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kzft Kolmogorov-Zurbenko Fourier Transform

Description

Kolmogorov-Zurbenko Fourier transform is an iterative moving average of the regular Fourier trans-
form.

Usage

kzft(x, m, k, p=1, n=1)
coeff.kzft(m,k)
transfun.kzft(m,k,lamda=seq(-0.5,0.5,by=0.01),omega=0)

Arguments

x The raw time series

m The length of the window size for a regular Fourier transform

k The number of iterations for the KZFT

p The distance between two successive intervals as a percentage of the total length
of the time series

n The sampling frequency rate as a multiplication of the Fourier frequencies

lamda A sequence of frequencies at which the transfer function is calculated

omega A kernal frequency at which the KZFT is applied

Details

Kolmogorov-Zurbenko Fourier transform (KZFT) is a special case of Fourier transform which is
used to calculate the periodogram. It was first introduced in Zurbenko (1986). It is an iterative
moving average of the regular Fourier transform. A KZFT with parameters m and k (KZFT(m,k))
is defined as k times iteration of a regular Fourier transform over the data with a length of m. Regular
Fourier transform has an energy leakage around the Fourier frequencies. KZFT may overcome the
leakage by k degrees less where k is the number of iterations in the KZFT. Because of this, KZFT
shows strong resistance to noises and can be used to generate high resolution spectrum. From
the point view of mean square error, Zurbenko (1986) also showed that KZFT has the closest to
the optimal mean square error. For the detailed definition of KZFT, please refer to Zurbenko and
Porter (1998) and Neagu and Zurbenko (2002). For information of spectral analysis, please refer to
Shumway and Stoffer (2006).

In this package, the frequency unit is cycles per unit time, where the time unit is the time interval
of the discrete observations in the raw time series. For example, a signal with a frequency of 0.1
corresponds to a period of 10 time units. If the raw time series is recorded as one obeservation per
day, then the period for this signal is 10 days.
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References

I. G. Zurbenko, The spectral Analysis of Time Series. North-Holland, 1986.

I. G. Zurbenko, P. S. Porter, Construction of high-resolution wavelets, Signal Processing 65: 315-
327, 1998.
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Springer, 2006.

See Also

kzp, kztp, kzw.

Examples

# example 1
# coefficient of the kzft(201,5)

aa<-coeff.kzft(201,5);
tt<-seq(1:1001)-501;
zz<-cos(2*pi*0.025*tt);
plot(zz*aa,type="l",xlab="Time unit", ylab="The coefficient",

main="Coefficients of the kzft");
lines(aa);
lines(-1*aa);

# example 2
# transfer function of the kzft(201,5) at frequency 0.025

lamda<-seq(-0.1,0.1,by=0.001)
tf1<-transfun.kzft(201,1,lamda,0.025)
tf2<-transfun.kzft(201,5,lamda,0.025)
matplot(lamda,cbind(log(tf1),log(tf2)),type="l",ylim=c(-15,0),ylab="Natural log transformation of the coefficients", xlab="Frequency (cycles/time unit)",

main="Transfer function of kzft(201,5) at frequency 0.025")

#example 3
#The example shows the KZFT reproduces nearly perfectly the noise-free pattern of a sin wave with a constant frequency

# raw time series with frequency of 0.01
t<-1:1000
x<-cos(2*pi*(10/1000)*t)

#kzft(200,1) calcualted every one time unit at freuquency 0.01
kzft.x1<-kzft(x,200,1,0.005)
x1<-2*Re(kzft.x1$tf[,2])

#kzft(200,2) calcualted every one time unit at freuquency 0.01
kzft.x2<-kzft(x,200,2,0.005/2)
x2<-2*Re(kzft.x2$tf[,2])
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#kzft(200,3) calcualted every one time unit at freuquency 0.01
kzft.x3<-kzft(x,200,3,0.005/3)
x3<-2*Re(kzft.x3$tf[,2])

par(mfrow=c(2,2))
plot(x,type="l",main="Original time series",xlab="Time unit", ylab="Amplitude")
plot(x1,type="l",main="kzft(200,1)",xlab="Time unit", ylab="Amplitude")
plot(x2,type="l",main="kzft(200,2)",xlab="Time unit", ylab="Amplitude")
plot(x3,type="l",main="kzft(200,3)",xlab="Time unit", ylab="Amplitude")

#example 4
#The example shows the KZFT reproduces nearly perfectly the noise-free pattern of a cos wave with a constant frequency

# raw time series with frequency of 0.01
t<-1:1000
x<-sin(2*pi*(10/1000)*t)

#kzft(200,1) calcualted every one time unit at freuquency 0.01
kzft.x1<-kzft(x,200,1,0.005)
x1<-2*Re(kzft.x1$tf[,2])

