
Package ‘kohonen’
November 26, 2019

Version 3.0.10

Title Supervised and Unsupervised Self-Organising Maps

Author Ron Wehrens and Johannes Kruisselbrink

Maintainer Ron Wehrens <ron.wehrens@gmail.com>

Description Functions to train self-organising maps (SOMs). Also interrogation of the maps and pre-
diction using trained maps are supported. The name of the package refers to Teuvo Koho-
nen, the inventor of the SOM.

License GPL (>= 2)

Depends R (>= 2.10)

Imports Rcpp (>= 0.12.12)

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-11-26 09:50:03 UTC

R topics documented:
kohonen-package . 2
check.whatmap . 3
classvec2classmat . 4
degelder . 5
expandMap . 6
getCodes . 6
map.kohonen . 7
nir . 8
object.distances . 9
peppaPic . 11
plot.kohonen . 11
predict.kohonen . 14
summary.kohonen . 17
supersom . 18
tricolor . 21

1

2 kohonen-package

unit.distances . 22
wines . 23
yeast . 24

Index 25

kohonen-package Supervised and Unsupervised Self-Organising Maps

Description

Functions to train self-organising maps (SOMs). Also interrogation of the maps and prediction
using trained maps are supported. The name of the package refers to Teuvo Kohonen, the inventor
of the SOM.

Details

The kohonen package implements several forms of self-organising maps (SOMs). Online and batch
training algorithms are available; batch training can also be done in parallel. Multiple data layers
may be presented to the training algorithm, with potentially different distance measures for each
layer. The overall distance is a weighted average of the layer distances. Layers may be selected
through the whatmap argument, or by providing a weight of zero. The basic function is supersom;
som is simply a wrapper for SOMs using just one layer (the classical form).

New data may be mapped to a trained SOM using the map.kohonen function. Function predict.kohonen
will map data to the SOM, and will return predictions (i.e., average values for winning units) for
those layers that are not in the new data object.

Several visualisation methods are available in function plot.kohonen.

Index of help topics:

check.whatmap Check the validity of a whatmap argument
classvec2classmat Convert a classification vector into a matrix

or the other way around.
degelder Powder pattern data by Rene de Gelder
expandMap Expand a self-organising map
getCodes Extract codebook vectors from a kohonen object
kohonen-package Supervised and Unsupervised Self-Organising

Maps
map.kohonen Map data to a supervised or unsupervised SOM
nir Near-infrared data with temperature effects
object.distances Calculate distances between object vectors in a

SOM
peppaPic Synthetic image of a pepper plant with peppers
plot.kohonen Plot kohonen object
predict.kohonen Predict properties using a trained Kohonen map
summary.kohonen Summary and print methods for kohonen objects
supersom Self- and super-organising maps
tricolor Provides smooth unit colors for SOMs

check.whatmap 3

unit.distances SOM-grid related functions
wines Wine data
yeast Yeast cell-cycle data

Author(s)

Ron Wehrens and Johannes Kruisselbrink

Maintainer: Ron Wehrens <ron.wehrens@gmail.com>

References

R. Wehrens and J. Kruisselbrink: Flexible Self-Organising Maps in kohonen 3.0. Journal of Statis-
tical Software, 87, 7 (2018).

check.whatmap Check the validity of a whatmap argument

Description

Not meant to be called directly by the user.

Usage

check.whatmap(x, whatmap)

Arguments

x A kohonen object, or a list of data matrices that can be used as input data for
SOM functions.

whatmap An indication of a subset of the data; either by naming the elements, or giving
indices. If whatmap equals NULL, the selection of x is used if x is a kohonen
object, or else no selection is performed.

Value

Returns a numerical vector with the indices of the selected layers. An invalid selection leads to an
error.

Author(s)

Ron Wehrens

4 classvec2classmat

classvec2classmat Convert a classification vector into a matrix or the other way around.

Description

Functions toggle between a matrix representation, where class membership is indicated with one
’1’ and for the rest zeros at each row, and a factor. The classification matrix contains one column
per class. Conversion from a class matrix to a class vector assigns each row to the column with the
highest value. An optional argument can be used to assign only those objects that have a probability
higher than a certain threshold (default is 0).

Usage

classvec2classmat(yvec)
classmat2classvec(ymat, threshold=0)

Arguments

yvec class vector. Usually a factor; if it is a vector of integer values, it will be con-
verted to a factor.

ymat class matrix: every column corresponds to a class.

threshold only classify into a class if the probability is larger than this threshold.

Value

classvec2classmat returns the classification matrix, where each column consists of zeros and
ones; classmat2classvec returns a factor.

