Package ‘kzfs’

June 2, 2019

Title Multi-Scale Motions Separation with Kolmogorov-Zurbenko
Periodogram Signals

Version 1.5.0.2
Author Ming Luo <m1226662@gmail.com> and Igor Zurbenko <IZurbenko@albany.edu>
Maintainer Ming Luo <m1226662@gmail.com>

Description Separation of wave motions in different scales and directions based on
Kolmogorov-Zurbenko Periodograms and Kolmogorov-Zurbenko Fourier Transform.

Depends R (>=3.3.2)

License GPL (>=2)

LazyData true

Imports methods, digest, kzft

RoxygenNote 6.1.1

Suggests polynom

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-06-02 16:20:03 UTC

R topics documented:

kzfs . . 2
Kzft . 3
kzmd .. 6
kzp2 . . 7
kzp2.QF . . . 9
kzpdr . . e e e 9
kzpdreval 11
kzpdr.QF . . . e 13
kzpdrspikes 14
kzpdr.tol e e e e e e 15
kzpdrvalid e 16
kzrc2 . e 17
optDR . . . e 19
SIMPE « o v o e 20

2 kzfs

Index 22

kzfs Multi-Scale Motion Separation with Kolmogorov-Zurbenko Peri-
odogram Signals

Description

Motion image identification in different types of data is very important subject in many applications.
Those images may depend on time and contain different scales. A simple example is waves in the
ocean coming from two different directions. One wave can be strong long scale, and another is
shorter scale wave propagating in different direction. When both are covered by strong noise, data
realization could be very noisy 3D structure. Similar examples can be presented in engineering,
acoustics, astronomy, infection diseases developments and many other fields.

This package is designed for the separation of motion scales in 2D motion images on different
directions. To this end, KZ periodogram is utilized to identify spatial directions and frequencies
of wave signals, while KZ Fourier transform provides the reconstructed signals based on identified
motion parameters.

By spectral analysis of original signal in different directions, we can discover main directions in
which different scale waves are propagating. Intuitively, sampling along the orthogonal direction
of a wave will annihilate its frequency spike on the corresponding periodogram. Therefore, the
presence and absence of single frequency on the periodograms of different directions can be used to
identify the wave direction. This method can be enriched by finding the common projected spectral
spikes detected from a series of periodograms for different sampling directions. Identification of
wave frequencies can be done symmetrically.

For the task of identification, this package provides functions to check averaged periodogram for
data series in a given direction or a group of directions. Averaging of these directional periodograms
will help to stable the variance of spectrum. Functions are provided for automatically identifying
and marking prominent spectrum spikes. The closure of nearest-neighbors is used to detect the
clusters formed by real waves on the frequency-direction plane. The algorithm is designed to resist
incorrectly identified periodogram signals caused by noises, and it gives consistent estimations
when the number of sampling directions increases. The accuracy of the estimations can also be
improved with the increase of the sampling number.

In the stage of signal reconstruction, Fourier transform is utilized as a powerful tool to recover sig-
nals series. kzfs package provides function to reconstruct 2D spatial waves under noisy background.
Reconstructed signal can be averaged along the vertical lines of its propagating direction. This will
significantly reduce the noise effects and improve the accuracy of reconstruction.

kzfs also provides functions to improve the estimation accuracy of wave parameters with opti-
mization on KZ directional periodograms and 2D periodograms. The optimized wave parameter
estimations will improve the accuracy of reconstruction with Fourier transform. This is especially
useful in cases of relative short data series and small window sizes.

References

* 1. G. Zurbenko, The spectral Analysis of Time Series. North-Holland, 1986.

kzft

See Also

A. G. DiRienzo, 1. G. Zurbenko, Semi-adaptive nonparametric spectral estimation, Journal of
Computational and Graphical Statistics 8(1): 41-59, 1998.

R. Neagu, I. G. Zurbenko, Algorithm for adaptively smoothing the log-periodogram, Journal
of the Franklin Institute 340: 103-123, 2003.

I. G. Zurbenko, M. Luo, Restoration of Time-Spatial Scales in Global Temperature Data,
American Journal of Climate Change, 1(3): 154-163, 2012.

I. G. Zurbenko, M. Luo, Surface Humidity Changes in Different Temporal Scales, America
Journal of Climate Change, 4(3): 226-238, 2015.

M. Luo, I. G. Zurbenko, KZ Spatial Waves Separations, Journal of Research in Applied Math-
ematics, 3(4):1-7, 2017.

M. Luo, I. G. Zurbenko, Spectral Feature of Sampling Errors for Directional Samples on Grid-
ded Wave Field, International Journal of Engineering Research and Technology, 5(12):525-
531, 2016.

kzpdr, kzp2, kzrc2

kzft

Kolmogorov-Zurbenko Fourier Transform Function

Description

kz.ft is improved version of Wei Yang’s kzft: :kzft. It has been modified to handle missing
values in the data. Besides KZ Fourier transform, the outputs also include KZ periodogram.

kz. ftc is an experimental version of KZFT for signals sampled on continual time/space points with
irregular intervals. Missing is common in this scheme. However, you may need large window size
for reconstruction of the signals.