#kzft(200,2) calcualted every one time unit at freuquency 0.01
kzft.x2<-kzft(x,200,2,0.005/2)
x2<-2*Re(kzft.x2$tf[,2])

#kzft(200,3) calcualted every one time unit at freuquency 0.01
kzft.x3<-kzft(x,200,3,0.005/3)
x3<-2*Re(kzft.x3$tf[,2])

par(mfrow=c(2,2))
plot(x,type="l",main="Original time series",xlab="Time unit", ylab="Amplitude")
plot(x1,type="l",main="kzft(200,1)",xlab="Time unit", ylab="Amplitude")
plot(x2,type="l",main="kzft(200,2)",xlab="Time unit", ylab="Amplitude")
plot(x3,type="l",main="kzft(200,3)",xlab="Time unit", ylab="Amplitude")

kzp Kolmogorov-Zurbenko Periodogram and Smoothing Methods

Description

Kolmogorov-Zurbenko periodogram and smoothing using either DiRienzo-Zurbenko (DZ) or Neagu-
Zurbenko (NZ) smoothing methods.

Usage

kzp(x, m, k, p=1, n=1)
nonlinearity.kzp(pg, K=length(pg))
variation.kzp(pg, K=length(pg))
smooth.kzp(pg,c,K=length(pg),method = "DZ")
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Arguments

x The raw time series

m The length of the window size for a regular Fourier transform

k The number of iterations for the KZFT

p The distance between two successive intervals as a percentage of the total length
of the time series

n The sampling frequency rate as a multiplication of the Fourier frequencies

pg The raw periodogram of a time series

K Half length of the maximum bandwidth of the spectral window being allowed
in the algorithms

c A prespecified percentage of total nonlinearity/variation

method Smooth methods: DZ or NZ

Details

Kolmogorov-Zurbenko periodogram is calculated based on the Kolmogorov-Zurbenko Fourier trans-
form. Both DZ and NZ smoothing methods are adaptive which allow the bandwidth of the spectral
window vary according to the smoothness of the underlying spectral density. In DZ algorithm, the
squared variation of the periodogram is used to evaulate the smoothness of the spectrum. When
smoothing the periodogram, the bandwith of the spectral window is extended until the squared vari-
ation within the window reaches a prespecified percentage of total variation of the periodogram. In
NZ algorithm, the only difference is to use a measure of nonlinearity to evaluate the smoothness of
the spectrum. In the situation when the variation is very small at certain frequencies, the bandwidth
of the spectral window could be extended very large in order to achieve the prespecified percent-
age of the total variation. However, this little improvement of the smoothness of the spectrum will
cause a considerably increased amount of computation labor. In the algorithms, we set a limit of
the maximum bandwidth being allowed to avoid this situation. For details, please refer to DiRienzo
and Zurbenko (1998) and Neagu and Zurbenko (2003).

References

I. G. Zurbenko, 1986: The spectral Analysis of Time Series. North-Holland, 248 pp.

I. G. Zurbenko, P. S. Porter, Construction of high-resolution wavelets, Signal Processing 65: 315-
327, 1998.

A. G. DiRienzo, I. G. Zurbenko, Semi-adaptive nonparametric spectral estimation, Journal of Com-
putational and Graphical Statistics 8(1): 41-59, 1998.

R. Neagu, I. G. Zurbenko, Algorithm for adaptively smoothing the log-periodgram, Journal of the
Franklin Institute 340: 103-123, 2003.

See Also

kzft, kztp, kzw.
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Examples

#example 1
#show the effect of smoothing methods

N<-480
x<-rep(0,N)

x[1:4]<-rnorm(4)

for ( t in 5:N )
{
x[t]<-2.76*x[t-1]-3.81*x[t-2]+2.65*x[t-3]-0.92*x[t-4]+rnorm(1)
}

for ( t in 1:N )
{
x[t]<-50*cos( 2*pi*(10/N)*t)+40*cos( 2*pi*(20/N)*t )+x[t]
}

kzp.x<-log(kzp(x,480,1))
spg.x1<-smooth.kzp(kzp.x,0.03, method="DZ")$periodogram
spg.x2<-smooth.kzp(kzp.x,0.03, method="NZ")$periodogram

omega<-seq(0,1,length=481)[2:241]

par(mfrow=c(2,2))
plot(omega,kzp.x,main="Raw periodogram",type="l", xlab="Frequency (cycles/time unit)", ylab=" ")
plot(omega,spg.x1,main="Smoothed Periodogram using DZ method",type="l", xlab="Frequency (cycles/time unit)", ylab=" ")
plot(omega,spg.x2,main="Smoothed Periodogram using NZ method",type="l", xlab="Frequency (cycles/time unit)", ylab=" ")