Author(s)

Ron Wehrens

See Also

som,xyf,supersom

Examples

classes <- c(rep(1, 5), rep(2, 7), rep(3, 9))
classmat <- classvec2classmat(classes)
classmat
classmat2classvec(classmat)

degelder 5

degelder Powder pattern data by Rene de Gelder

Description

X-ray powder patterns of 131 crystallographic structures, contributed by Rene de Gelder.

Usage

data(degelder)

Format

This yields a list with three components: the first component, ’"patterns"’, is a matrix of 131 rows
and 441 variables, containing the powder patterns; the second component is "thetas", the 2theta val-
ues at which intensities have been measured. The final component, ’"properties"’, gives information
on the crystallographic properties of the structures.

Source

Rene de Gelder, Institute of Molecules and Materials, Radboud University Nijmegen.

Examples

Not run:
data(degelder)
mydata <- list(patterns = degelder$patterns,

CellVol = log(degelder$properties[,"cell.vol"]))

custom distance function
require(Rcpp)
sourceCpp(system.file("Distances", "wcc.cpp", package = "kohonen"))
set.seed(7)
powsom <- supersom(data = mydata, grid = somgrid(6, 4, "hexagonal"),

dist.fcts = c("WCCd", "sumofsquares"),
keep.data = TRUE)

summary(powsom)

End(Not run)

6 getCodes

expandMap Expand a self-organising map

Description

Double the size of a map, imputing the codebookvectors of the new units by averiging their imme-
diate neighbours.

Usage

expandMap(kohobj)

Arguments

kohobj Object of class "kohonen")

Value

A new kohonen object, with a double size.

Author(s)

Ron Wehrens

Examples

data(yeast)
yeast.supersom <- supersom(yeast, somgrid(4, 4, "hexagonal"),

whatmap = 3:6, maxNA.fraction = .5)
yeast.supersom2 <- expandMap(yeast.supersom)
yeast.supersom3 <- supersom(yeast, yeast.supersom2$grid,

whatmap = 3:6, maxNA.fraction = .5,
init = yeast.supersom2$codes[3:6])

getCodes Extract codebook vectors from a kohonen object

Description

Utility function for extracting codebook vectors. These are present as a list element in a kohonen
object, and themselves are a list as well, with one entry for each data layer. This function returns
either a list of codebook matrices (if more layers are selected), or just one matrix (if one layer is
selected).

Usage

getCodes(x, idx = 1:length(codes))

map.kohonen 7

Arguments

x An object of class kohonen.

idx Indices of the layer(s) for which codebook vectors are returned.

Value

If idx is a single number, a matrix of codebook vectors; if it is a vector of numbers, a list of
codebook matrices.

Author(s)

Ron Wehrens

See Also

supersom

Examples

data(wines)
set.seed(7)
som.wines <- som(scale(wines), grid = somgrid(5, 5, "hexagonal"))
dim(getCodes(som.wines))

map.kohonen Map data to a supervised or unsupervised SOM

Description

Map a data matrix onto a trained SOM.

Usage

S3 method for class 'kohonen'
map(x, newdata, whatmap = NULL, user.weights = NULL,

maxNA.fraction = x$maxNA.fraction, ...)

Arguments

x An object of class kohonen.

newdata list of data matrices (numerical) of factors, equal to the data argument of the
supersom function. No data.frame objects are allowed.

whatmap, user.weights, maxNA.fraction

parameters that usually will be taken from the x object, but can be supplied by
the user as well. Note that it is not possible to change distance functions from
the ones used in training the map. See supersom for more information.

... Currently ignored.

8 nir

Value

A list with elements

unit.classif a vector of units that are closest to the objects in the data matrix.

dists distances of the objects to the closest units. Distance measures are the same ones
used in training the map.

whatmap,weights

Values used for these arguments.

Author(s)

Ron Wehrens

See Also

predict.kohonen, supersom

Examples

data(wines)
set.seed(7)

training <- sample(nrow(wines), 150)
Xtraining <- scale(wines[training,])
somnet <- som(Xtraining, somgrid(5, 5, "hexagonal"))

map(somnet,
scale(wines[-training,],

center=attr(Xtraining, "scaled:center"),
scale=attr(Xtraining, "scaled:scale")))

nir Near-infrared data with temperature effects

Description

A data object containing near-infrared spectra of ternary mixtures of ethanol, water and iso-propanol,
measured at five different temperatures (30, 40, ..., 70 degrees Centigrade).