Usage

kz.ft(x, m, ...)

kz.ftc(x, m, ...)

Arguments
X The data vector. Missing values are allowed.
m The window size for a regular Fourier transform

Other arguments.

e k : Integer. The iterations number of KZFT.
e f : Vector. Selected frequencies. Default value is ¢(1:m)/m

* n : The sampling frequency rate as a multiplication of the Fourier fre-
quencies

4 kzft

* p : The distance between two successive intervals as a percentage of the
total length of the data series.

e adpt : Logic. Flag for using adaptive window size, or not. Default is
FALSE.

* phase : Logic. Flag for correcting phase shift, or not. Default is FALSE.

Details

If 2*m*f is not an integer, the recovered signal may have included a phase shift. However, if
the option of "phase shift correction is enabled, the related errors caused by the phase shift can be
limited to an acceptable level. Please notice that this method is useful for cases with low background
noise and the aim is to near perfectly recover the signal. The targeted signal also needs to be the
dominant signal in the data so that the interaction of other signals is negligible.

Another way to reduce the errors caused by unmatched m and f is to use the option of "adaptive
window size". It will help you select the best window size for the given frequencies and the data
length automatically. But it only works well when it exists m for integer values 2 *m*f.

These two options haven’t been implemented for kz. ftc.

Value

List. It includes data frame for Fourier transform matrix tfmatrix, column means of Fourier trans-
form matrix fft, vector pg and f for KZ-periodogram values and corresponding frequencies.

See Also

kzft, kz.smpg, kzp2

Examples

Adapted from kzft::kzp example 2

t <- 1:2000

y <= 1.1*sin(2*pi*0.0339*t)+7*sin(2xpi*0.0366%*t)
y2 <-y

noise <- rnorm(length(t),0,1)
y[sample(t,100,replace=FALSE)] <- NA

f <- c(0.0339, 0.0366)

Periodogram

ft <- kz.ft(y+5*noise, f=f, k=2, m=1000, n=10)

It may take 10 ~ 20 seconds

system.time(ft <- kz.ft(y+5*%noise, k=2, m=1000, n=10))
plot(y=log(ft$pg+1), x=ft$f, type="1", xlim=c(0.025,0.045))
abline(v=f, 1ty=21, col="red")

text(x=f+0.001, y=c(2,4), f, col="red"”, cex=0.75)

recover signal

ft <- kz.ft(y+5*noise, f=f, k=3, m=500)

yr <- 2xRe(rowSums(ft$tf))

cor(yr, y2[1:length(yr)], use="pairwise.complete.obs")
plot((y+5%*noise)[1:1ength(yr)], type="p", cex=0.5, col="grey")

kzft

points(y[1:1length(yr)], type="b", col="red"”, cex=0.45)

points(yr, type="p", cex=0.35, col="blue")
mtext(”"Red dots: singal, Blue dots: reconstruction”, cex=0.75)

Additional example

t <- 1:2000

y <= 1.1*%sin(2*pi*@.011*t)+2*sin(2*pi*0.032*t)

y2 <=y

y[sample(t,500,replace=FALSE)] <- NA

noise <- rnorm(2000,0,1)

ft <- kz.ft(y + 3.0*noise, k=5, f=c(0.011,0.032), m=300, adpt=FALSE)
yr <- 2xRe(rowSums(ft$tf))

cor(yr, y2[1:length(yr)], use="pairwise.complete.obs")
plot((y+5%*noise)[1:1ength(yr)], type="p", col="grey")
points(y2[1:1length(yr)], type="1", col="red")
points(y[1:1length(yr)1, type="p", col="red"”, cex=0.35)

points(yr, type="p", cex=0.3, col="blue")

mtext("Red: singal, Grey: singal + 5%noise, Blue: reconstruction”, cex=0.75)

Example for kz.ftc

<- runif(2000)*2000
<- c(0.15, 0.1)
<- sin(2xpixf[1]xt + pi/4)
sin(2*pixf[2]xt + pi/12)
<- y[order(t)]
<- x[order(t)]
tr <- t[order(t)]
noise <- rnorm(length(tr),o,1)
plot(y=y+x, x=tr, type="1")

X K <K X —h e+
AN
I

Periodogram

ft <- kz.ftc(x+y+2*noise, xt=tr, k=2, m=1000)
plot(y=ft$pg, x=ft$f, type="1")

abline(v=f, col="grey", lty=21)

text(x=f+0.001, y=c(200,400), f, col="red", cex=0.75)
mtext("Spectrum of Longitudinal Data, Selected f")

recover signal

ft <- kz.ftc(x+y+noise, xt=tr, f=f, k=1, m=1900)

yr <- rowSums(2*Re(ft$tf))

iv <- 0:60

plot(y=(x+y+noise)[iv], x=tr[iv], type="p", col="grey")

xt <- (0:8000)/100

yt <= sin(2xpixf[1]*xt+pi/4) + sin(2*pixf[2]*xt+pi/12)

y2 <= sin(2xpixf[1]*iv+pi/4) + sin(2*pixf[2]*xiv+pi/12)
points(yt, x=xt, col="grey"”, cex=0.5, lwd=1, type="1")
points(y2, x=iv, col="blue"”, cex=0.75, lwd=1, type="p")
points(y=yr, x=0:(length(yr)-1), type="p", cex=0.5, lwd=1, col="red")
mtext("Red: reconstruction, Grey: signal + noise”, cex=0.75)

