
Package ‘koRpus’
October 28, 2018

Type Package

Title An R Package for Text Analysis

Description A set of tools to analyze texts. Includes, amongst others,
functions for automatic language detection, hyphenation,
several indices of lexical diversity (e.g., type token ratio,
HD-D/vocd-D, MTLD) and readability (e.g., Flesch, SMOG, LIX,
Dale-Chall). Basic import functions for language corpora are
also provided, to enable frequency analyses (supports Celex and
Leipzig Corpora Collection file formats) and measures like
tf-idf. Note: For full functionality a local installation of
TreeTagger is recommended. It is also recommended to not load
this package directly, but by loading one of the available
language support packages from the 'l10n' repository
<https://undocumeantit.github.io/repos/l10n>. 'koRpus' also
includes a plugin for the R GUI and IDE RKWard, providing
graphical dialogs for its basic features. The respective R
package 'rkward' cannot be installed directly from a
repository, as it is a part of RKWard. To make full use of this
feature, please install RKWard from <https://rkward.kde.org>
(plugins are detected automatically). Due to some restrictions
on CRAN, the full package sources are only available from the
project homepage. To ask for help, report bugs, request
features, or discuss the development of the package, please
subscribe to the koRpus-dev mailing list
(<http://korpusml.reaktanz.de>).

Depends R (>= 3.0.0),sylly (>= 0.1-4)

Imports data.table,methods

Enhances rkward

Suggests
testthat,tm,SnowballC,shiny,knitr,rmarkdown,koRpus.lang.de,koRpus.lang.en,koRpus.lang.es,koRpus.lang.fr,koRpus.lang.it,koRpus.lang.ru

VignetteBuilder knitr

URL https://reaktanz.de/?c=hacking&s=koRpus

BugReports https://github.com/unDocUMeantIt/koRpus/issues

1

https://reaktanz.de/?c=hacking&s=koRpus
https://github.com/unDocUMeantIt/koRpus/issues

2

Additional_repositories https://undocumeantit.github.io/repos/l10n

License GPL (>= 3)

Encoding UTF-8

LazyLoad yes

Version 0.11-5

Date 2018-10-27

RoxygenNote 6.1.0

Collate '00_environment.R' '01_class_01_kRp.tagged.R'
'01_class_02_kRp.TTR.R' '01_class_03_kRp.txt.freq.R'
'01_class_04_kRp.txt.trans.R' '01_class_05_kRp.analysis.R'
'01_class_06_kRp.corp.freq.R' '01_class_09_kRp.lang.R'
'01_class_10_kRp.readability.R' '02_method_cTest.R'
'kRp.filter.wclass.R' 'koRpus-internal.R'
'02_method_clozeDelete.R' '02_method_correct.R'
'02_method_freq.analysis.R' '02_method_hyphen.R'
'02_method_kRp.taggedText.R' '02_method_lex.div.R'
'02_method_plot.kRp.tagged.R' '02_method_query.R'
'02_method_read.corp.custom.R' '02_method_readability.R'
'02_method_show.kRp.lang.R' '02_method_show.kRp.TTR.R'
'02_method_show.kRp.corp.freq.R'
'02_method_show.kRp.readability.R'
'02_method_show.kRp.taggedText.R'
'02_method_summary.kRp.lang.R' '02_method_summary.kRp.TTR.R'
'02_method_summary.kRp.readability.R'
'02_method_summary.kRp.tagged.R'
'02_method_summary.kRp.txt.freq.R' '02_method_text.transform.R'
'02_method_types_tokens.R' 'available.koRpus.lang.R'
'get.kRp.env.R' 'guess.lang.R' 'install.koRpus.lang.R'
'jumbleWords.R' 'kRp.POS.tags.R' 'kRp.cluster.R'
'kRp.text.analysis.R' 'kRp.text.paste.R'
'koRpus-internal.freq.analysis.R' 'koRpus-internal.import.R'
'koRpus-internal.lexdiv.formulae.R'
'koRpus-internal.rdb.formulae.R'
'koRpus-internal.rdb.params.grades.R'
'koRpus-internal.read.corp.custom.R'
'koRpus-internal.roxy.all.R' 'koRpus-package.R' 'lex.div.num.R'
'read.BAWL.R' 'read.corp.LCC.R' 'read.corp.celex.R'
'read.tagged.R' 'readability.num.R' 'segment.optimizer.R'
'set.kRp.env.R' 'set.lang.support.R' 'textFeatures.R'
'tokenize.R' 'treetag.R' 'wrapper_functions_lex.div.R'
'wrapper_functions_readability.R'

NeedsCompilation no

Author Meik Michalke [aut, cre],
Earl Brown [ctb],
Alberto Mirisola [ctb],
Alexandre Brulet [ctb],

R topics documented: 3

Laura Hauser [ctb]

Maintainer Meik Michalke <meik.michalke@hhu.de>

Repository CRAN

Date/Publication 2018-10-28 07:50:02 UTC

R topics documented:
koRpus-package . 5
ARI . 6
available.koRpus.lang . 7
bormuth . 8
C.ld . 9
clozeDelete . 10
coleman . 11
coleman.liau . 12
correct.tag . 13
cTest . 14
CTTR . 15
dale.chall . 16
danielson.bryan . 17
dickes.steiwer . 18
DRP . 19
ELF . 20
farr.jenkins.paterson . 21
flesch . 22
flesch.kincaid . 23
FOG . 24
FORCAST . 25
freq.analysis . 26
fucks . 27
get.kRp.env . 28
guess.lang . 29
harris.jacobson . 31
HDD . 32
hyphen,kRp.taggedText-method . 33
install.koRpus.lang . 35
jumbleWords . 36
K.ld . 36
koRpus-deprecated . 37
kRp.analysis,-class . 38
kRp.cluster . 38
kRp.corp.freq,-class . 39
kRp.filter.wclass . 40
kRp.lang,-class . 41
kRp.POS.tags . 42
kRp.readability,-class . 43
kRp.tagged,-class . 46

4 R topics documented:

kRp.text.analysis . 47
kRp.text.paste . 48
kRp.TTR,-class . 49
kRp.txt.freq,-class . 51
kRp.txt.trans,-class . 51
lex.div . 52
lex.div.num . 56
linsear.write . 58
LIX . 59
maas . 60
MATTR . 61
MSTTR . 62
MTLD . 63
nWS . 64
plot . 65
query . 66
R.ld . 68
read.BAWL . 69
read.corp.celex . 70
read.corp.custom . 71
read.corp.LCC . 72
read.tagged . 74
readability . 76
readability.num . 86
RIX . 88
S.ld . 89
segment.optimizer . 90
set.kRp.env . 91
set.lang.support . 92
show,kRp.lang-method . 94
SMOG . 95
spache . 96
strain . 97
summary . 98
taggedText . 99
textFeatures . 101
textTransform . 102
tokenize . 103
traenkle.bailer . 106
treetag . 107
TRI . 110
TTR . 111
tuldava . 112
types . 113
U.ld . 115
wheeler.smith . 116

Index 117

koRpus-package 5

koRpus-package An R Package for Text Analysis

Description

A set of tools to analyze texts. Includes, amongst others, functions for automatic language de-
tection, hyphenation, several indices of lexical diversity (e.g., type token ratio, HD-D/vocd-D,
MTLD) and readability (e.g., Flesch, SMOG, LIX, Dale-Chall). Basic import functions for lan-
guage corpora are also provided, to enable frequency analyses (supports Celex and Leipzig Cor-
pora Collection file formats) and measures like tf-idf. Note: For full functionality a local in-
stallation of TreeTagger is recommended. It is also recommended to not load this package di-
rectly, but by loading one of the available language support packages from the ’l10n’ repository
<https://undocumeantit.github.io/repos/l10n>. ’koRpus’ also includes a plugin for the R GUI and
IDE RKWard, providing graphical dialogs for its basic features. The respective R package ’rk-
ward’ cannot be installed directly from a repository, as it is a part of RKWard. To make full use of
this feature, please install RKWard from <https://rkward.kde.org> (plugins are detected automat-
ically). Due to some restrictions on CRAN, the full package sources are only available from the
project homepage. To ask for help, report bugs, request features, or discuss the development of the
package, please subscribe to the koRpus-dev mailing list (<http://korpusml.reaktanz.de>).

Details

The DESCRIPTION file:

Package: koRpus
Type: Package
Version: 0.11-5
Date: 2018-10-27
Depends: R (>= 3.0.0),sylly (>= 0.1-4)
Enhances: rkward
Encoding: UTF-8
License: GPL (>= 3)
LazyLoad: yes
URL: https://reaktanz.de/?c=hacking&s=koRpus

Author(s)

NA

Maintainer: NA

See Also

Useful links:

• https://reaktanz.de/?c=hacking&s=koRpus

• Report bugs at https://github.com/unDocUMeantIt/koRpus/issues

https://reaktanz.de/?c=hacking&s=koRpus
https://github.com/unDocUMeantIt/koRpus/issues

6 ARI

ARI Readability: Automated Readability Index (ARI)

Description

This is just a convenient wrapper function for readability.

Usage

ARI(txt.file, parameters = c(asl = 0.5, awl = 4.71, const = 21.43), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

Calculates the Automated Readability Index (ARI). In contrast to readability, which by default
calculates all possible indices, this function will only calculate the index value.

If parameters="NRI", the simplified parameters from the Navy Readability Indexes are used, if set
to ARI="simple", the simplified formula is calculated.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

References

DuBay, W.H. (2004). The Principles of Readability. Costa Mesa: Impact Information. WWW:
http://www.impact-information.com/impactinfo/readability02.pdf; 22.03.2011.

Smith, E.A. & Senter, R.J. (1967). Automated readability index. AMRL-TR-66-22. Wright-
Paterson AFB, Ohio: Aerospace Medical Division.

Examples

Not run:
ARI(tagged.text)

End(Not run)

http://www.impact-information.com/impactinfo/readability02.pdf

available.koRpus.lang 7

available.koRpus.lang List available language packages

Description

Get a list of all currently available language packages for koRpus from the official l10n repository.

Usage

available.koRpus.lang(repos = "https://undocumeantit.github.io/repos/l10n/")

Arguments

repos The URL to additional repositories to query. You should probably leave this
to the default, but if you would like to use a third party repository, you’re free
to do so. The value is temporarily appended to the repos currently returned by
getOption("repos").

Details

koRpus’ language support is modular by design, meaning you can (and must) load an extension
package for each language you want to work with in a given session. These language support
packages are named koRpus.lang.**, where ** is replaced by a valid language identifier (like en
for English or de for German). See set.lang.support for more details.

This function downloads the package list from (also) the official localization repository for koRpus
and lists all currently available language packages that you could install and load. Apart from than
it does not download or install anything.

You can install the packages by either calling the convenient wrapper function install.koRpus.lang,
or install.packages (see examples).

Value

Returns an invisible character vector with all available language packages.

See Also

install.koRpus.lang

Examples

Not run:
see all available language packages
available.koRpus.lang()

install support for German
install.koRpus.lang("de")
alternatively, you could call install.packages directly

8 bormuth

install.packages("koRpus.lang.de", repos="https://undocumeantit.github.io/repos/l10n/")

End(Not run)

bormuth Readability: Bormuth’s Mean Cloze and Grade Placement

Description

This is just a convenient wrapper function for readability.

Usage

bormuth(txt.file, word.list, clz=35,
meanc=c(const=0.886593, awl=0.08364, afw=0.161911,
asl1=0.021401, asl2=0.000577, asl3=0.000005),

grade=c(const=4.275, m1=12.881, m2=34.934, m3=20.388,
c1=26.194, c2=2.046, c3=11.767, mc1=44.285, mc2=97.62,
mc3=59.538), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

word.list A vector or matrix (with exactly one column) which defines familiar words. For
valid results the long Dale-Chall list with 3000 words should be used.

clz Integer, the cloze criterion score in percent.

meanc A numeric vector with named magic numbers, defining the relevant parameters
for Mean Cloze calculation.

grade A numeric vector with named magic numbers, defining the relevant parame-
ters for Grade Placement calculation. If omitted, Grade Placement will not be
calculated.