References

F. Wulfert , W.Th. Kok, A.K. Smilde: Anal. Chem. 1998, 1761-1767

object.distances 9

Examples

data(nir)

set.seed(3)
nirnet <- xyf(X = nir$spectra[nir$training,],

Y = nir$composition[nir$training,],
user.weights = c(3,1),
grid = somgrid(6, 6, "hexagonal"), rlen=500)

plot(nirnet, "counts", main="Counts")

Focus on compound 2 (water):
par(mfrow = c(1,2))
set.seed(13)
nirnet <- xyf(X = nir$spectra[nir$training,],

Y = nir$composition[nir$training, 2, drop = FALSE],
grid = somgrid(6, 6, "hexagonal"), rlen=500)

water.xyf <-
predict(nirnet, newdata = nir$spectra[nir$training,],

unit.predictions = getCodes(nirnet, 2),
whatmap = 1)$prediction

plot(nirnet, "property", property = water.xyf[[1]],
main="Prediction of water content")

Plot temperatures as circles
symbols(nirnet$grid$pts[nirnet$unit.classif,] +

matrix(rnorm(sum(nir$training)*2, sd=.1), ncol=2),
circles = (nir$temperature[nir$training] - 20)/250,
inches = FALSE, add = TRUE)

Model temperatures
set.seed(13)
nirnet2 <- xyf(X = nir$spectra[nir$training,],

Y = matrix(nir$temperature[nir$training], ncol = 1),
user.weights = c(1,3),
grid = somgrid(6, 6, "hexagonal"), rlen=500)

temp.xyf <- predict(nirnet2, newdata = nir$spectra[nir$training,],
unit.predictions = getCodes(nirnet2, 2),
whatmap = 1)$prediction

plot(nirnet2, "property", property = temp.xyf[[1]],
palette.name = rainbow,
main="Prediction of temperatures")

Plot concentrations of water as circles
symbols(nirnet2$grid$pts[nirnet2$unit.classif,] +

matrix(rnorm(sum(nir$training)*2, sd=.1), ncol=2),
circles = 0.05 + 0.4 * nir$composition[nir$training,2],
inches = FALSE, add = TRUE)

object.distances Calculate distances between object vectors in a SOM

10 object.distances

Description

This function calculates the distance between objects using the distance functions, weights and
other attributes of a trained SOM. This function is used in the calculation of the U matrix in function
plot.kohonen using the type = "dist.neighbours" argument.

Usage

object.distances(kohobj, type = c("data", "codes"), whatmap)

Arguments

kohobj An object of class kohonen.

type Whether to calculate distances between the data objects, or the codebook vec-
tors.

whatmap What data layers to use. If unspecified the data layers defined in the kohonen
object are used.

Value

An object of class dist, which can be directly fed into (e.g.) a hierarchical clustering.

Author(s)

Ron Wehrens

References

R. Wehrens and J. Kruisselbrink, submitted, 2017.

See Also

unit.distances, supersom

Examples

data(wines)
set.seed(7)
sommap <- supersom(list(measurements = scale(wines),

vintages = vintages),
grid = somgrid(6, 4, "hexagonal"))

obj.dists <- object.distances(sommap, type = "data")
code.dists <- object.distances(sommap, type = "codes")

peppaPic 11

peppaPic Synthetic image of a pepper plant with peppers

Description

A data matrix with four columns representing a 600 by 800 image of a pepper plant. Each row is a
pixel in the image. The first column is the class label; the other columns contain the RGB values.

Usage

data("peppaPic")

Source

http://dx.doi.org/10.4121/uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0

References

This is image 10039 from a set of 10,500 images described in

Barth R, IJsselmuiden J, Hemming J, and van Henten E (2017). "Data Synthesis Methods for
Semantic Segmentation in Agriculture. A Capsicum annuum Dataset." Submitted.

Examples

data(peppaPic)
head(peppaPic)
show ground truth per pixel
image(t(matrix(peppaPic[,1], 600, 800))[,600:1], col = rainbow(10))

plot.kohonen Plot kohonen object

Description

Plot objects of class kohonen. Several types of plots are supported.

Usage

S3 method for class 'kohonen'
plot(x, type = c("codes", "changes", "counts",

"dist.neighbours", "mapping", "property", "quality"),
whatmap = NULL, classif = NULL, labels = NULL,
pchs = NULL, main = NULL, palette.name = NULL,
ncolors, bgcol = NULL, zlim = NULL,
heatkey = TRUE, property, codeRendering = NULL,
keepMargins = FALSE, heatkeywidth = .2,

12 plot.kohonen

shape = c("round", "straight"), border = "black",
na.color = "gray", ...)

S3 method for class 'kohonen'
identify(x, ...)
add.cluster.boundaries(x, clustering, lwd = 5, ...)