6 kzmd
kzmd Yet Another Multi-dimensional Kolmogorov-Zurbenko Filter
Description
This implement of spatial KZ-filter works for any dimensions. It is designed for cases with sparse
data in large time-space.
Usage
kzmd(ss, window, scale, k = 1, edges = TRUE)
Arguments
Ss Data frame with value column behind time/space coordinates.
window Vector for window size of each dimension.
scale Vector for scale of each dimension.
k Iteration times of KZ filter. Defaults to 1.
edges Logic. Defaults to TRUE. FLASE means clear the data that are located outside
the time-space range of input data.
Value
Data framework with value column behind time/space coordinates.
See Also
kz
Examples

zs <- rbind(c(0,5,1,40),c(12,6,1,10),c(6,7,1,20),c(15,15,4,80))

nynonon o n_n on n)

colnames(zs) <- c("x","y","z","v

zs <- kzmd(data.frame(zs), scale=c(1,1,1), window=c(3,5,3), k=4)
u <- zs[zs$z==1, -3]

x = sort(unique(u$x))

y = sort(unique(u$y))

z=df2mt(u, scale=c(1,1)) # Transfer from data frame to matrix.
image (x=x, y=y, z=z)

kzp2

kzp2

Check Images’ Motion Scales with 2D KZ Periodogram Signals

Description

Functions used to reveal directional and scale information with 2D KZ periodograms for spatial
motions covered by heavy noises.

One can get 2D raw periodogram with function kzp2, and smooth the 2D periodogram with function

smooth.kzp2.

Function summary . kzp2 can help to summarize direction and frequency information from smoothed
2D KZ periodogram. The input should be a 2D KZ periodogram data with frequency range (0, 0.5]
on both x- and y- axis.

Usage

kzp2(x, k =1, m = dim(x)/k, ...)

smooth.kzp2(rpg, dpct = 0.01, w = round(dim(rpg)/4), k =1, ...)

kzp2.summary(spg, rg.x, rg.y, num = 10)

Arguments

X

rpg
dpct

Spg

rg.x

reg.y

num

Data array of 2D wave field. Missing values are allowed. Limited to 2D arrays
for current version.

The number of iterations for the KZFT. Default is 1.

The window size for a regular Fourier transform. Default value is set to data
array size.

Arguments to be passed to methods.

e k : The number of iteration times of KZFT

* n : The sampling frequency rate as a multiplication of the Fourier fre-
quencies

* p : The distance between two successive intervals as a percentage of the
total length of the data series

Array of raw 2D periodogram. Usually it is part of output of kzp2.

A pre-specified percentage of total variation. Default value is 1%.
Smoothing window size.

Array of smoothed 2D periodogram. It could be output of summary . kzp2.
Frequency range for x direction. Defaults to c(0, 0.5).

Frequency range for y direction. Defaults to the same value of the range for x
direction.

Wave numbers. Defaults to 10.

8 kzp2

Details

KZ 2D raw spectrum is calculated based on kz.ft. The smoothing method is an extension of
kzft::smooth.kzp. See introduction of DZ method in kzft: : smooth.kzp for more information.

Value

Returned value of function kzp2 is a data list of periodogram information, including data array
kzp2d for 2D periodogram values, and two frequency vectors, freq.x and freq.y for x and y direction,
respectively.

smooth.kzp2 only outputs the array of smoothed values.

kzp2.summary returns a data list for suggested wave parameters, including frequency and direction
values.

See Also
kzpdr, kzpdr.eval, kzpdr.spikes

Examples

dx <- 100 # x range

dy <- 120 # y range

b <- expand.grid(x=1:dx, y=1:dy)

ql <- pi/6; f1 <- 0.2;

b$v1 <- sin(f1x2xpix(b$x*cos(ql)+b$y*sin(ql))+100xrunif (1))
g2 <- pi/4; f2 <- 0.08;

b$v2 <- sin(f2x2xpix(b$xrcos(q2)+b$y*sin(g2))+100xrunif (1))
a <- array(0,c(dx,dy))

alas.matrix(b[,1:21)] <- b$v1 + 1.5%b$v2

a <- a + 10*matrix(rnorm(dx*dy,@,1),ncol=dy)

rp <- kzp2(a) # raw 2D spectrum
fy <- rp$freq.y; fx <- rp$freq.x; rp <- rp$kzp2d

smoothing 2D spectrum 2 times
sp <- smooth.kzp2(rp,0.01,k=2)

par(mfrow=c(2,1), cex=0.5)

persp(x=fx, y=fy, z=rp, expand =0.5,

main = "Raw 2D KZ Periodogram”, ltheta=40, shade=0.75,
theta=-30, phi=15, zlab="",6xlab="x", ylab="y",
ticktype="detailed”, col="lightblue")