... Further valid options for the main function, see readability for details.

Details

Calculates Bormuth’s Mean Cloze and estimted grade placement. In contrast to readability,
which by default calculates all possible indices, this function will only calculate the index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

C.ld 9

Examples

Not run:
bormuth(tagged.text, word.list=new.dale.chall.wl)

End(Not run)

C.ld Lexical diversity: Herdan’s C

Description

This is just a convenient wrapper function for lex.div.

Usage

C.ld(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

Calculates Herdan’s C. In contrast to lex.div, which by default calculates all possible measures and
their progressing characteristics, this function will only calculate the C value, and characteristics are
off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
C.ld(tagged.text)

End(Not run)

10 clozeDelete

clozeDelete Transform text into cloze test format

Description

If you feed a tagged text object to this function, its text will be transformed into a format used for
cloze deletion tests. That is, by default every fifth word (or as specified by every) will be replaced
by a line. You can also set an offset value to specify where to begin.

Usage

clozeDelete(obj, ...)

S4 method for signature 'kRp.taggedText'
clozeDelete(obj, every = 5, offset = 0,
replace.by = "_", fixed = 10)

Arguments

obj An object of class "kRp.tagged"

... Additional arguments to the method (as described in this document).

every Integer numeric, setting the frequency of words to be manipulated. By default,
every fifth word is being transformed.

offset Either an integer numeric, sets the number of words to offset the transformations.
Or the special keyword "all", which will cause the method to iterate through
all possible offset values and not return an object, but print the results (including
the list with changed words).

replace.by Character, will be used as the replacement for the removed words.

fixed Integer numberic, defines the length of the replacement (replace.by will be
repeated this much times). If set to 0, the replacement wil be as long as the
replaced word.

Details

The option offset="all" will not return one single object, but print the results after iterating
through all possible offset values.

Value

An object of class kRp.tagged, with an additional list cloze in its desc slot, listing the words which
were changed.

coleman 11

coleman Readability: Coleman’s Formulas

Description

This is just a convenient wrapper function for readability.

Usage

coleman(txt.file, hyphen = NULL, parameters = c(syll = 1),
clz1 = c(word = 1.29, const = 38.45), clz2 = c(word = 1.16, sntc =
1.48, const = 37.95), clz3 = c(word = 1.07, sntc = 1.18, pron = 0.76,
const = 34.02), clz4 = c(word = 1.04, sntc = 1.06, pron = 0.56, prep =
0.36, const = 26.01), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for all formulas of the index.

clz1 A numeric vector with named magic numbers for the first formula.

clz2 A numeric vector with named magic numbers for the second formula.

clz3 A numeric vector with named magic numbers for the third formula.

clz4 A numeric vector with named magic numbers for the fourth formula.

... Further valid options for the main function, see readability for details.

Details

This function calculates the four readability formulas by Coleman. In contrast to readability,
which by default calculates all possible indices, this function will only calculate the index value.

Value

An object of class kRp.readability.

Examples

Not run:
coleman(tagged.text)

End(Not run)

12 coleman.liau

coleman.liau Readability: Coleman-Liau Index

Description

This is just a convenient wrapper function for readability.

Usage

coleman.liau(txt.file, ecp = c(const = 141.8401, char = 0.21459, sntc =
1.079812), grade = c(ecp = -27.4004, const = 23.06395), short = c(awl
= 5.88, spw = 29.6, const = 15.8), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

ecp A numeric vector with named magic numbers, defining the relevant parameters
for the cloze percentage estimate.

grade A numeric vector with named magic numbers, defining the relevant parameters
to calculate grade equvalent for ECP values.

short A numeric vector with named magic numbers, defining the relevant parameters
for the short form of the formula.

... Further valid options for the main function, see readability for details.

Details

Calculates the Coleman-Liau index. In contrast to readability, which by default calculates all
possible indices, this function will only calculate the index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

Examples

Not run:
coleman.liau(tagged.text)

End(Not run)

correct.tag 13

correct.tag Methods to correct koRpus objects

Description

The method correct.tag can be used to alter objects of class kRp.tagged.

Usage

correct.tag(obj, row, tag = NULL, lemma = NULL, check.token = NULL)

S4 method for signature 'kRp.taggedText'
correct.tag(obj, row, tag = NULL,
lemma = NULL, check.token = NULL)

Arguments

obj An object of class kRp.tagged, kRp.txt.freq, kRp.analysis, or kRp.txt.trans.

row Integer, the row number of the entry to be changed. Can be an integer vector to
change several rows in one go.

tag A character string with a valid POS tag to replace the current tag entry. If NULL
(the default) the entry remains unchanged.

lemma A character string naming the lemma to to replace the current lemma entry. If
NULL (the default) the entry remains unchanged.

check.token A character string naming the token you expect to be in this row. If not NULL,
correct will stop with an error if this values don’t match.

Details

Although automatic POS tagging and lemmatization are remarkably accurate, the algorithms do
ususally produce some errors. If you want to correct for these flaws, this method can be of help,
because it might prevent you from introducing new errors. That is, it will do some sanitiy checks
before the object is actually manipulated and returned.

correct.tag will read the lang slot from the given object and check whether the tag provided is
actually valid. If so, it will not only change the tag field in the object, but also update wclass and
desc accordingly.

If check.token is set it must also match token in the given row(s). Note that no check is done on
the lemmata.

Value

An object of the same class as obj.

See Also

kRp.tagged, treetag, kRp.POS.tags.

14 cTest

Examples

Not run:
tagged.txt <- correct.tag(tagged.txt, row=21, tag="NN")

End(Not run)

cTest Transform text into C-Test-like format

Description

If you feed a tagged text object to this function, its text will be transformed into a format used for
C-Tests:

• the first and last sentence will be left untouched (except if the start and stop values of the
intact parameter are changed

• of all other sentences, the second half of every 2nd word (or as specified by every) will be
replaced by a line

• words must have at least min.length characters, otherwise they are skipped
• words an uneven number of characters will be replaced after the next character, i.e., a word

with five characters will keep the first three and have the last two replaced

Usage

cTest(obj, ...)

S4 method for signature 'kRp.tagged'
cTest(obj, every = 2, min.length = 3,
intact = c(start = 1, end = 1), replace.by = "_")

Arguments

obj An object of class "kRp.tagged"
... Additional arguments to the method (as described in this document).
every Integer numeric, setting the frequency of words to be manipulated. By default,

every other word is being transformed.
min.length Integer numeric, sets the minimum length of words to be considered (in letters).
intact Named vector with the elements start and end. both must be integer values

and define, which sentences are to be left untouched, counted in sentences from
beginning and end of the text. The default is to ignore the first and last sentence.

replace.by Character, will be used as the replacement for the removed word halves.

Value

And object of class kRp.tagged, with an additional list cTest in its desc slot, listing the words
which were changed.

CTTR 15

CTTR Lexical diversity: Carroll’s corrected TTR (CTTR)

Description

This is just a convenient wrapper function for lex.div.

Usage

CTTR(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

Calculates Carroll’s corrected TTR (CTTR). In contrast to lex.div, which by default calculates all
possible measures and their progressing characteristics, this function will only calculate the CTTR
value, and characteristics are off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
CTTR(tagged.text)

End(Not run)

16 dale.chall

dale.chall Readability: Dale-Chall Readability Formula

Description

This is just a convenient wrapper function for readability.

Usage

dale.chall(txt.file, word.list, parameters = c(const = 64, dword = 0.95,
asl = 0.69), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

word.list A vector or matrix (with exactly one column) which defines familiar words. For
valid results the long Dale-Chall list with about 3000 words should be used.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

Calculates the New Dale-Chall Readability Formula. In contrast to readability, which by default
calculates all possible indices, this function will only calculate the index value.

If parameters="PSK", the parameters by Powers-Sumner-Kearl (1958) are used, and if parameters="old",
the original parameters by Dale-Chall (1948), respectively.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

Examples

Not run:
dale.chall(tagged.text, word.list=new.dale.chall.wl)

End(Not run)

danielson.bryan 17

danielson.bryan Readability: Danielson-Bryan

Description

This is just a convenient wrapper function for readability.

Usage

danielson.bryan(txt.file, db1 = c(cpb = 1.0364, cps = 0.0194, const =
0.6059), db2 = c(const = 131.059, cpb = 10.364, cps = 0.194), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

db1 A numeric vector with named magic numbers, defining the relevant parameters
for the first formula (regression).

db2 A numeric vector with named magic numbers, defining the relevant parameters
for the second formula (cloze equivalent).

... Further valid options for the main function, see readability for details.

Details

Calculates the two Danielson-Bryan formulas. In contrast to readability, which by default calcu-
lates all possible indices, this function will only calculate the index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

Examples

Not run:
danielson.bryan(tagged.text)

End(Not run)

18 dickes.steiwer

dickes.steiwer Readability: Dickes-Steiwer Handformel

Description

This is just a convenient wrapper function for readability.

Usage

dickes.steiwer(txt.file, parameters = c(const = 235.95993, awl = 73.021,
asl = 12.56438, ttr = 50.03293), case.sens = FALSE, ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

case.sens Logical, whether types should be counted case sensitive.

... Further valid options for the main function, see readability for details.

Details

This function calculates the shortcut formula by Dickes-Steiwer. In contrast to readability, which
by default calculates all possible indices, this function will only calculate the index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

Examples

Not run:
dickes.steiwer(tagged.text)

End(Not run)

DRP 19

DRP Readability: Degrees of Reading Power (DRP)

Description

This is just a convenient wrapper function for readability.

Usage

DRP(txt.file, word.list, ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

word.list A vector or matrix (with exactly one column) which defines familiar words. For
valid results the long Dale-Chall list with 3000 words should be used.

... Further valid options for the main function, see readability for details.

Details

Calculates the Degrees of Reading Power, using the Bormuth Mean Cloze Score. In contrast to
readability, which by default calculates all possible indices, this function will only calculate the
index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

Examples

Not run:
DRP(tagged.text, word.list=new.dale.chall.wl)

End(Not run)

20 ELF

ELF Readability: Fang’s Easy Listening Formula (ELF)

Description

This is just a convenient wrapper function for readability.

Usage

ELF(txt.file, hyphen = NULL, parameters = c(syll = 1), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates Fang’s Easy Listening Formula (ELF). In contrast to readability, which
by default calculates all possible indices, this function will only calculate the index value.

Value

An object of class kRp.readability.

References

DuBay, W.H. (2004). The Principles of Readability. Costa Mesa: Impact Information. WWW:
http://www.impact-information.com/impactinfo/readability02.pdf; 22.03.2011.

Examples

Not run:
ELF(tagged.text)

End(Not run)

http://www.impact-information.com/impactinfo/readability02.pdf

farr.jenkins.paterson 21

farr.jenkins.paterson Readability: Farr-Jenkins-Paterson Index

Description

This is just a convenient wrapper function for readability.

Usage

farr.jenkins.paterson(txt.file, hyphen = NULL, parameters = c(const =
-31.517, asl = 1.015, monsy = 1.599), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index, or "PSK".

... Further valid options for the main function, see readability for details.

Details

Calculates the Farr-Jenkins-Paterson index, a simplified version of Flesch Reading Ease. In contrast
to readability, which by default calculates all possible indices, this function will only calculate
the index value.

If parameters="PSK", the revised parameters by Powers-Sumner-Kearl (1958) are used.

Value

An object of class kRp.readability.

References

Farr, J.N., Jenkins, J.J. & Paterson, D.G. (1951). Simplification of Flesch Reading Ease formula.
Journal of Applied Psychology, 35(5), 333–337.

