables for which QUT is computed (i.e. we will compute the parameter value for which P(betahat[var.subset]) = 0) = 1-alpha when beta = 0.

Details

If the noise level sigma is known, the statistic of interest is simply the sup-norm of the Lasso-Zero coefficients obtained under the null hypothesis (i.e. when all coefficients all zero) when the threshold tau is set to 0, and its upper alpha-quantile is the quantile universal threshold. If sigma = NULL (sigma unknown) a pivotized statistic is used, which is obtained by dividing the statistic described above by the MAD of all nonzero noise coefficients obtained by Lasso-Zero.

Value

An object of class "qut.MC", which is a list with the following components:

allMC	all MCrep realizations of the null thresholding statistic of interest (pivotized if sigma = NULL).
GEVpar	MLE estimates of the GEV distribution parameters (NULL if <code>GEVapprox</code> was set to <code>FALSE</code>).
GEVfit	set to NULL is GEVapprox is FALSE. If GEVapprox is TRUE, GEVfit is either the result of the gev.fit function, or the character string "error" if gev.fit produced an error.
upperQuant	upper alpha-quantile of the null thresholding statistis (either the empirical quan- tile, or the quantile of the fitted GEV distribution).
call	matched call.
lass0settings	a list containing the chosen settings for the computation of lasso-zero: q, M, sigma, intercept, standardizeX and standardizeG. When an object of type "qut.MC" is supplied to the lass0 function, a warning message appears if the corresponding arguments passed to lass0 are different.

References

Descloux, P., & Sardy, S. (2018). Model selection with lasso-zero: adding straw to the haystack to better find needles. arXiv preprint arXiv:1805.05133. https://arxiv.org/abs/1805.05133

Giacobino, C., Sardy, S., Diaz-Rodriguez, J., & Hengartner, N. (2017). Quantile universal threshold. Electronic Journal of Statistics, 11(2), 4701-4722.

See Also

lass0

Examples

```
### Fast toy example with 5x10 input matrix and a small number (MCrep = 50)
### of Monte Carlo replications.
### Illustrates how to tune Lasso-Zero with QUT for the same input matrix but
### different responses and/or different alpha values, without calling
### qut.MC several times:
```

```
### (for faster computation when X and MCrep are larger: register a parallel
### backend and choose parallel = TRUE when calling lass0 and qut.MC functions.)
```

qut.MC

```
set.seed(3)
## input matrix:
n <- 5
p <- 10
X <- matrix(rnorm(n*p), n, p)
## two sparse vectors and corresponding responses:
S1 <- 1:2 # first support
beta1 <- numeric(p)
beta1[S1] <- 5
y1 <- X[, S1] %*% beta1[S1] + rnorm(n)
S2 <- 3:4 # second support
beta2 <- numeric(p)
beta2[S2] <- 5
y2 <- X[, S2] %*% beta2[S2] + rnorm(n)</pre>
```

Monte Carlo simulation giving empirical distribution for the statistic P (see paper below):
qut.MC.output <- qut.MC(X, parallel = FALSE, MCrep = 50)</pre>

lasso-zero estimates:

for y1 with alpha = 0.1: lass01 <- lass0(X, y1, alpha = 0.1, qut.MC.output = qut.MC.output, parallel = FALSE) plot(lass01)

```
## for y2 with alpha = 0.05:
lass02 <- lass0(X, y2, alpha = 0.05, qut.MC.output = qut.MC.output, parallel = FALSE)
plot(lass02)
```

Index

lass0, 2, 5, 6, 8

plot.lass0, 5, 6
predict.lass0, 5
print.lass0, 6

qut.MC, *3*, *5*, 7