persp(x=fx, y=fy, z=sp, expand =0.5,

main = "Smoothed 2D KZ Periodogram”, ltheta=40, shade=0.75,
theta=-30, phi=25, zlab="",6xlab="x", ylab="y",
ticktype="detailed”, col="lightblue")

par(mfrow=c(1,1), cex=1)

kzp2.summary(sp) # direction & frequency

kzp2.QF 9

kzp2.QF The Demo Dataset For Examples of optD2R

Description

Datasets containing the original and optimized 2D periodogram spike records output by function
kzp2 and optD2R,respectively. They are only used for saving running-time of the examples. The
following code is used to generate this dataset:

e kzp2.demo <- kzp2(a)$kzp2d
* kzp2.QF <- optD2R(a, kzp2.summary(kzp2.demo, num=2))

where a is the spatial data array for a wave field.

Usage
kzp2.demo
kzp2.QF

Format

An object of class matrix with 150 rows and 150 columns.

See Also

kzpdr.demo, kzpdr.QF

kzpdr Average Periodogram for Spatial Data in Given Directions

Description

Functions in this group are designed to check periodogram for data series in a given direction or a
list of directions.

kzpdr samples the data of wave field, and outputs the average pattern of periodogram for se-
ries in a given direction. A collection of these pattern records will be sent to kzpdr.eval or
kzpdr.estimate to estimate the wave frequencies and directions.

Usage

kzpdr(ds, angle, plot = F, pair =T, ...)

kzpdr.3d(ds, angle, ...)

10 kzpdr

Arguments

ds Data array. Only 2 dimensional arrays are allowed for current version.
angle Vector or single numeric value in radians.

plot TRUE or FLASE. Flag for outputting designed periodogram plot or not. De-
faults to FLASE. In kzpdr, the plot is the mean periodogram for data series in a
given direction.

pair Logic. Defaults to TRUE, i.e., check the given directions and their orthogonal
opposition at the same time.

Other arguments.

* For function kzpdr, it could be the following arguments (right of equals
signs are their default setting):

— w = 20 : smoothing window size.

— dpct = ©.01 : a percentage of total variation of periodogram;
smoothing window is extended until variation within the window reaches
this number. See DZ method in kzft: : kzp for details.

- rg = c(0,0.5) : the frequency range for the periodogram.

— raw = FALSE : if use the raw periodogram directly.

— log = FALSE : if use log scale for periodogram.

— frun = FALSE : if force to run the sampling on given directions.
Defaults to check records and not sample on duplicate directions

— min.1ln = 0.6 : the minimum ratio of sampling data length vs. origi-
nal data length to product a periodogram for a direction.

* In kzpdr. 3d function, it could be arguments of the perspective plot, like
theta, phi, etc., please refer function graphics: :persp for more infor-
mation.

* For kzpdr.valid, level control the cross-validation process: integer num-
ber k means to run cross-validation by excluding k pairs of directional sam-
ples each time. Default value is 1.

Details

kzpdr is used to sample the spatial data and generates periodograms in orthogonal direction pairs;
the frequencies of spikes for each directional periodogram are identified and recorded as the func-
tion output. The spike pattern of average periodograms for spatial directions can help to identify
wave frequencies and directions.

Function kzpdr. 3d will provide 3D perspective plot as the global view for periodograms of data
series in a given direction.

Value

The returned data list of function kzpdr includes the data frame for frequencies of spikes on mean
periodograms of each checked direction. It also includes a vector recording the md5Ssum value of
the spatial wave data array for internal control.

Function kzpdr will output the periodogram plots when option plot is set as TRUE. The frequen-
cies of marked spikes will also be print out for each sampling direction.

kzpdr.eval 11

kzpdr. 3d returns back the data frame for re-gridded mean periodogram for data series in given
direction, as showed in the perspective plot.

See Also

kzp2, kzpdr.tol, kzpdr.eval kzpdr.valid, kzpdr.spikes

Examples

dx <- 300
dy <- 300

b <- expand.grid(x=1:dx, y=1:dy)

ql <- pi/3; f1 <- 0.2;

b$vl <= sin(f1x2xpix(b$x*cos(ql)+b$y*sin(ql1))+100xrunif (1))
g2 <- pi/6; f2 <- 0.05;

b$v2 <- sin(f2x2xpix(b$x*cos(q2)+b$yxsin(g2))+100xrunif (1))

a <- array(0,c(dx,dy))
alas.matrix(b[,1:21)] <- b$v1 + 1.5%b$v2
persp(1:dx, 1:dy, a, theta=90, phi=-110,
ticktype="detailed”, col="lightblue")

a <- a + 5*matrix(rnorm(dx*dy,@,1),ncol=dy)
persp(1:dx, 1:dy, a, theta=90, phi=-110,
ticktype="detailed”, col="lightblue")

It may take about 3@ seconds
o <- kzpdr.3d(a, -pi/6)

Load pre-saved data to save running-time
data(kzpdr.demo);

sampling, it may take a few minutes

system.time(kzpdr.demo <- kzpdr(a, pi/12, pair=FALSE, plot=TRUE))

system.time(kzpdr.demo <- kzpdr(a, pi/12, plot=TRUE))

system.time(kzpdr.demo <- kzpdr(a, c(@, pi/6, pi/4, pi/3), plot=TRUE))
kzpdr.spikes(kzpdr.demo)

For identification of the wave parameters, see kzpdr.estimate

kzpdr.eval Evaluate Directional Spectrum Data for Wave Frequencies and Direc-
tions

Description

Functions in this group are designed to estimate wave parameters based on directional periodogram
records.