Arguments

x kohonen object.

type type of plot. (Wow!)

whatmap For a "codes" plot: what maps to show; for the "dist.neighbours" plot: what
maps to take into account when calculating distances to neighbouring units.

classif classification object, as returned by predict.kohonen, or vector of unit num-
bers. Only needed if type equals "mapping" and "counts".

labels labels to plot when type equals "mapping".

pchs symbols to plot when type equals "mapping".

main title of the plot.

palette.name colors to use as unit background for "codes", "counts", "prediction", "property",
and "quality" plotting types.

ncolors number of colors to use for the unit backgrounds. Default is 20 for continuous
data, and the number of distinct values (if less than 20) for categorical data.

bgcol optional argument to colour the unit backgrounds for the "mapping" and "codes"
plotting type. Defaults to "gray" and "transparent" in both types, respectively.

zlim optional range for color coding of unit backgrounds.

heatkey whether or not to generate a heatkey at the left side of the plot in the "property"
and "counts" plotting types.

property values to use with the "property" plotting type.

codeRendering How to show the codes. Possible choices: "segments", "stars" and "lines".

keepMargins if FALSE (the default), restore the original graphical parameters after plotting the
kohonen map. If TRUE, one retains the map coordinate system so that one can
add symbols to the plot, or map unit numbers using the identify function.

heatkeywidth width of the colour key; the default of 0.2 should work in most cases but in some
cases, e.g. when plotting multiple figures, it may need to be adjusted.

shape kind shape to be drawn: "round" (circle) or "straight". Choosing "straight" pro-
duces a map of squares when the grid is "rectangular", and produces a map of
hexagons when the grid is "hexagonal".

border color of the shape’s border.

na.color background color matching NA - default "gray".

lwd, ... other graphical parameters.

clustering cluster labels of the map units.

plot.kohonen 13

Details

Several different types of plots are supported:

"changes" shows the mean distance to the closest codebook vector during training.

"codes" shows the codebook vectors.

"counts" shows the number of objects mapped to the individual units. Empty units are depicted in
gray.

"dist.neighbours" shows the sum of the distances to all immediate neighbours. This kind of vi-
sualisation is also known as a U-matrix plot. Units near a class boundary can be expected to
have higher average distances to their neighbours. Only available for the "som" and "super-
som" maps, for the moment.

"mapping" shows where objects are mapped. It needs the "classif" argument, and a "labels" or
"pchs" argument.

"property" properties of each unit can be calculated and shown in colour code. It can be used
to visualise the similarity of one particular object to all units in the map, to show the mean
similarity of all units and the objects mapped to them, etcetera. The parameter property
contains the numerical values. See examples below.

"quality" shows the mean distance of objects mapped to a unit to the codebook vector of that unit.
The smaller the distances, the better the objects are represented by the codebook vectors.

Function identify.kohonen shows the number of a unit that is clicked on with the mouse. The
tolerance is calculated from the ratio of the plotting region and the user coordinates, so clicking at
any place within a unit should work.

Function add.cluster.boundaries will add to an existing plot of a map thick lines, visualizing
which units would be clustered together. In toroidal maps, boundaries at the edges will only be
shown on the top and right sides to avoid double boundaries.

Value

Several types of plots return useful values (invisibly): the "counts", "dist.neighbours", and
"quality" return vectors corresponding to the information visualized in the plot (unit background
colours and heatkey).

Author(s)

Ron Wehrens

See Also

som, supersom, xyf, predict.kohonen

Examples

data(wines)
set.seed(7)

kohmap <- xyf(scale(wines), vintages,
grid = somgrid(5, 5, "hexagonal"), rlen=100)

14 predict.kohonen

plot(kohmap, type="changes")
counts <- plot(kohmap, type="counts", shape = "straight")

show both sets of codebook vectors in the map
par(mfrow = c(1,2))
plot(kohmap, type="codes", main = c("Codes X", "Codes Y"))

par(mfrow = c(1,1))
similarities <- plot(kohmap, type="quality", palette.name = terrain.colors)
plot(kohmap, type="mapping",

labels = as.integer(vintages), col = as.integer(vintages),
main = "mapping plot")

add background colors to units according to their predicted class labels
xyfpredictions <- classmat2classvec(getCodes(kohmap, 2))
bgcols <- c("gray", "pink", "lightgreen")
plot(kohmap, type="mapping", col = as.integer(vintages),

pchs = as.integer(vintages), bgcol = bgcols[as.integer(xyfpredictions)],
main = "another mapping plot", shape = "straight", border = NA)

Show 'component planes'
set.seed(7)
sommap <- som(scale(wines), grid = somgrid(6, 4, "hexagonal"))
plot(sommap, type = "property", property = getCodes(sommap, 1)[,1],

main = colnames(getCodes(sommap, 1))[1])