#example 2
#show the effect of KZFT
t<-1:2000
y<-1.1*sin(2*pi*0.0339*t)+7*sin(2*pi*0.0366*t)+2*rnorm(1000,0,1)
kzp.y1<-log(kzp(y,1000,1,0.1,1))
kzp.y2<-log(kzp(y,500,2,0.1,2))

spg.y1<-smooth.kzp(kzp.y1,0.01, method="NZ")$periodogram
spg.y2<-smooth.kzp(kzp.y2,0.01, method="NZ")$periodogram

omega<-seq(0,1,length=1001)[21:61]
par(mfrow=c(2,2))
plot(omega,kzp.y1[20:60], main="Periodogram m=1000, k=1", type="l", xlab="Frequency (cycles/time unit)", ylab=" ")
plot(omega,kzp.y2[20:60], main="Periodogram m=500, k=2", type="l", xlab="Frequency (cycles/time unit)", ylab=" ")
plot(omega,spg.y1[20:60], main="Smoothed Periodogram m=1000, k=1", type="l", xlab="Frequency (cycles/time unit)", ylab=" ")
plot(omega,spg.y2[20:60], main="Smoothed Periodogram m=500, k=2", type="l", xlab="Frequency (cycles/time unit)", ylab=" ")
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kztp Kolmogorov-Zurbenko Third-Order Periodogram and Smoothing
Method

Description

Kolmogorov-Zurbenko third-order periodogram and smoothing method

Usage

kztp(x,m,k,p=1,n=1,rp1=0,rp2=0.5,cp1=0,cp2=0.5)
variation.kztp(pg, K=dim(pg)[1])
smooth.kztp(pg,c,K=dim(pg)[1])

Arguments

x The raw time series

m The length of the window size for a regular Fourier transform

k The number of iterations for the KZFT

p The distance between two successive intervals as a percentage of the total length
of the time series

n The sampling frequency rate as a multiplication of the Fourier frequencies

rp1 The left bound of the frequencies at which the third-order periodogram will be
calculated in one frequency dimension

rp2 The right bound of the frequencies at which the third-order periodogram will be
calculated in one frequency dimension

cp1 The left bound of the frequencies at which the third-order periodogram will be
calculated in the other frequency dimension

cp2 The right bound of the frequencies at which the third-order periodogram will be
calculated in the other frequency dimension

pg The raw third-order periodogram of a time series

K Half of the maximum bandwidth of the spectral window being allowed

c A prespecified percentage of total variation

Details

Kolmogorov-Zurbenko third-order periodogram is calculated based on the Kolmogorov-Zurbenko
Fourier transform. The smoothing algorithm is very similar to the DZ algorithm used in smoothing
the periodogram. It is also an adaptive algorithm which allows the bandwidth of the spectral window
to vary according to the smoothness of the underlying bispectrum density. The spectral window
being used here is a square window. In the algorithm, the bandwith of the square window is extended
until the squared variation of the third-order periodogram within the window reaches a prespecified
percentage of the total variation of the raw third-order periodogram.
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References

I. G. Zurbenko, 1986: The spectral Analysis of Time Series. North-Holland, 248 pp.

I. G. Zurbenko, P. S. Porter, Construction of high-resolution wavelets, Signal Processing 65: 315-
327, 1998.

W. Yang, I. G. Zurbenko, A semi-adaptive smoothing algorithm in bispectrum estimation, Proceed-
ings of the American Statistical Association, Seattle, 2006.

See Also

kzft, kzp, kzw.

Examples

#example 1

t<-1:10000
y<-sin(2*pi*0.1*t)+sin(2*pi*0.2*t)+rnorm(10000,0,3)

pg3.y<-kztp(y,100,1,0.5,1)$mod
pg3.y<-log(pg3.y)
spg3.y<-smooth.kztp(pg3.y,0.01,20)$bispectrum

omega<-seq(0,1,length=101)[2:51]

par(mfrow=c(2,1))
persp(omega, omega, pg3.y, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "Frequency (cycles/time unit)",
ylab = "Frequency (cycles/time unit)", main = "3rd-order Periodogram")

persp(omega, omega, spg3.y, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "Frequency (cycles/time unit)",
ylab = "Frequency (cycles/time unit)", main = "Smoothed 3rd-order Periodogram")

filled.contour(omega,omega,pg3.y,xlab="Frequency (cycles/time unit)",ylab="Frequency (cycles/time unit)",
main="3rd-order Periodogram")

filled.contour(omega,omega,spg3.y,xlab="Frequency (cycles/time unit)",ylab="Frequency (cycles/time unit)",
main="Smoothed 3rd-order Periodogram3")