12 kzpdr.eval

kzpdr samples the data of wave field, and outputs the average pattern of periodogram for se-
ries in a given direction. A collection of these pattern records will be sent to kzpdr.eval or
kzpdr.estimate to estimate the wave frequencies and directions.

Usage
kzpdr.eval(rec = 1s(1), t.D = 2, t.F = 0.01, ...)
kzpdr.estimate(rec = 1s(1), ...)
Arguments
rec Data list from the outputs of function kzpdr. It includes the data frame for the
marked frequency values and corresponding directions. Defaults is searching
for available records in the environment.
t.D Tolerance of direction in degree. Default is 2.
t.F Tolerance of frequency. Default value is 0.01.
Other arguments.

* D3 Logic. Default is FALSE. If TRUE, output 3D perspective plot; other-
wise, 2D plot on frequency-direction surface.

* scale A two element vector for grid on frequency-direction plant. The first
element is for frequency. The second is for degree of direction. Default is
c(0.005,1).

Details

The average periodograms for a few pairs of orthogonal spatial directions can be used to identify
frequencies and directions of waves.

First, function kzpdr samples the spatial data and generates periodograms in orthogonal direction
pairs, and the frequencies of spikes for each directional periodogram are identified and recorded as
the output.

Then, kzpdr.spikes can be used to summarize the outputs of kzpdr. Function kzpdr.eval or
kzpdr.estimate all can be used to estimate the wave parameters (frequencies and directions).
kzpdr.estimate is based on clustering-closure and the tolerances could be decided automatically.
It also provides visualization of the results, thus this function is more convenient to use.

Usually, if noise level is low, periodograms of a few direction pairs may provide satisfied results.
But when the noise is high, you may need to intensively sample on different directions over the
spatial data array with kzpdr. Generally speaking, when the number of samples increases, the
estimation will become more stable and reliable.

Value

Both kzpdr.eval and kzpdr.estimate will return suggested wave frequency and direction values.
The data frame of detailed estimation for each direction is also included in their returned data list.
Beside these, kzpdr.estimate can generate 3D or 2D plots for the supports of each suggested
wave on direction-frequency parameter plane.

kzpdr.QF 13

See Also

kzpdr, kzpdr.valid, kzp2 kzpdr. tol, kzpdr.spikes

Examples

load pre-saved data to save running-time
data(kzpdr.demo);

estimate the wave parameters
kzpdr.eval (kzpdr.demo, t.D = 3, t.F = 0.01)

estimation & visualization
kzpdr.estimate(kzpdr.demo)

For validation of the estimation, see \code{kzpdr.valid}
For reconstruction of the signals, see \code{kzrc}

kzpdr.QF The Demo Dataset For Examples of kzpdr and optDR

Description

Datasets containing the spectral spike records of directional periodograms output by function kzpdr
and optDR, respectively. They are only used for saving running-time of the examples. The following
code is used to generate this dataset:

e kzpdr.demo <- kzpdr(a, c(@, pi/4, pi/3, -pi/3, pi/18), plot=TRUE)
e kzpdr.QF <- optDR(a, kzpdr.demo)

where a is the spatial data array for a wave field.

Usage
kzpdr.demo

kzpdr.QF

Format
A list for a data frame and its MD5sum value. The data frame rec has 18 rows and a few variables:

direction angle of sampling, in degree
freq frequency values of spikes

spg smoothed power periodogram values of spikes

See Also
kzp2.demo, kzp2.QF

14 kzpdr.spikes

kzpdr.spikes Count Spikes For Available Directional Periodogram Records

Description

Function kzpdr. spikes summarizes available periodogram pattern records collected from the out-
puts of kzpdr, gives expected wave number. This number is used by kzpdr. tol and kzpdr.valid
in searching feasible tolerance setting and validation of estimated wave parameters.

Usage
kzpdr.spikes(rec = 1s(1))

Arguments
rec Data list from the outputs of function kzpdr. It includes the data frame for the
marked frequency values and corresponding directions. Defaults is searching
for available records in the environment.
Details

The expected wave number is defined as the mode of all the spike counts.

If any of the sampling direction in the available directional periodogram records, say A, happens
to be orthogonal to a wave direction B, then there will be no spike appear on related periodogram
for the wave propagated in direction B. Related spike counts will be less than the expected wave
number. The absence of spike(s) in one direction can be taken as the evidence for the existing of
wave(s) in its orthogonal direction.