Show the U matrix
Umat <- plot(sommap, type="dist.neighbours", main = "SOM neighbour distances")
use hierarchical clustering to cluster the codebook vectors
som.hc <- cutree(hclust(object.distances(sommap, "codes")), 5)
add.cluster.boundaries(sommap, som.hc)

and the same for rectangular maps
set.seed(7)
sommap <- som(scale(wines),grid = somgrid(6, 4, "rectangular"))
plot(sommap, type="dist.neighbours", main = "SOM neighbour distances")
use hierarchical clustering to cluster the codebook vectors
som.hc <- cutree(hclust(object.distances(sommap, "codes")), 5)
add.cluster.boundaries(sommap, som.hc)

predict.kohonen Predict properties using a trained Kohonen map

Description

Map objects to a trained Kohonen map, and return for each object the desired property associ-
ated with the corresponding winning unit. These properties may be provided explicitly (argument
unit.predictions) or implicitly (by providing trainingdata, that will be mapped to the SOM -
the averages of the winning units for the trainingdata then will be used as unit.predictions). If not
given at all, the codebook vectors of the map will be used.

predict.kohonen 15

Usage

S3 method for class 'kohonen'
predict(object,

newdata = NULL,
unit.predictions = NULL,
trainingdata = NULL,
whatmap = NULL,
threshold = 0,
maxNA.fraction = object$maxNA.fraction,
...)

Arguments

object Trained network, containing one or more information layers.

newdata List of data matrices, or one single data matrix, for which predictions are to be
made. The data layers should match those in the trained map. If not presented,
the training data in the map will be used. No data.frame objects are allowed.

unit.predictions

Explicit definition of the predictions for each unit. Should be a list of matrices,
vectors or factors, of the same length as object$codes.

trainingdata List of data matrices, or one single data matrix, determining the mapping of
the training data. Normally, data stored in the kohonen object will be used for
this, but one can also specify this argument explicitly. Layers should match the
trained map.

whatmap, maxNA.fraction

parameters that usually will be taken from the x object, but can be supplied by
the user as well. See supersom for more information.

threshold Used in converting class predictions back into factors; see classmat2classvec.

... Further arguments to be passed to map.kohonen, in particular user.weights.
If not provided will be taken from object.

Details

The new data are mapped to the trained SOM using the layers indicated by the whatmap argu-
ment. The predictions correspond to the unit.predictions, normally corresponding to the aver-
ages of the training data mapping to individual units. If no unit.predictions are provided, the
trainingdata will be used to calculate them - if trainingdata is not provided by the user and the
kohonen object contains data, these will be used. If no objects of the training data are mapping to a
particular unit, the prediction for that unit will be NA.

Value

Returns a list with components

prediction predicted values for the properties of interest. When multiple values are pre-
dicted, this element is a list, otherwise a vector or a matrix.

unit.classif vector of unit numbers to which objects in the newdata object are mapped.

16 predict.kohonen

unit.predictions

prediction values associated with map units. Again, when multiple properties
are predicted, this is a list.

whatmap the numbers of the data layers in the kohonen object used in the mapping on
which the predictions are based.

Author(s)

Ron Wehrens

See Also

som,xyf, supersom, map

Examples

data(wines)

training <- sample(nrow(wines), 120)
Xtraining <- scale(wines[training,])
Xtest <- scale(wines[-training,],

center = attr(Xtraining, "scaled:center"),
scale = attr(Xtraining, "scaled:scale"))

trainingdata <- list(measurements = Xtraining,
vintages = vintages[training])

testdata <- list(measurements = Xtest, vintages = vintages[-training])

mygrid = somgrid(5, 5, "hexagonal")
som.wines <- supersom(trainingdata, grid = mygrid)

##
Situation 0: obtain expected values for training data (all layers,
also if not used in training) on the basis of the position in the map
som.prediction <- predict(som.wines)

##
Situation 1: obtain predictions for all layers used in training

som.prediction <- predict(som.wines, newdata = testdata)
table(vintages[-training], som.prediction$predictions[["vintages"]])

##
Situation 2: obtain predictions for the vintage based on the mapping
of the sample characteristics only. There are several ways of doing this:

som.prediction <- predict(som.wines, newdata = testdata,
whatmap = "measurements")

table(vintages[-training], som.prediction$predictions[["vintages"]])

same, but now indicated implicitly
som.prediction <- predict(som.wines, newdata = testdata[1])

summary.kohonen 17

table(vintages[-training], som.prediction$predictions[["vintages"]])

if no names are present in the list elements whatmap needs to be
given explicitly; note that the order of the data layers needs to be
consistent with the kohonen object
som.prediction <- predict(som.wines, newdata = list(Xtest), whatmap = 1)
table(vintages[-training], som.prediction$predictions[["vintages"]])

###
Situation 3: predictions for layers not present in the original
data. Training data need to be provided for those layers.
som.wines <- supersom(Xtraining, grid = mygrid)
som.prediction <- predict(som.wines, newdata = testdata,

trainingdata = trainingdata)
table(vintages[-training], som.prediction$predictions[["vintages"]])