Powers, R.D, Sumner, W.A, & Kearl, B.E. (1958). A recalculation of four adult readability formu-
las, Journal of Educational Psychology, 49(2), 99–105.

See Also

flesch

22 flesch

Examples

Not run:
farr.jenkins.paterson(tagged.text)

End(Not run)

flesch Readability: Flesch Readability Ease

Description

This is just a convenient wrapper function for readability.

Usage

flesch(txt.file, hyphen = NULL, parameters = c(const = 206.835, asl =
1.015, asw = 84.6), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters Either a numeric vector with named magic numbers, defining the relevant pa-
rameters for the index, or a valid character string naming a preset for imple-
mented languages ("de", "es", "es-s", "nl", "nl-b", "fr").

... Further valid options for the main function, see readability for details.

Details

Calculates the Flesch Readability Ease index. In contrast to readability, which by default calcu-
lates all possible indices, this function will only calculate the Flesch RE value.

Certain internationalisations of the parameters are also implemented. They can be used by setting
parameters to "es" (Fernandez-Huerta), "es-s" (Szigriszt), "nl" (Douma), "nl-b" (Brouwer),
"de" (Amstad) or "fr" (Kandel-Moles). If parameters="PSK", the revised parameters by Powers-
Sumner-Kearl (1958) are used to calculate a grade level.

Value

An object of class kRp.readability.

See Also

flesch.kincaid for grade levels, farr.jenkins.paterson for a simplified Flesch formula.

flesch.kincaid 23

Examples

Not run:
flesch(german.tagged.text, parameters="de")

End(Not run)

flesch.kincaid Readability: Flesch-Kincaid Grade Level

Description

This is just a convenient wrapper function for readability.

Usage

flesch.kincaid(txt.file, hyphen = NULL, parameters = c(asl = 0.39, asw
= 11.8, const = 15.59), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

Calculates the Flesch-Kincaid grade level. In contrast to readability, which by default calculates
all possible indices, this function will only calculate the index value.

Value

An object of class kRp.readability.

Examples

Not run:
flesch.kincaid(tagged.text)

End(Not run)

24 FOG

FOG Readability: Gunning FOG Index

Description

This is just a convenient wrapper function for readability.

Usage

FOG(txt.file, hyphen = NULL, parameters = list(syll = 3, const = 0.4,
suffix = c("es", "ed", "ing")), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A list with named magic numbers and a vector with verb suffixes, defining the
relevant parameters for the index, or one of "PSK" or "NRI".

... Further valid options for the main function, see readability for details.

Details

Calculates the Gunning FOG index. In contrast to readability, which by default calculates all
possible indices, this function will only calculate the index value.

If parameters="PSK", the revised parameters by Powers-Sumner-Kearl (1958) are used, and if
parameters="NRI", the simplified parameters from the Navy Readability Indexes, respectively.

Value

An object of class kRp.readability.

References

DuBay, W.H. (2004). The Principles of Readability. Costa Mesa: Impact Information. WWW:
http://www.impact-information.com/impactinfo/readability02.pdf; 22.03.2011.

Powers, R.D, Sumner, W.A, & Kearl, B.E. (1958). A recalculation of four adult readability formu-
las, Journal of Educational Psychology, 49(2), 99–105.

Examples

Not run:
FOG(tagged.text)

End(Not run)

http://www.impact-information.com/impactinfo/readability02.pdf

FORCAST 25

FORCAST Readability: FORCAST Index

Description

This is just a convenient wrapper function for readability.

Usage

FORCAST(txt.file, hyphen = NULL, parameters = c(syll = 1, mult = 0.1,
const = 20), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index, or "RGL".

... Further valid options for the main function, see readability for details.

Details

Calculates the FORCAST index (both grade level and reading age). In contrast to readability,
which by default calculates all possible indices, this function will only calculate the index value.

If parameters="RGL", the parameters for the precise Reading Grade Level are used.

Value

An object of class kRp.readability.

References

Klare, G.R. (1975). Assessing readability. Reading Research Quarterly, 10(1), 62–102.

Examples

Not run:
FORCAST(tagged.text)

End(Not run)

26 freq.analysis

freq.analysis Analyze word frequencies

Description

The function freq.analysis analyzes texts regarding frequencies of tokens, word classes etc.

Usage

freq.analysis(txt.file, ...)

S4 method for signature 'kRp.taggedText'
freq.analysis(txt.file, corp.freq = NULL,
desc.stat = TRUE, force.lang = NULL, tagger = "kRp.env",
corp.rm.class = "nonpunct", corp.rm.tag = c(), tfidf = TRUE, ...)

S4 method for signature 'character'
freq.analysis(txt.file, corp.freq = NULL,
desc.stat = TRUE, force.lang = NULL, tagger = "kRp.env",
corp.rm.class = "nonpunct", corp.rm.tag = c(), tfidf = TRUE, ...)

Arguments

txt.file Either an object of class kRp.tagged, kRp.txt.freq, kRp.analysis or kRp.txt.trans,
or a character vector which must be a valid path to a file containing the text to
be analyzed.

... Additional options to be passed through to the function defined with tagger.

corp.freq An object of class kRp.corp.freq.

desc.stat Logical, whether a descriptive statistical analysis should be performed.

force.lang A character string defining the language to be assumed for the text, by force.

tagger A character string defining the tokenizer/tagger command you want to use for
basic text analysis. Can be omitted if txt.file is already of class kRp.tagged-class.
Defaults to "kRp.env" to get the settings by get.kRp.env. Set to "tokenize"
to use tokenize.

corp.rm.class A character vector with word classes which should be ignored for frequency
analysis. The default value "nonpunct" has special meaning and will cause the
result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used.

corp.rm.tag A character vector with POS tags which should be ignored for frequency analy-
sis.

tfidf Logical, whether the term frequency–inverse document frequency statistic (tf-
idf) should be computed. Requires corp.freq to provide appropriate idf values
for the types in txt.file. Missing idf values will result in NA.

fucks 27

Details

The easiest way to see what kinds of analyses are done is probably to look at the slot description of
kRp.txt.freq.

By default, if the text has yet to be tagged, the language definition is queried by calling get.kRp.env(lang=TRUE)
internally. Or, if txt.file has already been tagged, by default the language definition of that tagged
object is read and used. Set force.lang=get.kRp.env(lang=TRUE) or to any other valid value,
if you want to forcibly overwrite this default behaviour, and only then. See kRp.POS.tags for all
supported languages.

Value

An object of class kRp.txt.freq.

Note

Prior to koRpus 0.04-29, this function was named kRp.freq.analysis(). For backwards compat-
ibility there is a wrapper function, but it should be considered deprecated.

See Also

get.kRp.env, kRp.tagged, kRp.corp.freq

Examples

Not run:
freq.analysis("~/some/text.txt", corp.freq=my.LCC.data)

End(Not run)

fucks Readability: Fucks’ Stilcharakteristik

Description

This is just a convenient wrapper function for readability.

Usage

fucks(txt.file, ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

... Further valid options for the main function, see readability for details.

28 get.kRp.env

Details

Calculates Fucks’ Stilcharakteristik ("characteristics of style"). In contrast to readability, which
by default calculates all possible indices, this function will only calculate the index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

References

Fucks, W. (1955). Der Unterschied des Prosastils von Dichtern und anderen Schriftstellern. Sprach-
forum, 1, 233–244.

Examples

Not run:
fucks(tagged.text)

End(Not run)

get.kRp.env Get koRpus session settings

Description

The function get.kRp.env returns information on your session environment regarding the ko-
Rpus package, e.g. where your local TreeTagger installation resides, if it was set before using
set.kRp.env.

Usage

get.kRp.env(..., errorIfUnset = TRUE)

Arguments

... Named parameters to get from the koRpus environment. Valid arguments are:

TT.cmd Logical, whether the set tagger command should be returned.
lang Logical, whether the set language should be returned.
TT.options Logical, whether the set TT.options for treetag should be returned.
hyph.cache.file Logical, whether the set hyphenation cache file for hyphen

should be returned.
add.desc Logical, whether tag descriptions should be added directly to tagged

text objects.

errorIfUnset Logical, if TRUE and the desired property is not set at all, the function will fail
with an error message.

guess.lang 29

Details

For the most part, get.kRp.env is a convenient wrapper for getOption.

Value

A character string or list, possibly including:

TT.cmd Path information for the TreeTagger command

lang The specified language

TT.options A list with options for treetag
hyph.cache.file

The specified hyphenation cache file for hyphen

See Also

set.kRp.env

Examples

Not run:
set.kRp.env(TT.cmd="~/bin/treetagger/cmd/tree-tagger-german", lang="de")
get.kRp.env(TT.cmd=TRUE)

End(Not run)

guess.lang Guess language a text is written in

Description

This function tries to guess the language a text is written in.

Usage

guess.lang(txt.file, udhr.path, comp.length = 300, keep.udhr = FALSE,
quiet = TRUE, in.mem = TRUE, format = "file")

Arguments

txt.file A character vector pointing to the file with the text to be analyzed.

udhr.path A character string, either pointing to the directory where you unzipped the trans-
lations of the Universal Declaration of Human Rights, or to the ZIP file contain-
ing them.

comp.length Numeric value, giving the number of characters to be used of txt to estimate
the language.

30 guess.lang

keep.udhr Logical, whether all the UDHR translations should be kept in the resulting ob-
ject.

quiet Logical. If FALSE, short status messages will be shown.

in.mem Logical. If TRUE, the gzip compression will remain in memory (using memCompress),
which is probably the faster method. Otherwise temporary files are created and
automatically removed on exit.

format Either "file" or "obj". If the latter, txt.file is not interpreted as a file path but
the text to analyze itself.

Details

To accomplish the task, the method described by Benedetto, Caglioti & Loreto (2002) is used,
utilizing both gzip compression and tranlations of the Universal Declaration of Human Rights[1].
The latter holds the world record for being translated into the most different languages, and is
publicly available.

Value

An object of class kRp.lang.

Note

For this implementation the documents provided by the "UDHR in Unicode" project[2] have been
used. Their translations are not part of this package and must be downloaded seperately to use
guess.lang! You need the ZIP archive containing all the plain text files from https://unicode.
org/udhr/downloads.html.

References

Benedetto, D., Caglioti, E. & Loreto, V. (2002). Language trees and zipping. Physical Review
Letters, 88(4), 048702.

[1] http://www.ohchr.org/EN/UDHR/Pages/UDHRIndex.aspx

[2] https://unicode.org/udhr

Examples

Not run:
using the still zipped bulk file
guess.lang("/home/user/data/some.txt", udhr.path="/home/user/data/udhr_txt.zip")
using the unzipped UDHR archive
guess.lang("/home/user/data/some.txt", udhr.path="/home/user/data/udhr_txt/")

End(Not run)

https://unicode.org/udhr/downloads.html
https://unicode.org/udhr/downloads.html
http://www.ohchr.org/EN/UDHR/Pages/UDHRIndex.aspx
https://unicode.org/udhr

harris.jacobson 31

harris.jacobson Readability: Harris-Jacobson indices

Description

This is just a convenient wrapper function for readability.

Usage

harris.jacobson(txt.file, word.list, parameters = c(char = 6),
hj1 = c(dword = 0.094, asl = 0.168, const = 0.502), hj2 = c(dword =
0.14, asl = 0.153, const = 0.56), hj3 = c(asl = 0.158, lword = 0.055,
const = 0.355), hj4 = c(dword = 0.07, asl = 0.125, lword = 0.037, const
= 0.497), hj5 = c(dword = 0.118, asl = 0.134, lword = 0.032, const =
0.424), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

word.list A vector or matrix (with exactly one column) which defines familiar words. For
valid results the short Harris-Jacobson word list for grades 1 and 2 (english)
should be used.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for all formulas of the index.

hj1 A numeric vector with named magic numbers for the first of the formulas.

hj2 A numeric vector with named magic numbers for the second of the formulas.

hj3 A numeric vector with named magic numbers for the third of the formulas.

hj4 A numeric vector with named magic numbers for the fourth of the formulas.

hj5 A numeric vector with named magic numbers for the fifth of the formulas.