Usually, it is very rare to have a simpling direction orthogonal to a wave direction. But if we know
an approximate wave direction, we can take more samplings around its orthogonal direction. Since
KZ periodogram can separate wave spikes in very close frequencies, we may get more accurate
estimation for this wave direction with this method. It is also possible to use this way to validate
estimations get by other approaches.

See Also

kzpdr, kzpdr.eval kzpdr.valid, kzpdr. tol

Examples

load pre-saved data
data(kzpdr.demo);

count spikes
kzpdr.spikes(kzpdr.demo)

kzpdr.tol 15

kzpdr.tol Search Appropriate Tolerances Setting for Wave Parameter Estimation

Description

kzpdr. tol will help to find the feasible tolerance settings for the wave parameter estimation.

Usage

kzpdr.tol(rec = 1s(1), t.D = seq(1, 10, 1), t.F = 0.01)

Arguments
rec Data list from the outputs of function kzpdr. It includes the data frame for the
marked frequency values and corresponding directions. Defaults is searching
for available records in the environment.
t.D Vector for search range of direction tolerance. Default is 1:10 (in degree).
t.F Vector for search range of frequency tolerance. Default value is ¢(0.01).
Details

Since the expected wave number is known(see kzpdr.spikes), we can search for the tolerance
settings that would generate estimations with wave number in this range. A table will be presented
to summary feasible settings.

The searching process would stop when it finsihed the search range, or the increasing of the toler-
ance led to null result.

See Also

kzpdr, kzpdr.eval kzpdr.valid, kzpdr.spikes

Examples

load pre-saved data
data(kzpdr.demo);

search for tolerance
kzpdr.tol (kzpdr.demo, t.D = ¢(1,2,3), t.F = 0.005)

16 kzpdr.valid

kzpdr.valid Validate Estimated Wave Parameters Under Given Tolerance Setting

Description
For a given tolerance setting, kzpdr.valid will provide cross-validation information for related
results of wave parameter estimations.

Usage
kzpdr.valid(rec = 1s(1), t.D = 2, t.F = 0.01, level = 1)

Arguments
rec Data list from the outputs of function kzpdr. It includes the data frame for the
marked frequency values and corresponding directions. Defaults is searching
for available records in the environment.
t.D Tolerance of direction in degree. Default is 2.
t.F Tolerance of frequency. Default value is 0.01.
level level control the cross-validation process: integer number k means to run cross-
validation by excluding k pairs of directional samples each time. Default value
is 1.
Details

Due to the nosies or other reasons, there may exist fake spike signals in the directional peri-
odograms. Cross-validation will evaluate estimations by excluding one or few measurements, and
identify the data points that casued inconsistent estimations. A table will be given to summarize the
validation results.

For a given tolerance setting, if the validation shows consistent results, related estimation would be
reliable.

See Also

kzpdr, kzpdr.eval, kzpdr. tol
Examples

load pre-saved data
data(kzpdr.demo)

validation
kzpdr.valid(kzpdr.demo, t.D = 2, t.F = 0.01, level = 1)

kzrc2

17

kzrc2

Reconstruct 2D Wave Signals For Given Directions with KZFT

Description

Once you have identified the waves’ directions and frequencies, you can reconstruct the spatial
wave signals with kz. rc2. Directional information is utilized to suppressive the noise.

Usage
kz.rc2(ds, f =

Arguments

ds
.F

m

Details

0.25, m = round(min(dim(ds)/2)), ...)

Matrix for data of wave field. Missing values are allowed.

Vector. Identified wave frequency.

The window size for a regular Fourier transform

Other arguments.

angle : Vector. Identified wave direction value in degree.
k : Integer, defaulting to 2. The iterations number of KZFT.

n : The sampling frequency rate as a multiplication of the Fourier fre-
quencies

p : The distance between two successive intervals as a percentage of the
total length of the data series

avg : Logic. If average along orthogonal direction. Default is TRUE if
angle is available.

plot : Logic. Flag for outputing figures. Default is FALSE.
compare : Logic. Flag for drawing input image. Default is FALSE.

edge : Logic. Flag for keeping the edge data in the returned reconstructed
signal. Default is FALSE.

rlvl : Integer. Coefficient to control the averaging level when avg is
TRUE. Default value is 2.

Averaging along the orthogonal direction of a wave signal will significantly reduce the noise effects
and increase the accuracy of reconstruction.

When the direction information is not available, the 2D signal will be reconstructed along x-axis,
but the result usually has a phase-shift even for the dominant wave pattern.

If choose to average reconstructed signal along its orthogonal direction, rlvl should be set to con-
trol the averaging level. If the input data has comparable size on x- or y-dimension, an experiential
formula is to use the integer value around sqrt (dx)*1.5, where dx is the array size.