#example 2
#effect of KZFT

t<-1:50000
y<-1.1*sin(2*pi*0.0339*t)+7*sin(2*pi*0.0366*t)+2*rnorm(50000,0,1)

pg3.y1<-kztp(y,1000,1,0.5,1,rp1=0.02,rp2=0.05,cp1=0.02,cp2=0.05)$mod
pg3.y2<-kztp(y,1000,3,0.5,1,rp1=0.02,rp2=0.05,cp1=0.02,cp2=0.05)$mod
pg3.y1<-log(pg3.y1)
pg3.y2<-log(pg3.y2)
spg3.y1<-smooth.kztp(pg3.y1,0.01,10)$bispectrum
spg3.y2<-smooth.kztp(pg3.y2,0.01,10)$bispectrum
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omega<-seq(0,1,length=1001)[21:51]
par(mfrow=c(2,2))
persp(omega, omega, pg3.y1, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "Frequency (cycles/time unit)",
ylab = "Frequency (cycles/time unit)", main = "Original, m=1000, k=1")

persp(omega, omega, pg3.y2, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "Frequency (cycles/time unit)",
ylab = "Frequency (cycles/time unit)", main = "Original, m=1000, k=3")

persp(omega, omega, spg3.y1, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "Frequency (cycles/time unit)",
ylab = "Frequency (cycles/time unit)", main = "Smoothed, m=1000, k=1")

persp(omega, omega, spg3.y2, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "Frequency (cycles/time unit)",
ylab = "Frequency (cycles/time unit)", main = "Smoothed, m=1000, k=3")

filled.contour(omega,omega,pg3.y1,xlab="Frequency (cycles/time unit)",ylab="Frequency (cycles/time unit)",
main="Original, m=1000, k=1")

filled.contour(omega,omega,pg3.y2,xlab="Frequency (cycles/time unit)",ylab="Frequency (cycles/time unit)",
main="Original, m=1000, k=3")

filled.contour(omega,omega,spg3.y1,xlab="Frequency (cycles/time unit)",ylab="Frequency (cycles/time unit)",
main="Smoothed, m=1000, k=1")

filled.contour(omega,omega,spg3.y2,xlab="Frequency (cycles/time unit)",ylab="Frequency (cycles/time unit)",
main="Smoothed, m=1000, k=3")

kzw Kolmogorov-Zurbenko Wavelet

Description

Kolmogorov-Zurbenko Wavelet is calculated based on Kolmogorov-Zurbenko Fourier transform.

Usage

kzw(x,f1=1/length(x),f2=0.5,delta.f=1/length(x),t1=1,t2=length(x),
delta.t=1,n,k=3,method="zero")
kzww(x,f1=1/length(x),f2=0.5,delta.f=1/length(x),t1=1,t2=length(x),
delta.t=1,m,k=3,method="zero")

Arguments

x The raw time series

f1 The left bound of frequencies at which time-frequency estimation is calculated

f2 The right bound of frequencies at which time-freqeuncy estimation is calculated

delta.f Interval of the sampling frequency

t1 The left bound of time

t2 The right bound of time

delta.t Interval of time
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n The sampling frequency rate as a multiplication of the Fourier frequencies

m The length of the window size for a regular Fourier transform

k The number of iterations for the KZFT

method The methods of how to extend time series at either end. The options can be
either "zero" (adding zeroes) or "repeat" (symmetrically repeat the time series)

Details

Kolmogorov-Zurbenko Wavelet (KZW) is used to calculte the time-frequency estimation of a time
series. It is calculated based on Kolmogorov-Zurbenko Fourier transform. Because of this, it is
strongly robust with respect to noise and has a very high resolution property. There are two versions
of KZW algorithm, kzw and kzww. The only difference between the two algorithms is the definition
of the window size. In kzw, the window size is a multiplication of the period at which the spectrum
is calculated. In another word, different length of window is used to calculate the spectrum at
different frequencies. In kzww, the window size is fixed for all interested.

References

I. G. Zurbenko, 1986: The spectral Analysis of Time Series. North-Holland, 248 pp.

I. G. Zurbenko, P. S. Porter, Construction of high-resolution wavelets, Signal Processing 65: 315-
327, 1998.

R. Neagu, I. G. Zurbenko, Tracking and separating non-stationary multi-component chirp signals,
Journal of Franklin Institute 339: 499-520, 2002.

See Also

kzft, kzp, kztp.

Examples

# example
t=1:999
p1=rep(10,333)
p2=rep(20,333)
p=c(p1,p2,p1)
f=1/p

x=sin(2*pi*f*t)+rnorm(999,0,1)
plot(t,x,type='l',xlab="Time unit")

kzw.x=kzw(x,30/999,120/999,1/999,1,999,1,7,5)
ff=30:120/999
contour(t,ff,kzw.x$em, xlab="Time unit", ylab="Frequency (cycles/time unit)")
lines(t,f,col="red")
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