... Further valid options for the main function, see readability for details.

Details

This function calculates the revised Harris-Jacobson readability formulas (1 to 5), as described in
their paper for the 18th Annual Meeting of the College Reading Association (Harris & Jacobson,
1974). In contrast to readability, which by default calculates all possible indices, this function
will only calculate the index values.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

32 HDD

References

Harris, A.J. & Jacobson, M.D. (1974). Revised Harris-Jacobson readability formulas. In 18th
Annual Meeting of the College Reading Association, Bethesda.

Examples

Not run:
harris.jacobson(tagged.text, word.list=harris.jacobson.wl)

End(Not run)

HDD Lexical diversity: HD-D (vocd-d)

Description

This is just a convenient wrapper function for lex.div.

Usage

HDD(txt, rand.sample = 42, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

rand.sample An integer value, how many tokens should be assumed to be drawn for calculat-
ing HD-D.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates HD-D, an idealized version of vocd-d (see McCarthy & Jarvis, 2007).
In contrast to lex.div, which by default calculates all possible measures and their progressing
characteristics, this function will only calculate the HD-D value, and characteristics are off by
default.

Value

An object of class kRp.TTR.

References

McCarthy, P.M. & Jarvis, S. (2007). vocd: A theoretical and empirical evaluation. Language
Testing, 24(4), 459–488.

hyphen,kRp.taggedText-method 33

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
HDD(tagged.text)

End(Not run)

hyphen,kRp.taggedText-method

Automatic hyphenation

Description

These methods implement word hyphenation, based on Liang’s algorithm. For details, please refer
to the documentation for the generic hyphen method in the sylly package.

Usage

S4 method for signature 'kRp.taggedText'
hyphen(words, hyph.pattern = NULL,
min.length = 4, rm.hyph = TRUE, corp.rm.class = "nonpunct",
corp.rm.tag = c(), quiet = FALSE, cache = TRUE,
as = "kRp.hyphen")

S4 method for signature 'kRp.taggedText'
hyphen_df(words, hyph.pattern = NULL,
min.length = 4, rm.hyph = TRUE, quiet = FALSE, cache = TRUE)

S4 method for signature 'kRp.taggedText'
hyphen_c(words, hyph.pattern = NULL,
min.length = 4, rm.hyph = TRUE, quiet = FALSE, cache = TRUE)

Arguments

words Either an object of class kRp.tagged, kRp.txt.freq or kRp.analysis, or a
character vector with words to be hyphenated.

hyph.pattern Either an object of class kRp.hyph.pat, or a valid character string naming the
language of the patterns to be used. See details.

min.length Integer, number of letters a word must have for considering a hyphenation.
hyphen will not split words after the first or before the last letter, so values
smaller than 4 are not useful.

rm.hyph Logical, whether appearing hyphens in words should be removed before pattern
matching.

34 hyphen,kRp.taggedText-method

corp.rm.class A character vector with word classes which should be ignored. The default value
"nonpunct" has special meaning and will cause the result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used. Relevant only if words is a valid koRpus object.

corp.rm.tag A character vector with POS tags which should be ignored. Relevant only if
words is a valid koRpus object.

quiet Logical. If FALSE, short status messages will be shown.

cache Logical. hyphen() can cache results to speed up the process. If this option
is set to TRUE, the current cache will be queried and new tokens also be added.
Caches are language-specific and reside in an environment, i.e., they are cleaned
at the end of a session. If you want to save these for later use, see the option
hyph.cache.file in set.kRp.env.

as A character string defining the class of the object to be returned. Defaults to
"kRp.hyphen", but can also be set to "data.frame" or "numeric", returning
only the central data.frame or the numeric vector of counted syllables, respec-
tively. For the latter two options, you can alternatively use the shortcut methods
hyphen_df or hyphen_c.

Value

An object of class kRp.hyphen, data.frame or a numeric vector, depending on the value of the as
argument.

References

Liang, F.M. (1983). Word Hy-phen-a-tion by Com-put-er. Dissertation, Stanford University, Dept.
of Computer Science.

[1] http://tug.ctan.org/tex-archive/language/hyph-utf8/tex/generic/hyph-utf8/patterns/

[2] http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

See Also

read.hyph.pat, manage.hyph.pat

Examples

Not run:
hyphen(tagged.text)

End(Not run)

http://tug.ctan.org/tex-archive/language/hyph-utf8/tex/generic/hyph-utf8/patterns/
http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

install.koRpus.lang 35

install.koRpus.lang Install language support packages

Description

This is a wrapper for install.packages, making it more convenient to install additional language
support packages for koRpus.

Usage

install.koRpus.lang(lang,
repos = "https://undocumeantit.github.io/repos/l10n/", ...)

Arguments

lang Character vector, one or more valid language identifiers (like en for English or
de for German).

repos The URL to additional repositories to query. You should probably leave this
to the default, but if you would like to use a third party repository, you’re free
to do so. The value is temporarily appended to the repos currently returned by
getOption("repos").

... Additional options for install.packages.

Details

For a list of currently available language packages see available.koRpus.lang. See set.lang.support
for more details on koRpus’ language support in general.

Value

Does not return any useful objects, just calls install.packages.

See Also

install.packages, available.koRpus.lang

Examples

Not run:
install support for German
install.koRpus.lang("de")
load the package
library("koRpus.lang.de")

End(Not run)

36 K.ld

jumbleWords Produce jumbled words

Description

This function takes either a character vector or objects inheriting class kRp.tagged (i.e., text tok-
enized by koRpus), and jumbles the words. This usually means that the first and last letter of each
word is left intact, while all characters inbetween are being randomized.

Usage

jumbleWords(words, min.length = 3, intact = c(start = 1, end = 1))

Arguments

words Either a character vector or an object inheriting from class kRp.tagged.

min.length An integer value, defining the minimum word length. Words with less characters
will not be changed. Grapheme clusters are counted as one.

intact A named vector with the two integer values named start and stop. These
define how many characters of each relevant words will be left unchanged at its
start and its end, respectively.

Value

Depending on the class of words, either a character vector or tagged text object.

K.ld Lexical diversity: Yule’s K

Description

This is just a convenient wrapper function for lex.div.

Usage

K.ld(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

koRpus-deprecated 37

Details

This function calculates Yule’s K. In contrast to lex.div, which by default calculates all possible
measures and their progressing characteristics, this function will only calculate the K value, and
characteristics are off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
K.ld(tagged.text)

End(Not run)

koRpus-deprecated Deprecated functions

Description

These functions will be removed soon and should no longer ne used.

Usage

kRp.text.transform(...)

Arguments

... Parameters to be passed to the replacement of the function

38 kRp.cluster

kRp.analysis,-class S4 Class kRp.analysis

Description

This class is used for objects that are returned by kRp.text.analysis.

Slots

lang A character string, naming the language that is assumed for the analized text in this object

TT.res A commented verion of the fully tagged text. Depending on input data, this is identical to
the slot TT.res of function treetag or freq.analysis.

desc Descriptive statistics

lex.div Information on lexical diversity

freq.analysis Information on the word frequencies of the analyzed text.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_analysis(...) can be used instead of new("kRp.analysis", ...).

kRp.cluster Work in (early) progress. Probably don’t even look at it. Consider it
pure magic that is not to be tempered with.

Description

In some future release, this might evolve into a function to help comparing several texts by features
like average sentece length, word length, lexical diversity, and so forth. The idea behind it is to
conduct a cluster analysis, to discover which texts out of several are similar to (or very different
from) each other. This can be useful, e.g., if you need texts for an experiment which are different in
content, but similar regarding syntactic features, like listed above.

Usage

kRp.cluster(txts, lang, TT.path, TT.preset)

Arguments

txts A character vector with paths to texts to analyze.

lang A character string with a valid Language identifier.

TT.path A character string, path to TreeTagger installation.

TT.preset A character string naming the TreeTagger preset to use.

kRp.corp.freq,-class 39

Details

It is included in this package not really to be used, but to maybe inspire you, to toy around with the
code and help me to come up with something useful in the end...

kRp.corp.freq,-class S4 Class kRp.corp.freq

Description

This class is used for objects that are returned by read.corp.LCC and read.corp.celex.

Details

The slot meta simply contains all information from the "meta.txt" of the LCC[1] data and remains
empty for data from a Celex[2] DB.

Slots

meta Metadata on the corpora (see details).

words Absolute word frequencies. It has at least the following columns:

num: Some word ID from the DB, integer
word: The word itself
lemma: The lemma of the word
tag: A part-of-speech tag
wclass: The word class
lttr: The number of characters
freq: The frequency of that word in the corpus DB
pct: Percentage of appearance in DB
pmio: Appearance per million words in DB
log10: Base 10 logarithm of word frequency
rank.avg: Rank in corpus data, rank ties method "average"
rank.min: Rank in corpus data, rank ties method "min"
rank.rel.avg: Relative rank, i.e. percentile of "rank.avg"
rank.rel.min: Relative rank, i.e. percentile of "rank.min"
inDocs: The absolute number of documents in the corpus containing the word
idf: The inverse document frequency

The slot might have additional columns, depending on the input material.

desc Descriptive information. It contains six numbers from the meta information, for convenient
accessibility:

tokens: Number of running word forms
types: Number of distinct word forms
words.p.sntc: Average sentence length in words

40 kRp.filter.wclass

chars.p.sntc: Average sentence length in characters
chars.p.wform: Average word form length
chars.p.word: Average running word length
The slot might have additional columns, depending on the input material.

bigrams A data.frame listing all tokens that co-occurred next to each other in the corpus:
token1: The first token
token2: The second token that appeared right next to the first
freq: How often the co-occurrance was present
sig: Log-likelihood significance of the co-occurrende

cooccur Similar to bigrams, but listing co-occurrences anywhere in one sentence:
token1: The first token
token2: The second token that appeared in the same sentence
freq: How often the co-occurrance was present
sig: Log-likelihood significance of the co-occurrende

caseSens A single logical value, whether the frequency statistics were calculated case sensitive or
not.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_corp_freq(...) can be used instead of new("kRp.corp.freq", ...).

References

[1] http://corpora.informatik.uni-leipzig.de/download.html [2] http://celex.mpi.nl

kRp.filter.wclass Remove word classes

Description

This function strips off defined word classes of tagged text objects.

Usage

kRp.filter.wclass(txt, corp.rm.class = "nonpunct", corp.rm.tag = c(),
as.vector = FALSE)

Arguments

txt An object of class kRp.tagged.
corp.rm.class A character vector with word classes which should be removed. The default

value "nonpunct" has special meaning and will cause the result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used. Another valid value is "stopword" to remove all detected stopwords.

corp.rm.tag A character vector with valid POS tags which should be removed.
as.vector Logical. If TRUE, results will be returned as a character vector containing only

the text parts which survived the filtering.

http://corpora.informatik.uni-leipzig.de/download.html
http://celex.mpi.nl

kRp.lang,-class 41

Value

An object of class kRp.tagged. If as.vector=TRUE, returns only a character vector.

See Also

kRp.POS.tags

Examples

Not run:
kRp.filter.wclass(tagged.text)

End(Not run)

kRp.lang,-class S4 Class kRp.lang

Description

This class is used for objects that are returned by guess.lang.

Slots

lang A character string, naming the language (by its ISO 639-3 identifier) that was estimated for
the analized text in this object.

lang.name A character string, full name of the estimated language.

txt A character string containing the analized part of the text.

txt.full A character string containing the full text.

udhr A data.frame with full analysis results for each language tried.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_lang(...) can be used instead of new("kRp.lang", ...).

42 kRp.POS.tags

kRp.POS.tags Get elaborated word tag definitions

Description

This function can be used to get a set of part-of-speech (POS) tags for a given language. These tag
sets should conform with the ones used by TreeTagger.