18

See Also

kzrc2

kzft, kz.smpg, kzp2

Examples

dx <-
dy <-

100 # The x and y scale of the wave field
100 # Enlarge them to 300 to get better result.

b <- expand.grid(x=1:dx, y=dy:1)

gl <- pi/6; f1 <- 0.1;

b$v1l <- sin(f1x2xpix(b$x*cos(ql)+bSy*xsin(gl))+runif(1))
al <- array(@,c(dx,dy))

allas.matrix(b[,1:21)]1 <- b$vi

q2 <- -pi/3; f2 <- 0.15;

b$v2 <- sin(f2x2xpix(b$x*cos(q2)+b$yxsin(g2))+runif (1))
a2 <- array(@,c(dx,dy))

a2las.matrix(b[,1:21)]1 <- b$v2

a <- array(0,c(dx,dy))

alas.matrix(b[,1:21)]1 <- b$vl + 2.5%b$v2

noise <- matrix(rnorm(dxxdy,®,1),ncol=dy)

persp(1:(dx/2), 1:(dy/2), all1:(dx/2), 1:(dy/2)]1, zlab="",

main="wave #1", theta=0, phi=45, ticktype="detailed”, col="lightblue")

persp(1:(dx/2), 1:(dy/2), a2[1:(dx/2), 1:(dy/2)],

main="wave #2", theta=90, phi=-110, ticktype="detailed”, col="lightblue")
persp(1:(dx/2), 1:(dy/2), al1:(dx/2), 1:(dy/2)],

main="wave #1 + #2 ", theta=90, phi=-110, ticktype="detailed”, col="lightblue")
persp(1:(dx/2), 1:(dy/2), al1:(dx/2), 1:(dy/2)] + 5xnoise[1:(dx/2), 1:(dy/2)],
main="wave #1 + #2 + 5*noise”, theta=90, phi=-110, ticktype="detailed”, col="lightblue")

image(x=1:dim(a1)[1] , y=1:dim(a1)[2], z=al)

box();

mtext("wave #1")

image(x=1:dim(a2)[1] , y=1:dim(a2)[2], z=a2)

box();

mtext("wave #2")

image(x=1:dim(a)[1] , y=1:dim(a)[2], z=a+@*noise)

box();

mtext("wave #1 + #2 ")

image(x=1:dim(a)[1] , y=1:dim(a)[2], z=at+7*noise)

box();

rco <-
cor(as

rco <-
cor(as

mtext("wave #1 + #2 + 7*noise”)

kz.rc2(a+@*noise, angle=c(ql,q2)*180/pi,f=c(f1,f2), m = 50, avg=FALSE)
.vector(a[1:dim(rc@)[1]1,1:dim(rce)[2]]), as.vector(rc@), use="pairwise.complete.obs")

kz.rc2(a+@*noise, angle=c(ql,q2)*180/pi,f=c(f1,f2), m = 50, avg=TRUE, rlv1l=15)
.vector(a[1:dim(rc@)[1]1,1:dim(rc@)[2]]), as.vector(rc@), use="pairwise.complete.obs")

rc <- kz.rc2(at7+noise, angle=c(ql,q2)*180/pi,f=c(f1,f2), m = 50, avg=TRUE, rlvl=15, plot=TRUE)

cor(as

.vector(al1:dim(rc)[1],1:dim(rc)[2]]), as.vector(rc), use="pairwise.complete.obs")

dev.new();image(x=1:dim(rc)[1] , y=1:dim(rc)[2], z=all:dim(rc)[1],1:dim(rc)[211)
box();title(”Signal without noise"”)

rc <- kz.rc2(at7*noise, angle=q2x180/pi, f=f2, m = 50, avg=TRUE, rlv1l=21, plot=TRUE)

cor(as

.vector(a2[1:dim(rc)[1],1:dim(rc)[2]1]), as.vector(rc), use="pairwise.complete.obs")

optDR 19

dev.new();image(x=1:dim(rc)[1] , y=1:dim(rc)[2], z=a2[1:dim(rc)[1],1:dim(rc)[2]])
box();title("Signal without noise")

optDR Improve Accuracy of KZ Periodogram Estimation with Optimization

Description

Functions in this group are designed to improve the estimated wave parameters based on optimiza-
tion of KZ directional periodograms and 2D periodograms.

Usage
optDR(a, rec, delta = 0.005, ...)
optD2P(a, rec, ...)
Arguments
a Data array. Wave signals plus noise.
rec Data list. For optDR, it is the outputs of function kzpdr. It includes the marked
spectrum spike frequency values, directions.
delta Searching range parameter for optimization. Default is 0.005.
Other arguments.
e k : Integer. The iterations number of KZFT.
* n : The sampling frequency rate as a multiplication of the Fourier fre-
quencies
Details

optDR optimizes estimations of directional periodograms using R function stats: :optimize. optD2P
works for estimations of 2D periodograms; related optimization process is based on function stats: :optim.

Value

optDR will return the data frame of detailed estimation for each direction.