##
yeast examples, including NA values

data(yeast)
training.indices <- sample(nrow(yeast$alpha), 300)
training <- rep(FALSE, nrow(yeast$alpha))
training[training.indices] <- TRUE

unsupervised mapping, based on the alpha layer only. Prediction
for all layers including alpha
yeast.som <- supersom(lapply(yeast, function(x) subset(x, training)),

somgrid(4, 6, "hexagonal"),
whatmap = "alpha", maxNA.fraction = .5)

yeast.som.prediction <-
predict(yeast.som,

newdata = lapply(yeast, function(x) subset(x, !training)))

table(yeast$class[!training], yeast.som.prediction$prediction[["class"]])

##
supervised mapping - creating the map is now based on both
alpha and class, prediction for class based on the mapping of alpha.
yeast.som2 <- supersom(lapply(yeast, function(x) subset(x, training)),

grid = somgrid(4, 6, "hexagonal"),
whatmap = c("alpha", "class"), maxNA.fraction = .5)

yeast.som2.prediction <-
predict(yeast.som2,

newdata = lapply(yeast, function(x) subset(x, !training)),
whatmap = "alpha")

table(yeast$class[!training], yeast.som2.prediction$prediction[["class"]])

summary.kohonen Summary and print methods for kohonen objects

18 supersom

Description

Summary and print methods for kohonen objects. The print method shows the dimensions and the
topology of the map; if information on the training data is included, the summary method addition-
ally prints information on the size of the data, the distance functions used, and the mean distance of
an object to its closest codebookvector, which is an indication of the quality of the mapping.

Usage

S3 method for class 'kohonen'
summary(object, ...)
S3 method for class 'kohonen'
print(x, ...)

Arguments

x, object a kohonen object

... Not used.

Author(s)

Ron Wehrens

See Also

som, xyf, supersom

Examples

data(wines)
xyf.wines <- xyf(scale(wines), classvec2classmat(vintages),

grid = somgrid(5, 5, "hexagonal"))
xyf.wines
summary(xyf.wines)

supersom Self- and super-organising maps

Description

A supersom is an extension of self-organising maps (SOMs) to multiple data layers, possibly with
different numbers and different types of variables (though equal numbers of objects). NAs are
allowed. A weighted distance over all layers is calculated to determine the winning units during
training. Functions som and xyf are simply wrappers for supersoms with one and two layers, re-
spectively. Function bdk is deprecated.

supersom 19

Usage

som(X, ...)
xyf(X, Y, ...)
supersom(data, grid=somgrid(), rlen = 100, alpha = c(0.05, 0.01),

radius = quantile(nhbrdist, 2/3),
whatmap = NULL, user.weights = 1, maxNA.fraction = 0L,
keep.data = TRUE, dist.fcts = NULL,
mode = c("online", "batch", "pbatch"), cores = -1, init,
normalizeDataLayers = TRUE)

Arguments

X, Y numerical data matrices, or factors. No data.frame objects are allowed - con-
vert them to matrices first.

data list of data matrices (numerical) of factors. If a vector is entered, it will be
converted to a one-column matrix. No data.frame objectss are allowed.

grid a grid for the codebook vectors: see somgrid.

rlen the number of times the complete data set will be presented to the network.

alpha learning rate, a vector of two numbers indicating the amount of change. Default
is to decline linearly from 0.05 to 0.01 over rlen updates. Not used for the batch
algorithm.

radius the radius of the neighbourhood, either given as a single number or a vector
(start, stop). If it is given as a single number the radius will change linearly from
radius to zero; as soon as the neighbourhood gets smaller than one only the
winning unit will be updated. Note that the default before version 3.0 was to
run from radius to -radius. If nothing is supplied, the default is to start with
a value that covers 2/3 of all unit-to-unit distances.

whatmap What data layers to use. If unspecified all layers are used.

user.weights the weights given to individual layers. This can be a single number (all layers
have the same weight, the default), a vector of the same length as the whatmap
argument, or a vector of the same length as the data argument. In xyf maps,
this argument provides the same functionality as the now-deprecated xweight
argument that was used prior to version 3.0.

maxNA.fraction the maximal fraction of values that may be NA to prevent the row to be removed.

keep.data if TRUE, return original data and mapping information. If FALSE, only return
the trained map (in essence the codebook vectors).

dist.fcts vector of distance functions to be used for the individual data layers, of the same
length as the data argument, or the same length of the whatmap argument. If
the length of this vector is one, the same distance will be used for all layers.
Admissable values currently are "sumofsquares", "euclidean", "manhattan", and
"tanimoto". Default is to use "sumofsquares" for continuous data, and "tani-
moto" for factors.

mode type of learning algorithm.

cores number of cores to use in the "pbatch" learning mode. The default, -1, corre-
sponds to using all available cores.