Usage

kRp.POS.tags(lang = get.kRp.env(lang = TRUE), list.classes = FALSE,
list.tags = FALSE, tags = c("words", "punct", "sentc"))

Arguments

lang A character string defining a language (see details for valid choices).

list.classes Logical, if TRUE only the known word classes for the chosen language will me
returned.

list.tags Logical, if TRUE only the POS tags for the chosen language will me returned.

tags A character vector with at least one of "words", "punct" or "sentc".

Details

Use available.koRpus.lang to get a list of all supported languages. Language support packages
must be installed an loaded to be usable with kRp.POS.tags. For the internal tokenizer a small
subset of tags is also defined, available through lang="kRp". If you don’t know the language your
text was written in, the function guess.lang should be able to detect it.

With the element tags you can specify if you want all tag definitions, or a subset, e.g. tags only for
punctuation and sentence endings (that is, you need to call for both "punct" and "sentc" to get all
punctuation tags).

The function is not so much intended to be used directly, but it is called by several other functions
internally. However, it can still be useful to directly examine available POS tags.

Value

If list.classes=FALSE and list.tags=FALSE returns a matrix with word tag definitions of the
given language. The matrix has three columns:

tag: Word tag

class: Respective word class

desc: "Human readable" description of what the tag stands for

Otherwise a vector with the known word classes or POS tags for the chosen language (and probably
tag subset) will be returned. If both list.classes and list.tags are TRUE, still only the POS tags
will be returned.

kRp.readability,-class 43

See Also

get.kRp.env, available.koRpus.lang, install.koRpus.lang

Examples

tags.internal <- kRp.POS.tags("kRp")
Not run:
library(koRpus.lang.de)
tags.de <- kRp.POS.tags("de")

End(Not run)

kRp.readability,-class

S4 Class kRp.readability

Description

This class is used for objects that are returned by readability and its wrapper functions (e.g.,
Flesch, FOG or LIX).

Slots

lang A character string, naming the language that is assumed for the text in this object.

TT.res The tokenized and POS-tagged text. See kRp.tagged for details.

desc Descriptive measures which were computed from the text:

sentences: Number of sentences.
words: Number of words.
letters: Named vector with total number of letters ("all") and possibly several entries

called "l<digit>", giving the number of words with <digit> letters.
all.chars: Number of all characters, including spaces.
syllables: Named vector with the number of syllables, simlar to letters, but entries are

called "s<digit>" (NA if hyphenation was skipped).
lttr.distrib: Distribution of letters: Absolute numbers, cumulative sum, inversed cumu-

lative sum, percent, cumulative percent, and inversed cumulative percent.
syll.distrib: Distribution of syllables (see lttr.distrib, NA if hyphenation was skipped).
syll.uniq.distrib: Distribution of unique syllables (see lttr.distrib, NA if hyphenation

was skipped).
punct: Number of punctuation characters.
conjunctions: Number of conjunctions.
prepositions: Number of prepositions.
pronouns: Number of pronouns.
foreign: Number of foreign words.
TTR: Type-token ratio.

44 kRp.readability,-class

avg.sentc.length: Average number of words per sentence.
avg.word.length: Average number of characters per word.
avg.syll.word: Average number of syllables per word (NA if hyphenation was skipped).
sntc.per.word: Number of sentences per word.
sntc.per100: Number of sentences per 100 words.
lett.per100: Number of letters per 100 words.
syll.per100: Number of syllables per 100 words (NA if hyphenation was skipped).
FOG.hard.words: Number of hard words, counted according to FOG (NULL if measure was

not computed).
Bormuth.NOL: Number of words not on the Bormuth word list (NULL if measure was not

computed).
Dale.Chall.NOL: Number of words not on the Dale-Chall word list (NULL if measure was

not computed).
Harris.Jacobson.NOL: Number of words not on the Harris-Jacobson word list (NULL if mea-

sure was not computed).
Spache.NOL: Number of words not on the Spache word list (NULL if measure was not com-

puted).

hyphen The hyphenated text that was actually analyzed (i.e. without certain word classes, if they
were to be removed).

param Relevant parameters of the given analysis, as given to the function call. See readability
for detailed onformation.

ARI The "flavour" of the parameter settings and the calculated value of the ARI level. NA if not
calculated.

ARI.NRI See "ARI".

ARI.simple See "ARI".

Bormuth The "flavour" of the parameter settings and the calculated value of Bormuth’s Mean Cloze
and grade level. NA if not calculated.

Coleman The "flavour" of the parameter settings and the calculated value of the four Coleman
formulas. NA if not calculated.

Coleman.Liau The "flavour" of the parameter settings and the calculated value of the Coleman-
Liau index. NA if not calculated.

Dale.Chall The "flavour" of the parameter settings and the calculated value of the Dale-Chall
Readability Formula. NA if not calculated.

Dale.Chall.PSK See "Dale.Chall".

Dale.Chall.old See "Dale.Chall".

Danielson.Bryan The "flavour" of the parameter settings and the calculated value of the Danielson-
Bryan Formula. NA if not calculated.

Dickes.Steiwer The "flavour" of the parameter settings and the calculated value of Dickes-Steiwer’s
shortcut formula. NA if not calculated.

DRP The "flavour" of the parameter settings and the calculated value of the Degrees of Reading
Power. NA if not calculated.

ELF The "flavour" of the parameter settings and the calculated value of the Easy Listening Formula.
NA if not calculated.

kRp.readability,-class 45

Farr.Jenkins.Paterson The "flavour" of the parameter settings and the calculated value of the
Farr-Jenkins-Paterson index. NA if not calculated.

Farr.Jenkins.Paterson.PSK See "Farr.Jenkins.Paterson".

Flesch The "flavour" of the parameter settings and the calculated value of Flesch Reading Ease.
NA if not calculated.

Flesch.PSK See "Flesch".

Flesch.Brouwer See "Flesch".

Flesch.Szigriszt See "Flesch".

Flesch.de See "Flesch".

Flesch.es See "Flesch".

Flesch.fr See "Flesch".

Flesch.nl See "Flesch".

Flesch.Kincaid The "flavour" of the parameter settings and the calculated value of the Flesch-
Kincaid Grade Level. NA if not calculated.

FOG The "flavour" of the parameter settings, a list of proper nouns, combined words and verbs that
were not counted as hard words ("dropped"), the considered number of hard words, and the
calculated value of Gunning’s FOG index. NA if not calculated.

FOG.PSK See "FOG".

FOG.NRI See "FOG".

FORCAST The "flavour" of the parameter settings and the calculated value of the FORCAST grade
level. NA if not calculated.

FORCAST.RGL See "FORCAST".

Fucks The calculated value of Fucks’ Stilcharakteristik. NA if not calculated.

Linsear.Write The "flavour" of the parameter settings and the calculated value of the Linsear
Write index. NA if not calculated.

LIX The "flavour" of the parameter settings and the calculated value of the LIX index. NA if not
calculated.

RIX The "flavour" of the parameter settings and the calculated value of the RIX index. NA if not
calculated.

SMOG The "flavour" of the parameter settings and the calculated value of the SMOG grade level.
NA if not calculated.

SMOG.de See "SMOG".

SMOG.C See "SMOG".

SMOG.simple See "SMOG".

Spache The "flavour" of the parameter settings and the calculated value of the Spache formula. NA
if not calculated.

Spache.old See "Spache".

Strain The "flavour" of the parameter settings and the calculated value of the Strain index. NA if
not calculated.

Traenkle.Bailer The "flavour" of the parameter settings, percentages of prepositions and con-
junctions, and the calculated values of both Tr\"ankle-Bailer formulae. NA if not calculated.

46 kRp.tagged,-class

TRI The calculated value of Kuntzsch’ Text-Redundanz-Index. NA if not calculated.

Tuldava The calculated value of the Tuldava text difficulty formula. NA if not calculated.

Wheeler.Smith The "flavour" of the parameter settings and the calculated value of the Wheeler-
Smith index. NA if not calculated.

Wheeler.Smith.de See "Wheeler.Smith"

Wiener.STF The "flavour" of the parameter settings and the calculated value of the Wiener Sach-
textformel. NA if not calculated.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_readability(...) can be used instead of new("kRp.readability", ...).

kRp.tagged,-class S4 Class kRp.tagged

Description

This class is used for objects that are returned by treetag or tokenize.

Slots

lang A character string, naming the language that is assumed for the tokenized text in this object.

desc Descriptive statistics of the tagged text.

TT.res Results of the called tokenizer and POS tagger. The data.frame has eight columns:

doc_id: Optional document identifier.
token: The tokenized text.
tag: POS tags for each token.
lemma: Lemma for each token.
lttr: Number of letters.
wclass: Word class.
desc: A short description of the POS tag.
stop: Logical, TRUE if token is a stopword.
stem: Stemmed token.
idx: Index number of token in this document.
sntc: Number of sentence in this document.

This data.frame structure adheres to the "Text Interchange Formats" guidelines set out by
rOpenSci[1].

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_tagged(...) can be used instead of new("kRp.tagged", ...).

kRp.text.analysis 47

Note

There is also as() methods to transform objects from other koRpus classes into kRp.tagged.

References

[1] Text Interchange Formats (https://github.com/ropensci/tif)

kRp.text.analysis Analyze texts using TreeTagger and word frequencies

Description

The function kRp.text.analysis analyzes texts in various ways.

Usage

kRp.text.analysis(txt.file, tagger = "kRp.env", force.lang = NULL,
desc.stat = TRUE, lex.div = TRUE, corp.freq = NULL,
corp.rm.class = "nonpunct", corp.rm.tag = c(), ...)

Arguments

txt.file Either an object of class kRp.tagged, kRp.txt.freq, kRp.analysis or kRp.txt.trans,
or a character vector which must be be a valid path to a file containing the text
to be analyzed.

tagger A character string defining the tokenizer/tagger command you want to use for
basic text analysis. Can be omitted if txt.file is already of class kRp.tagged-class.
Defaults to "kRp.env" to get the settings by get.kRp.env. Set to "tokenize"
to use tokenize.

force.lang A character string defining the language to be assumed for the text, by force.

desc.stat Logical, whether a descriptive statistical analysis should be performed.

lex.div Logical, whether some lexical diversity analysis should be performed, using
lex.div.

corp.freq An object of class kRp.corp.freq. If present, a frequency index for the ana-
lyzed text is computed (see details).

corp.rm.class A character vector with word classes which should be ignored for frequency
analysis. The default value "nonpunct" has special meaning and will cause the
result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used.

corp.rm.tag A character vector with POS tags which should be ignored for frequency analy-
sis.

... Additional options to be passed through to the function defined with tagger.

https://github.com/ropensci/tif

48 kRp.text.paste

Details

The function is basically a wrapper for treetag(), freq.analysis() and lex.div().

By default, if the text has to be tagged yet, the language definition is queried by calling get.kRp.env(lang=TRUE)
internally. Or, if txt.file has already been tagged, by default the language definition of that tagged
object is read and used. Set force.lang=get.kRp.env(lang=TRUE) or to any other valid value,
if you want to forcibly overwrite this default behaviour, and only then. See kRp.POS.tags for all
supported languages.

Value

An object of class kRp.analysis.

References

[1] http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.
html

See Also

set.kRp.env, get.kRp.env, kRp.POS.tags, lex.div

Examples

Not run:
kRp.text.analysis("/some/text.txt")

End(Not run)

kRp.text.paste Paste koRpus objects

Description

Paste the text in koRpus objects.

Usage

kRp.text.paste(txt, replace = c(hon.kRp = "", hoff.kRp = "\n\n", p.kRp
= "\n\n"))

Arguments

txt An object of class kRp.txt.trans, kRp.tagged, kRp.txt.freq or kRp.analysis.

replace A named character vector to define replacements for koRpus’ internal headline
and paragraph tags.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

kRp.TTR,-class 49

Details

This function takes objects of either class kRp.tagged, kRp.txt.freq or kRp.analysis and pastes
only the actual text as is.