See Also

kzpdr, kzp2

20 smpg

Examples

dx <- 300 # x range

dy <- 300 # y range

b <- expand.grid(x=1:dx, y=1:dy)

gl <- pi/3; f1 <- 0.2;

b$vl <- sin(f1x2xpix(b$x*cos(ql)+b$yxsin(gl1))+100xrunif (1))
g2 <- pi/6; f2 <- 0.05;

b$v2 <- sin(f2x2xpix(b$x*cos(q2)+b$y*sin(q2))+100xrunif (1))
a <- array(0,c(dx,dy))

alas.matrix(b[,1:21)]1 <- b$vl + 1.5%b$v2

noise <- 5*matrix(rnorm(dx*dy,@,1),ncol=dy)

Identifying with 2D periodogram
kzp2.demo <- kzp2(atnoise)$kzp2d
QF <- kzp2.summary(kzp2.demo, num=2)

Optimization of the 2D periodogram

It may take 1 to 5 minutes

kzp2.QF <- optD2P(a+noise, QF, ki1=1, n1=1)
kzp2.QF

Optimization of directional periodogram

It may take 10 to 20 minutes

kzpdr.demo <- kzpdr(a+noise, c(0,45,15,35)*pi/180, plot=TRUE, dpct=0.05)%rec
kzpde.QF <- optDR(atnoise, kzpdr.demo)

QF2 <- kzpdr.eval(kzpdr.demo)
opt.QF2 <- kzpdr.eval(kzpdr.QF)

smpg Smooth and Plot One Dimensional Kolmogorov-Zurbenko Peri-
odogram

Description

kz.smpg is designed to smooth and plot 1D KZ periodogram easily. It will calculate the raw peri-
odogram, mark the spikes, smooth the periodogram, and then output the plot.

Usage
kz.smpg(x, dpct = 0.01, rg = c(0, 0.5), log = F, plot = F, ...)
Arguments
X The data vector for analyses. Missing values are allowed.
dpct A pre-specified percentage of total variation. Defaults to 1%.

rg The frequency range of the outputted periodogram. Default is O to 0.5.

smpg 21

log TRUE or FLASE. Use log scale for output periodogram. Defaults to FLASE.
plot TRUE or FLASE. Flag for output periodogram plot or not. Defaults to FLASE.
Other arguments.

* m : The window size for a regular Fourier transform

* k : The number of iterations for the KZFT

* n : The sampling frequency rate as a multiplication of the Fourier fre-
quencies

* p : The distance between two successive intervals as a percentage of the
total length of the data series

* w : Size of smoothing window. Default value is 20.

e 1Ivl : "min" or "max". Threshold strategy for marking frequency spikes.
"min" is used for cases with weak singles mixed with dominating strong
spikes. Defaults to "max".

e cut : Setthe minimum value for a marked frequency spike. Recommend
to use argument 1v1 instead of setting this value directly.

Details

The smoothing process is based on a modified DiRienzo-Zurbenko (DZ) method, for which the
smoothing window is not symmetric around the value point. The smoothing algorithm is imple-
mented in C.

Value

Data frame for outputted periodogram, including column spg for the periodogram values, and freq
for the frequencies.

See Also
kzp, kzp2, kz.ft

Examples

Adapted from kzft::kzp example 2

t <- 1:2000

y <= 1.1%sin(2*pi*0.0339*t)+7xsin(2xpi*0.0366*t)+5xrnorm(length(t),0,1)
y[sample(t,100,replace=FALSE)] <- NA

Not run:
system.time(op <- kz.smpg(y, dpct=0.0001, rg=c(0.025,0.05),
plot=TRUE, log=TRUE, lvl="min"”, n=10, k=2))

End(Not run)
op <- kz.smpg(y, dpct=0.0000, f=c(0.0339,0.0366), rg=c(0.025,0.05),
n=10, k=2, plot=TRUE, lvl="min", log=FALSE)

Index

*Topic 2D
kzp2, 7

xTopic KZ-filter
kzmd, 6

+Topic KZ-periodogram
smpg, 20

*Topic KZFT
kzft, 3
kzrc2, 17

xTopic datasets
kzp2.QF, 9
kzpdr.QF, 13

+Topic directional-periodogram
kzpdr, 9
kzpdr.eval, 11
kzpdr.valid, 16

+Topic periodogram
kzp2, 7

xTopic reconstruction
kzrc2, 17

kz, 6

kz.ft, 21

kz.ft (kzft), 3
kz.ftc (kzft), 3
kz.rc2 (kzrc2), 17

kz.smpg, 4, 18

kz.smpg (smpg), 20
kzfs, 2

kzfs-package (kzfs), 2
kzft, 3,4, 18

kzmd, 6

kzp, 21

kzp2,3,4,7,11,13,18, 19,21
kzp2.demo (kzp2.QF), 9
kzp2.QF, 9
kzpdr, 3, 8,9, 13-16, 19
kzpdr.demo (kzpdr.QF), 13
kzpdr.estimate (kzpdr.eval), 11
kzpdr.eval, 8, 11,11, 14-16

22

kzpdr.QF, 13
kzpdr.spikes, 8, 11, 13,14, 15
kzpdr.tol, 11,13, 14,15, 16
kzpdr.valid, 71, 13-15, 16
kzrc2, 3,17

optD2P (optDR), 19
optDR, 19

smooth.kzp2 (kzp2), 7
smpg, 20

	kzfs
	kzft
	kzmd
	kzp2
	kzp2.QF
	kzpdr
	kzpdr.eval
	kzpdr.QF
	kzpdr.spikes
	kzpdr.tol
	kzpdr.valid
	kzrc2
	optDR
	smpg
	Index