20 supersom

init list of matrices, initial values for the codebook vectors. The list should have the
same length as the data list, and corresponding numbers of variables (columns).
Each list element should have a number of rows corresponding to the number of
units in the map.

normalizeDataLayers

boolean, indicating whether distance.weights should be calculated (see de-
tails section). If normalizeDataLayers == FALSE the user weights are applied
to the data immediately.

... Further arguments for the supersom function presented to the som or xyf wrap-
pers.

Details

In order to avoid some layers to overwhelm others, simply because of the scale of the data points, the
supersom function by default applies internal weights to balance this. The user.weights argument
is applied on top of that: the result is that when a user specifies equal weights for all layers (the
default), all layers contribute equally to the global distance measure. For large data sets (defined
as containing more than 500 records), a sample of size 500 is used to calculate the mean distances
in each data layer. If normalizeDataLayers == FALSE the user weights are applied directly to the
data (distance.weights are set to 1).

Various definitions of the Tanimoto distance exist in the literature. The implementation here returns
(for two binary vectors of length n) the fraction of cases in which the two vectors disagree. This is
basically the Hamming distance divided by n - the incorrect naming is retained (for the moment) to
guarantee backwards compatibility. If the vectors are not binary, they will be converted to binary
strings (with 0.5 as the class boundary). This measure should not be used when variables are outside
the range [0-1]; a check is done to make sure this is the case.

Value

An object of class "kohonen" with components

data data matrix, only returned if keep.data == TRUE.

unit.classif winning units for all data objects, only returned if keep.data == TRUE.

distances distances of objects to their corresponding winning unit, only returned if keep.data
== TRUE.

grid the grid, an object of class somgrid.

codes a list of matrices containing codebook vectors.

changes matrix of mean average deviations from code vectors; every map corresponds
with one column.

alpha, radius, user.weights, whatmap, maxNA.fraction

input arguments presented to the function.
distance.weights

if normalizeDataLayers weights to equalize the influence of the individual
data layers, else a vector of ones.

dist.fcts distance functions corresponding to all layers of the data, not just the ones indi-
cated by the whatmap argument.

tricolor 21

Author(s)

Ron Wehrens and Johannes Kruisselbrink

References

R. Wehrens and L.M.C. Buydens, J. Stat. Softw. 21 (5), 2007; R. Wehrens and J. Kruisselbrink,
submitted, 2017.

See Also

somgrid, plot.kohonen, predict.kohonen, map.kohonen

Examples

data(wines)

som
som.wines <- som(scale(wines), grid = somgrid(5, 5, "hexagonal"))
summary(som.wines)

xyf
xyf.wines <- xyf(scale(wines), vintages, grid = somgrid(5, 5, "hexagonal"))
summary(xyf.wines)

supersom example
data(yeast)
yeast.supersom <- supersom(yeast, somgrid(6, 6, "hexagonal"),

whatmap = c("alpha", "cdc15", "cdc28", "elu"),
maxNA.fraction = .5)

plot(yeast.supersom, "changes")

obj.classes <- as.integer(yeast$class)
colors <- c("yellow", "green", "blue", "red", "orange")
plot(yeast.supersom, type = "mapping", col = colors[obj.classes],

pch = obj.classes, main = "yeast data")

tricolor Provides smooth unit colors for SOMs

Description

Function provides colour values for SOM units in such a way that the colour changes smoothly in
every direction.

Usage

tricolor(grid, phis = c(0, 2 * pi/3, 4 * pi/3), offset = 0)

22 unit.distances

Arguments

grid An object of class somgrid, such as the grid element in a kohonen object.

phis A vector of three rotation angles. Values for red, green and blue are given by the
y-coordinate of the units after rotation with these three angles, respectively. The
default corresponds to (approximate) red colour of the middle unit in the top row,
and pure green and blue colours in the bottom left and right units, respectively.
In case of a triangular map, the top unit is pure red.

offset Defines the minimal value in the RGB colour definition (default is 0). By sup-
plying a value in the range [0, .9], pastel-like colours are provided.

Value

Returns a matrix with three columns corresponding to red, green and blue. This can be used in the
rgb function to provide colours for the units.

Author(s)

Ron Wehrens

See Also

plot.kohonen

Examples

data(wines)
som.wines <- som(wines, grid = somgrid(5, 5, "hexagonal"))

colour1 <- tricolor(som.wines$grid)
plot(som.wines, "mapping", bg = rgb(colour1))
colour2 <- tricolor(som.wines$grid, phi = c(pi/6, 0, -pi/6))
plot(som.wines, "mapping", bg = rgb(colour2))
colour3 <- tricolor(som.wines$grid, phi = c(pi/6, 0, -pi/6), offset = .5)
plot(som.wines, "mapping", bg = rgb(colour3))

unit.distances SOM-grid related functions

Description

Function somgrid (modified from the version in the class package) sets up a grid of units, of a spec-
ified size and topology. Distances between grid units are calculated by function unit.distances.