Value

An atomic character vector.

Examples

Not run:
tagged.text.obj <- freq.analysis("/some/text.txt", corp.freq=my.LCC.data)
kRp.text.paste(tagged.text.obj)

End(Not run)

kRp.TTR,-class S4 Class kRp.TTR

Description

This class is used for objects that are returned by lex.div and its wrapper functions (like TTR,
MSTTR, MTLD, etc.).

Slots

param Relevant parameters of the given analysis, as given to the function call, see lex.div for
details.

tt The analyzed text in tokenized form, with eight elements ("tokens", "types", "lemmas", "type.in.txt",
"type.in.result", "num.tokens", "num.types", "num.lemmas").

TTR Value of the classic type-token ratio. NA if not calculated.

MSTTR Mean segmental type-token ratio, including the actual "MSTTR", TTR values of each seg-
ment ("TTR.seg"), and the number of dropped words due to segment size ("dropped"). NA if
not calculated.

MATTR Moving-average type-token ratio, including the actual "MATTR", TTR values of each win-
dow ("TTR.win"), and standard deviation of TTRs ("sd"). NA if not calculated.

C.ld Herdan’s C. NA if not calculated.

R.ld Guiraud’s R. NA if not calculated.

CTTR Carroll’s CTTR. NA if not calculated.

U.ld Uber Index. NA if not calculated.

S.ld Summer’s S. NA if not calculated.

K.ld Yule’s K. NA if not calculated.

Maas Maas’ a. NA if not calculated.

lgV0 Maas’ lg V0. NA if not calculated.

50 kRp.TTR,-class

lgeV0 Maas’ lg eV0. NA if not calculated.

Maas.grw Maas’ relative type growth V ′. NA if not calculated.

HDD The actual HD-D value ("HDD"), a vector with the probabilies for each type ("type.probs"), a
"summary" on these probabilities and their standard deviation "sd".

MTLD Measure of textual lexical diversity, including the actual "MTLD", two matrices with detailed
information on forward and backward factorization ("all.forw" & "all.back"), a named vector
holding both calculated factors and their mean value ("factors"), and a named list with infor-
mation on the number or tokens in each factor, both forward and backward, as well as their
mean and standard deviation ("lengths"). NA if not calculated.

MTLDMA Moving-average MTLD, including the actual "MTLDMA", its standard deviation, a list
("all") with detailed information on factorization, the step size, and a named list with infor-
mation on the number or tokens in each factor, as well as their mean and standard deviation
("lengths"). NA if not calculated.

TTR.char TTR values, starting with the first steplength of tokens, then adding the next one, pro-
gressing until the whole text is analyzed. The matrix has two colums, one for the respective
step ("token") and one for the actual values ("value"). Can be used to plot TTR characteristic
curves. NA if not calculated.

MATTR.char Equivalent to TTR.char, but calculated using MATTR algorithm. NA if not calculated.

C.char Equivalent to TTR.char, but calculated using Herdan’s C algorithm. NA if not calculated.

R.char Equivalent to TTR.char, but calculated using Guiraud’s R algorithm. NA if not calculated.

CTTR.char Equivalent to TTR.char, but calculated using Carroll’s CTTR algorithm. NA if not
calculated.

U.char Equivalent to TTR.char, but calculated using the Uber Index algorithm. NA if not calcu-
lated.

S.char Equivalent to TTR.char, but calculated using Summer’s S algorithm. NA if not calculated.

K.char Equivalent to TTR.char, but calculated using Yule’s K algorithm. NA if not calculated.

Maas.char Equivalent to TTR.char, but calculated using Maas’ a algorithm. NA if not calculated.

lgV0.char Equivalent to TTR.char, but calculated using Maas’ lg V0 algorithm. NA if not calcu-
lated.

lgeV0.char Equivalent to TTR.char, but calculated using Maas’ lg eV0 algorithm. NA if not cal-
culated.

HDD.char Equivalent to TTR.char, but calculated using the HD-D algorithm. NA if not calculated.

MTLD.char Equivalent to TTR.char, but calculated using the MTLD algorithm. NA if not calcu-
lated.

MTLDMA.char Equivalent to TTR.char, but calculated using the moving-average MTLD algorithm.
NA if not calculated.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_TTR(...) can be used instead of new("kRp.TTR", ...).

kRp.txt.freq,-class 51

kRp.txt.freq,-class S4 Class kRp.txt.freq

Description

This class is used for objects that are returned by freq.analysis.

Slots

lang A character string, naming the language that is assumed for the analized text in this object.
TT.res A data.frame with a version of the fully tagged text (like TT.res in class kRp.tagged, plus

frequency data).
desc A list with detailed descriptive statistics on the analyzed text.
freq.analysis A list with information on the word frequencies of the analyzed text.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_txt_freq(...) can be used instead of new("kRp.txt.freq", ...).

kRp.txt.trans,-class S4 Class kRp.txt.trans

Description

This class is used for objects that are returned by textTransform.

Slots

lang A character string, naming the language that is assumed for the analized text in this object.
desc Descriptive statistics of the tagged text.
TT.res A data.frame with the fully tagged and transformed text (like TT.res in class koRpus.tagged,

plus the new columns token.old and equal).
diff A list with atomic vectors, describing the amount of diffences between both text variants

(percentage):
all.tokens: Percentage of all tokens, including punctuation, that were altered.
words: Percentage of altered words only.
all.chars: Percentage of all characters, including punctuation, that were altered.
letters: Percentage of altered letters in words only.

Contructor function

Should you need to manually generate objects of this class (which should rarely be the case), the
contructor function kRp_txt_trans(...) can be used instead of new("kRp.txt.trans", ...).

52 lex.div

lex.div Analyze lexical diversity

Description

These methods analyze the lexical diversity/complexity of a text corpus.

Usage

lex.div(txt, ...)

S4 method for signature 'kRp.taggedText'
lex.div(txt, segment = 100,
factor.size = 0.72, min.tokens = 9, MTLDMA.steps = 1,
rand.sample = 42, window = 100, case.sens = FALSE,
lemmatize = FALSE, detailed = FALSE, measure = c("TTR", "MSTTR",
"MATTR", "C", "R", "CTTR", "U", "S", "K", "Maas", "HD-D", "MTLD",
"MTLD-MA"), char = c("TTR", "MATTR", "C", "R", "CTTR", "U", "S", "K",
"Maas", "HD-D", "MTLD", "MTLD-MA"), char.steps = 5, log.base = 10,
force.lang = NULL, keep.tokens = FALSE, type.index = FALSE,
corp.rm.class = "nonpunct", corp.rm.tag = c(), quiet = FALSE)

S4 method for signature 'character'
lex.div(txt, segment = 100, factor.size = 0.72,
min.tokens = 9, MTLDMA.steps = 1, rand.sample = 42, window = 100,
case.sens = FALSE, lemmatize = FALSE, detailed = FALSE,
measure = c("TTR", "MSTTR", "MATTR", "C", "R", "CTTR", "U", "S", "K",
"Maas", "HD-D", "MTLD", "MTLD-MA"), char = c("TTR", "MATTR", "C", "R",
"CTTR", "U", "S", "K", "Maas", "HD-D", "MTLD", "MTLD-MA"),
char.steps = 5, log.base = 10, force.lang = NULL,
keep.tokens = FALSE, type.index = FALSE,
corp.rm.class = "nonpunct", corp.rm.tag = c(), quiet = FALSE)

S4 method for signature 'missing'
lex.div(txt, measure)

S4 method for signature 'kRp.TTR'
x[i]

S4 method for signature 'kRp.TTR'
x[[i]]

Arguments

txt An object of either class kRp.tagged, kRp.txt.freq, kRp.analysis or kRp.txt.trans,
containing the tagged text to be analyzed. If txt is of class character, it is as-
sumed to be the raw text to be analyzed.

lex.div 53

... Only used for the method generic.

segment An integer value for MSTTR, defining how many tokens should form one seg-
ment.

factor.size A real number between 0 and 1, defining the MTLD factor size.

min.tokens An integer value, how many tokens a full factor must at least have to be consid-
ered for the MTLD-MA result.

MTLDMA.steps An integer value for MTLD-MA, defining the step size for the moving window,
in tokens. The original proposal uses an incremet of 1. If you increase this value,
computation will be faster, but your value can only remain a good estimate if the
text is long enough.

rand.sample An integer value, how many tokens should be assumed to be drawn for calculat-
ing HD-D.

window An integer value for MATTR, defining how many tokens the moving window
should include.

case.sens Logical, whether types should be counted case sensitive.

lemmatize Logical, whether analysis should be carried out on the lemmatized tokens rather
than all running word forms.

detailed Logical, whether full details of the analysis should be calculated. This currently
affects MTLD and MTLD-MA, defining if all factors should be kept in the ob-
ject. This slows down calculations considerably.

measure A character vector defining the measures which should be calculated. Valid ele-
ments are "TTR", "MSTTR", "MATTR", "C", "R", "CTTR", "U", "S", "K", "Maas",
"HD-D", "MTLD" and "MTLD-MA". You can also set it to "validation" to get
information on the current status of validation.

char A character vector defining whether data for plotting characteristic curves should
be calculated. Valid elements are "TTR", "MATTR", "C", "R", "CTTR", "U", "S",
"K", "Maas", "HD-D", "MTLD" and "MTLD-MA".

char.steps An integer value defining the step size for characteristic curves, in tokens.

log.base A numeric value defining the base of the logarithm. See log for details.

force.lang A character string defining the language to be assumed for the text, by force.
See details.

keep.tokens Logical. If TRUE, all raw tokens and types will be preserved in the resulting
object, in a slot called tt. For the types, also their frequency in the analyzed
text will be listed.

type.index Logical. If TRUE, the tt slot will contain two named lists of all types with
the indices where that particular type is to be found in the original tagged text
(type.in.txt) or the list of tokens in these results (type.in.result), respec-
tively.

corp.rm.class A character vector with word classes which should be dropped. The default
value "nonpunct" has special meaning and will cause the result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used.

corp.rm.tag A character vector with POS tags which should be dropped.

54 lex.div

quiet Logical. If FALSE, short status messages will be shown. TRUE will also suppress
all potential warnings regarding the validation status of measures.

x An object of class kRp.TTR.

i Defines the row selector ([) or the name to match ([[).

Details

lex.div calculates a variety of proposed indices for lexical diversity. In the following formulae, N
refers to the total number of tokens, and V to the number of types:

"TTR": The ordinary Type-Token Ratio:

TTR =
V

N

Wrapper function: TTR

"MSTTR": For the Mean Segmental Type-Token Ratio (sometimes referred to as Split TTR) tokens
are split up into segments of the given size, TTR for each segment is calculated and the mean
of these values returned. Tokens at the end which do not make a full segment are ignored. The
number of dropped tokens is reported.
Wrapper function: MSTTR

"MATTR": The Moving-Average Type-Token Ratio (Covington & McFall, 2010) calculates TTRs
for a defined number of tokens (called the "window"), starting at the beginning of the text and
moving this window over the text, until the last token is reached. The mean of these TTRs is
the MATTR.
Wrapper function: MATTR

"C": Herdan’s C (Herdan, 1960, as cited in Tweedie & Baayen, 1998; sometimes referred to as
LogTTR):

C =
lg V

lgN

Wrapper function: C.ld

"R": Guiraud’s Root TTR (Guiraud, 1954, as cited in Tweedie & Baayen, 1998):

R =
V√
N

Wrapper function: R.ld

"CTTR": Carroll’s Corrected TTR:

CTTR =
V√
2N

Wrapper function: CTTR

"U": Dugast’s Uber Index (Dugast, 1978, as cited in Tweedie & Baayen, 1998):

U =
(lgN)2

lgN − lg V

Wrapper function: U.ld

lex.div 55

"S": Summer’s index:
S =

lg lg V

lg lgN

Wrapper function: S.ld

"K": Yule’s K (Yule, 1944, as cited in Tweedie & Baayen, 1998) is calculated by:

K = 104 ×
(
∑X

X=1 fXX2)−N

N2

where N is the number of tokens, X is a vector with the frequencies of each type, and fX is
the frequencies for each X.
Wrapper function: K.ld

"Maas": Maas’ indices (a, lg V0 & lg eV0):

a2 =
lgN − lg V

lgN2

lg V0 =
lg V√

1− lg V
lgN

2

Earlier versions (koRpus < 0.04-12) reported a2, and not a. The measure was derived from a
formula by M\"uller (1969, as cited in Maas, 1972). lg eV0 is equivalent to lg V0, only with e
as the base for the logarithms. Also calculated are a, lg V0 (both not the same as before) and
V ′ as measures of relative vocabulary growth while the text progresses. To calculate these
measures, the first half of the text and the full text will be examined (see Maas, 1972, p. 67 ff.
for details).
Wrapper function: maas

"MTLD": For the Measure of Textual Lexical Diversity (McCarthy & Jarvis, 2010) so called factors
are counted. Each factor is a subsequent stream of tokens which ends (and is then counted as
a full factor) when the TTR value falls below the given factor size. The value of remaining
partial factors is estimated by the ratio of their current TTR to the factor size threshold. The
MTLD is the total number of tokens divided by the number of factors. The procedure is done
twice, both forward and backward for all tokens, and the mean of both calculations is the final
MTLD result.
Wrapper function: MTLD

"MTLD-MA": The Moving-Average Measure of Textual Lexical Diversity (Jarvis, no year) combines
factor counting and a moving window similar to MATTR: After each full factor the the next
one is calculated from one token after the last starting point. This is repeated until the end of
text is reached for the first time. The average of all full factor lengths is the final MTLD-MA
result. Factors below the min.tokens threshold are dropped.
Wrapper function: MTLD

"HD-D": The HD-D value can be interpreted as the idealized version of vocd-D (see McCarthy &
Jarvis, 2007). For each type, the probability is computed (using the hypergeometric distribu-
tion) of drawing it at least one time when drawing randomly a certain number of tokens from
the text – 42 by default. The sum of these probabilities make up the HD-D value. The sum of
probabilities relative to the drawn sample size (ATTR) is also reported.
Wrapper function: HDD

56 lex.div.num

By default, if the text has to be tagged yet, the language definition is queried by calling get.kRp.env(lang=TRUE)
internally. Or, if txt has already been tagged, by default the language definition of that tagged ob-
ject is read and used. Set force.lang=get.kRp.env(lang=TRUE) or to any other valid value, if
you want to forcibly overwrite this default behaviour, and only then. See kRp.POS.tags for all
supported languages.

Value

An object of class kRp.TTR.

References

Covington, M.A. & McFall, J.D. (2010). Cutting the Gordian Knot: The Moving-Average Type-
Token Ratio (MATTR). Journal of Quantitative Linguistics, 17(2), 94–100.

Maas, H.-D., (1972). \"Uber den Zusammenhang zwischen Wortschatzumfang und L\"ange eines
Textes. Zeitschrift f\"ur Literaturwissenschaft und Linguistik, 2(8), 73–96.

McCarthy, P.M. & Jarvis, S. (2007). vocd: A theoretical and empirical evaluation. Language
Testing, 24(4), 459–488.

McCarthy, P.M. & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisticated
approaces to lexical diversity assessment. Behaviour Research Methods, 42(2), 381–392.

Tweedie. F.J. & Baayen, R.H. (1998). How Variable May a Constant Be? Measures of Lexical
Richness in Perspective. Computers and the Humanities, 32(5), 323–352.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
ld.results <- lex.div(tagged.text)

there is [and [[methods for these objects
ld.results[["MSTTR"]]

End(Not run)

lex.div.num Calculate lexical diversity

Description

This function is a stripped down version of lex.div. It does not analyze text, but takes the numbers
of tokens and types directly to calculate measures for which this information is sufficient:

• "TTR"The classic Type-Token Ratio

• "C"Herdan’s C

lex.div.num 57

• "R"Guiraud’s Root TTR

• "CTTR"Carroll’s Corrected TTR

• "U"Dugast’s Uber Index

• "S"Summer’s index

• "Maas" Maas’ (a2)

See lex.div for further details on the formulae.

Usage

lex.div.num(num.tokens, num.types, measure = c("TTR", "C", "R", "CTTR",
"U", "S", "Maas"), log.base = 10, quiet = FALSE)

Arguments

num.tokens Numeric, the number of tokens.

num.types Numeric, the number of types.

measure A character vector defining the measures to calculate.

log.base A numeric value defining the base of the logarithm. See log for details.

quiet Logical. If FALSE, short status messages will be shown. TRUE will also suppress
all potential warnings regarding the validation status of measures.

Value

An object of class kRp.TTR.

References

Maas, H.-D., (1972). \"Uber den Zusammenhang zwischen Wortschatzumfang und L\"ange eines
Textes. Zeitschrift f\"ur Literaturwissenschaft und Linguistik, 2(8), 73–96.

Tweedie. F.J. & Baayen, R.H. (1998). How Variable May a Constant Be? Measures of Lexical
Richness in Perspective. Computers and the Humanities, 32(5), 323–352.

See Also

lex.div

Examples

lex.div.num(104, 43)

58 linsear.write

linsear.write Readability: Linsear Write Index

Description

This is just a convenient wrapper function for readability.

Usage

linsear.write(txt.file, hyphen = NULL, parameters = c(short.syll = 2,
long.syll = 3, thrs = 20), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates the Linsear Write index. In contrast to readability, which by default
calculates all possible indices, this function will only calculate the index value.

Value

An object of class kRp.readability.

Examples

Not run:
linsear.write(tagged.text)

End(Not run)

LIX 59

LIX Readability: Bj\"ornsson’s L\"asbarhetsindex (LIX)

Description

This is just a convenient wrapper function for readability.

Usage

LIX(txt.file, parameters = c(char = 6, const = 100), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates the readability index ("l\"asbarhetsindex") by Bj\"ornsson. In contrast to
readability, which by default calculates all possible indices, this function will only calculate the
index value.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

References

Anderson, J. (1981). Analysing the readability of english and non-english texts in the classroom
with Lix. In Annual Meeting of the Australian Reading Association, Darwin, Australia.

Anderson, J. (1983). Lix and Rix: Variations on a little-known readability index. Journal of Read-
ing, 26(6), 490–496.

Examples

Not run:
LIX(tagged.text)

End(Not run)

60 maas

maas Lexical diversity: Maas’ indices

Description

This is just a convenient wrapper function for lex.div.

Usage

maas(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates Maas’ indices (a2 & lg V0). In contrast to lex.div, which by default cal-
culates all possible measures and their progressing characteristics, this function will only calculate
the index values, and characteristics are off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
maas(tagged.text)

End(Not run)

MATTR 61

MATTR Lexical diversity: Moving-Average Type-Token Ratio (MATTR)

Description

This is just a convenient wrapper function for lex.div.

Usage

MATTR(txt, window = 100, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

window An integer value for MATTR, defining how many tokens the moving window
should include.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates the moving-average type-token ratio (MATTR). In contrast to lex.div,
which by default calculates all possible measures and their progressing characteristics, this function
will only calculate the MATTR value.

Value

An object of class kRp.TTR.

References

Covington, M.A. & McFall, J.D. (2010). Cutting the Gordian Knot: The Moving-Average Type-
Token Ratio (MATTR). Journal of Quantitative Linguistics, 17(2), 94–100.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
MATTR(tagged.text)

End(Not run)

62 MSTTR

MSTTR Lexical diversity: Mean Segmental Type-Token Ratio (MSTTR)

Description

This is just a convenient wrapper function for lex.div.

Usage

MSTTR(txt, segment = 100, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

segment An integer value, defining how many tokens should form one segment.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates the mean segmental type-token ratio (MSTTR). In contrast to lex.div,
which by default calculates all possible measures and their progressing characteristics, this function
will only calculate the MSTTR value.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
MSTTR(tagged.text)

End(Not run)

MTLD 63

MTLD Lexical diversity: Measure of Textual Lexical Diversity (MTLD)

Description

This is just a convenient wrapper function for lex.div.

Usage

MTLD(txt, factor.size = 0.72, min.tokens = 9, detailed = FALSE,
char = FALSE, MA = FALSE, steps = 1, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

factor.size A real number between 0 and 1, defining the MTLD factor size.

min.tokens An integer value, how many tokens a full factor must at least have to be consid-
ered for the MTLD-MA result.

detailed Logical, whether full details of the analysis should be calculated. It defines if all
factors should be kept in the object. This slows down calculations considerably.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

MA Logical, defining whether the newer moving-average algorithm (MTLD-MA)
should be calculated.

steps An integer value for MTLD-MA, defining the step size for the moving window,
in tokens. The original proposal uses an incremet of 1. If you increase this value,
computation will be faster, but your value can only remain a good estimate if the
text is long enough.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates the measure of textual lexical diversity (MTLD; see McCarthy & Jarvis,
2010). In contrast to lex.div, which by default calculates all possible measures and their progress-
ing characteristics, this function will only calculate the MTLD value, and characteristics are off by
default.

If you set MA=TRUE, the newer MTLD-MA (moving-average method) is used instead of the classic
MTLD.

Value

An object of class kRp.TTR.

64 nWS

References

McCarthy, P. M. & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisti-
cated approaces to lexical diversity assessment. Behaviour Research Methods, 42(2), 381–392.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
MTLD(tagged.text)

End(Not run)

nWS Readability: Neue Wiener Sachtextformeln

Description

This is just a convenient wrapper function for readability.

Usage

nWS(txt.file, hyphen = NULL, parameters = c(ms.syll = 3, iw.char = 6,
es.syll = 1), nws1 = c(ms = 19.35, sl = 0.1672, iw = 12.97, es = 3.27,
const = 0.875), nws2 = c(ms = 20.07, sl = 0.1682, iw = 13.73, const =
2.779), nws3 = c(ms = 29.63, sl = 0.1905, const = 1.1144),
nws4 = c(ms = 27.44, sl = 0.2656, const = 1.693), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for all formulas of the index.

nws1 A numeric vector with named magic numbers for the first of the formulas.

nws2 A numeric vector with named magic numbers for the second of the formulas.

nws3 A numeric vector with named magic numbers for the third of the formulas.

nws4 A numeric vector with named magic numbers for the fourth of the formulas.

... Further valid options for the main function, see readability for details.

plot 65

Details

This function calculates the new Wiener Sachtextformeln (formulas 1 to 4). In contrast to readability,
which by default calculates all possible indices, this function will only calculate the index values.

Value

An object of class kRp.readability.

References

Bamberger, R. & Vanecek, E. (1984). Lesen–Verstehen–Lernen–Schreiben. Wien: Jugend und
Volk.

Examples

Not run:
nWS(tagged.text)

End(Not run)

plot Plot method for objects of class kRp.tagged

Description

Plot method for S4 objects of class kRp.tagged, plots the frequencies of tagged word classes.

Usage

plot(x, y, ...)

S4 method for signature 'kRp.tagged,missing'
plot(x, what = "wclass", ...)

Arguments

x An object of class kRp.tagged

y From the generic plot function, ignored for koRpus class objects.

... Any other argument suitable for plot()

what Character string, valid options are:

"wclass": Barplot of distribution of word classes
"letters": Line plot of distribution of word length in letters

See Also

kRp.tagged

66 query

Examples

Not run:
tagged.results <- treetag("~/my.data/sample_text.txt", treetagger="manual", lang="en",

TT.options=list(path="~/bin/treetagger", preset="en"))
plot(tagged.results)

End(Not run)

query A method to get information out of koRpus objects

Description

The method query returns query information from objects of classes kRp.corp.freq and kRp.tagged.