Usage

somgrid(xdim = 8, ydim = 6, topo = c("rectangular", "hexagonal"),
neighbourhood.fct = c("bubble", "gaussian"), toroidal = FALSE)

unit.distances(grid, toroidal)

wines 23

Arguments

xdim, ydim dimensions of the grid.
topo choose between a hexagonal or rectangular topology.
neighbourhood.fct

choose between bubble and gaussian neighbourhoods when training a SOM.
toroidal logical, whether the grid is toroidal or not. If not provided to the unit.distances

function, the information in the grid object will be used.
grid an object of class somgrid.

Value

Function somgrid returns an object of class "somgrid", with elements pts, and the input arguments
to the function.

Function unit.distances returns a (symmetrical) matrix containing distances. When grid$n.hood
equals "circular", Euclidean distances are used; for grid$n.hood is "square" maximum distances.
For toroidal maps (joined at the edges) distances are calculated for the shortest path.

Author(s)

Ron Wehrens

Examples

mygrid <- somgrid(5, 5, "hexagonal")
fakesom <- list(grid = mygrid)
class(fakesom) <- "kohonen"

par(mfrow = c(2,1))
dists <- unit.distances(mygrid)
plot(fakesom, type="property", property = dists[1,],

main="Distances to unit 1", zlim=c(0,6),
palette = rainbow, ncolors = 7)

dists <- unit.distances(mygrid, toroidal=TRUE)
plot(fakesom, type="property", property = dists[1,],

main="Distances to unit 1 (toroidal)", zlim=c(0,6),
palette = rainbow, ncolors = 7)

wines Wine data

Description

A data frame containing 177 rows and thirteen columns; object vintages contains the class labels.

These data are the results of chemical analyses of wines grown in the same region in Italy (Pied-
mont) but derived from three different cultivars: Nebbiolo, Barberas and Grignolino grapes. The
wine from the Nebbiolo grape is called Barolo. The data contain the quantities of several con-
stituents found in each of the three types of wines, as well as some spectroscopic variables.

24 yeast

Usage

data(wines)

Source

http://kdd.ics.uci.edu

References

M. Forina, C. Armanino, M. Castino and M. Ubigli. Vitis, 25:189-201 (1986)

yeast Yeast cell-cycle data

Description

Microarray cell-cycle data for 800 yeast genes, arrested with six different methods, arranged in a
list. Additional class information is present as well.

Usage

data(yeast)

References

P. Spellman et al., Mol. Biol. Cell 9, 3273-3297 (1998)

http://kdd.ics.uci.edu

Index

∗Topic classif
check.whatmap, 3
classvec2classmat, 4
expandMap, 6
map.kohonen, 7
object.distances, 9
plot.kohonen, 11
predict.kohonen, 14
summary.kohonen, 17
supersom, 18
tricolor, 21
unit.distances, 22

∗Topic datasets
degelder, 5
nir, 8
peppaPic, 11
wines, 23
yeast, 24

∗Topic manip
getCodes, 6

∗Topic package
kohonen-package, 2

add.cluster.boundaries (plot.kohonen),
11

bdk (supersom), 18

check.whatmap, 3
classmat2classvec, 15
classmat2classvec (classvec2classmat), 4
classvec2classmat, 4

degelder, 5

expandMap, 6

getCodes, 6

identify.kohonen (plot.kohonen), 11

kohonen (kohonen-package), 2
kohonen-package, 2

map, 16
map (map.kohonen), 7
map.kohonen, 7, 21

nir, 8

object.distances, 9

peppaPic, 11
plot.kohonen, 11, 21, 22
predict.kohonen, 8, 13, 14, 21
print.kohonen (summary.kohonen), 17

som, 4, 13, 16, 18
som (supersom), 18
somgrid (unit.distances), 22
summary.kohonen, 17
supersom, 4, 7, 8, 10, 13, 15, 16, 18, 18

tricolor, 21

unit.distances, 10, 22

vintages (wines), 23

wines, 23

xyf, 4, 13, 16, 18
xyf (supersom), 18

yeast, 24

25

	kohonen-package
	check.whatmap
	classvec2classmat
	degelder
	expandMap
	getCodes
	map.kohonen
	nir
	object.distances
	peppaPic
	plot.kohonen
	predict.kohonen
	summary.kohonen
	supersom
	tricolor
	unit.distances
	wines
	yeast
	Index