Usage

query(obj, ...)

S4 method for signature 'kRp.corp.freq'
query(obj, var = NULL, query, rel = "eq",
as.df = TRUE, ignore.case = TRUE, perl = FALSE)

S4 method for signature 'kRp.tagged'
query(obj, var, query, rel = "eq", as.df = TRUE,
ignore.case = TRUE, perl = FALSE)

Arguments

obj An object of class kRp.corp.freq.

... Optional arguments, see above.

var A character string naming a variable in the object (i.e., colname). If set to
"regexp", grepl is called on the word column of corpus frequency objects.

query A character vector (for words), regular expression, or single number naming
values to be matched in the variable. Can also be a vector of two numbers to
query a range of frequency data, or a list of named lists for multiple queries (see
"Query lists" section in details).

rel A character string defining the relation of the queried value and desired results.
Must either be "eq" (equal, the default), "gt" (greater than), "ge" (greater of
equal), "lt" (less than) or "le" (less or equal). If var="word", is always inter-
preted as "eq"

as.df Logical, if TRUE, returns a data.frame, otherwise an object of the input class.

ignore.case Logical, passed through to grepl if var="regexp".

perl Logical, passed through to grepl if var="regexp".

query 67

Details

kRp.corp.freq: Depending on the setting of the var parameter, will return entries with a matching
character (var="word"), or all entries of the desired frequency (see the examples). A special case
is the need for a range of frequencies, which can be achieved by providing a nomerical vector of
two values as the query value, for start and end of the range, respectively. In these cases, if rel is
set to "gt" or "lt", the given range borders are excluded, otherwise they will be included as true
matches.

kRp.tagged: var can be any of the variables in slot TT.res. For rel currently only "eq" and "num"
are implemented. The latter isn’t a relation, but will return a vector with the row numbers in which
the query was found.

Value

Depending on the arguments, might include whole objects, lists, single values etc.

Query lists

You can combine an arbitrary number of queries in a simple way by providing a list of named lists
to the query parameter, where each list contains one query request. In each list, the first element
name represents the var value of the request, and its value is taken as the query argument. You can
also assign rel, ignore.case and perl for each request individually, and if you don’t, the settings
of the main query call are taken as default (as.df only applies to the final query). The filters will
be applied in the order given, i.e., the second query will be made to the results of the first.

This method calls subset, which might actually be even more flexible if you need more control.

See Also

kRp.corp.freq, subset

Examples

Not run:
look up frequencies for the word "aber"
query(LCC.data, var="word", query="aber")

show all entries with a frequency of exactly 3000 in the corpus
query(LCC.data, "freq", 3000)

now, which words appear more than 40000 times in a million?
query(LCC.data, "pmio", 40000, "gt")

example for a range request: words with a log10 between 2 and 2.1
(including these two values)
query(LCC.data, "log10", c(2, 2.1))
(and without them)
query(LCC.data, "log10", c(2, 2.1), "gt")

example for a list of queries: get words with a frequency between
700 and 750 per million and at least five letters
query(LCC.data, query=list(

68 R.ld

list(pmio=c(700,750)),
list(lttr=5, rel="ge"))

)

get all "he" lemmata in a previously tagged text object
query(tagged.txt, "lemma", "he")

End(Not run)

R.ld Lexical diversity: Guiraud’s R

Description

This is just a convenient wrapper function for lex.div.

Usage

R.ld(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates Guiraud’s R. In contrast to lex.div, which by default calculates all possi-
ble measures and their progressing characteristics, this function will only calculate the R value, and
characteristics are off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
R.ld(tagged.text)

End(Not run)

read.BAWL 69

read.BAWL Import BAWL-R data

Description

Read the Berlin Affective Word List – Reloaded (V\"o, Conrad, Kuchinke, Hartfeld, Hofmann &
Jacobs, 2009; [1]) into a valid object of class kRp.corp.freq.

Usage

read.BAWL(csv, fileEncoding = NULL)

Arguments

csv A character string, path to the BAWL-R in CSV2 format.

fileEncoding A character string naming the encoding of the file, if necessary.

Details

To use this function, you must first export the BAWL-R list into CSV format: Use comma for
decimal values and semicolon as value separator (often referred to as CSV2). Once you have suc-
cessfully imported the word list, you can use the object to perform frequency analysis.

Value

An object of class kRp.corp.freq.

References

V\"o, M. L.-H., Conrad, M., Kuchinke, L., Hartfeld, K., Hofmann, M.F. & Jacobs, A.M. (2009).
The Berlin Affective Word List Reloaded (BAWL-R). Behavior Research Methods, 41(2), 534–538.
doi: 10.3758/BRM.41.2.534

[1] http://www.ewi-psy.fu-berlin.de/einrichtungen/arbeitsbereiche/allgpsy/forschung/
Download/

See Also

kRp.corp.freq, query, kRp.text.analysis

Examples

Not run:
bawl.corp <- read.BAWL("~/mydata/valence/BAWL-R.csv")

you can now use query() now to create subsets of the word list,
e.g., only nound with 5 letters and an valence rating of >= 1
bawl.stimulus <- query(bawl.corp,

query=list(

http://www.ewi-psy.fu-berlin.de/einrichtungen/arbeitsbereiche/allgpsy/forschung/Download/
http://www.ewi-psy.fu-berlin.de/einrichtungen/arbeitsbereiche/allgpsy/forschung/Download/

70 read.corp.celex

list(wclass="noun"),
list(lttr=5),
list("EMO_MEAN"=1, rel="ge")

)
)

End(Not run)

read.corp.celex Import Celex data

Description

Read data from Celex[1] formatted corpora.

Usage

read.corp.celex(celex.path, running.words, fileEncoding = "ISO_8859-1",
n = -1, caseSens = TRUE)

Arguments

celex.path A character string, path to a frequency file in Celex format to read.

running.words An integer value, number of running words in the Celex data corpus to be read.

fileEncoding A character string naming the encoding of the Celex files.

n An integer value defining how many lines of data should be read if format="flatfile".
Reads all at -1.

caseSens Logical, if FALSE forces all frequency statistics to be calculated regardless of
the tokens’ case. Otherwise, if the imported database supports it, you will get
different frequencies for the same tokens in different cases (e.\,g., "one" and
"One").

Value

An object of class kRp.corp.freq.

References

[1] http://celex.mpi.nl

See Also

kRp.corp.freq

http://celex.mpi.nl

read.corp.custom 71

Examples

Not run:
my.Celex.data <- read.corp.celex("~/mydata/Celex/GERMAN/GFW/GFW.CD",

running.words=5952000)
freq.analysis("/some/text.txt", corp.freq=my.Celex.data)

End(Not run)

read.corp.custom Import custom corpus data

Description

Read data from a custom corpus into a valid object of class kRp.corp.freq.

Usage

read.corp.custom(corpus, ...)

S4 method for signature 'kRp.taggedText'
read.corp.custom(corpus, quiet = TRUE,
caseSens = TRUE, log.base = 10, ...)

S4 method for signature 'character'
read.corp.custom(corpus, format = "file",
quiet = TRUE, caseSens = TRUE, log.base = 10, tagger = "kRp.env",
force.lang = NULL, ...)

S4 method for signature 'list'
read.corp.custom(corpus, quiet = TRUE,
caseSens = TRUE, log.base = 10, ...)

Arguments

corpus Either the path to directory with txt files to read and analyze, or a vector object
already holding the text corpus. Can also be an already tokenized and tagged
text object which inherits class kRp.tagged (then the column "token" of the
"TT.res" slot is used).

... Additional options to be passed through to the tokenize function.

quiet Logical. If FALSE, short status messages will be shown.

caseSens Logical. If FALSE, all tokens will be matched in their lower case form.

log.base A numeric value defining the base of the logarithm used for inverse document
frequency (idf). See log for details.

format Either "file" or "obj", depending on whether you want to scan files or analyze
the given object.

72 read.corp.LCC

tagger A character string pointing to the tokenizer/tagger command you want to use for
basic text analysis. Can be omitted if txt.file is already of class kRp.tagged-class.
Defaults to tagger="kRp.env" to get the settings by get.kRp.env. Set to
"tokenize" to use tokenize.

force.lang A character string defining the language to be assumed for the text(s), by force.

Details

The methods should enable you to perform a basic text corpus frequency analysis. That is, not
just to import analysis results like LCC files, but to import the corpus material itself. The resulting
object is of class kRp.corp.freq, so it can be used for frequency analysis by other functions and
methods of this package.

Value

An object of class kRp.corp.freq.

See Also

kRp.corp.freq

Examples

Not run:
ru.corp <- read.corp.custom("~/mydata/corpora/russian_corpus/")

End(Not run)

read.corp.LCC Import LCC data

Description

Read data from LCC[1] formatted corpora (Quasthoff, Richter & Biemann, 2006).

Usage

read.corp.LCC(LCC.path, format = "flatfile", fileEncoding = "UTF-8",
n = -1, keep.temp = FALSE, prefix = NULL, bigrams = FALSE,
cooccurence = FALSE, caseSens = TRUE)

Arguments

LCC.path A character string, either path to a .tar/.tar.gz/.zip file in LCC format (flatfile),
or the path to the directory with the unpacked archive.

format Either "flatfile" or "MySQL", depending on the type of LCC data.

read.corp.LCC 73

fileEncoding A character string naming the encoding of the LCC files. Old zip archives used
"ISO_8859-1". This option will only influence the reading of meta information,
as the actual database encoding is derived from there.

n An integer value defining how many lines of data should be read if format="flatfile".
Reads all at -1.

keep.temp Logical. If LCC.path is a tarred/zipped archive, setting keep.temp=TRUE will
keep the temporarily unpacked files for further use. By default all temporary
files will be removed when the function ends.

prefix Character string, giving the prefix for the file names in the archive. Needed
for newer LCC tar archives if they are already decompressed (autodetected if
LCC.path points to the tar archive directly).

bigrams Logical, whether infomration on bigrams should be imported. This is FALSE by
default, because it might make the objects quite large. Note that this will only
work in n = -1 because otherwise the tokens cannot be looked up.

cooccurence Logical, like bigrams, but for information on co-occurences of tokens in a sen-
tence.

caseSens Logical, if FALSE forces all frequency statistics to be calculated regardless of
the tokens’ case. Otherwise, if the imported database supports it, you will get
different frequencies for the same tokens in different cases (e.\,g., "one" and
"One").

Details

The LCC database can either be unpacked or still a .tar/.tar.gz/.zip archive. If the latter is the
case, then all necessary files will be extracted to a temporal location automatically, and by default
removed again when the function has finished reading from it.

Newer LCC archives no longer feature the *-meta.txt file, resulting in less meta informtion in the
object. In these cases, the total number of tokens is calculated as the sum of types’ frequencies.

Value

An object of class kRp.corp.freq.

Note

Please note that MySQL support is not implemented yet.

References

Quasthoff, U., Richter, M. & Biemann, C. (2006). Corpus Portal for Search in Monolingual Cor-
pora, In Proceedings of the Fifth International Conference on Language Resources and Evaluation,
Genoa, 1799–1802.

[1] http://corpora.informatik.uni-leipzig.de/download.html

See Also

kRp.corp.freq

http://corpora.informatik.uni-leipzig.de/download.html

74 read.tagged

Examples

Not run:
old format .zip archive
my.LCC.data <- read.corp.LCC("~/mydata/corpora/de05_3M.zip")
new format tar archive
my.LCC.data <- read.corp.LCC("~/mydata/corpora/rus_web_2002_300K-text.tar")
in case the tar archive was already unpacked
my.LCC.data <- read.corp.LCC("~/mydata/corpora/rus_web_2002_300K-text",

prefix="rus_web_2002_300K-")

tagged.results <- treetag("/some/text.txt")
freq.analysis(tagged.results, corp.freq=my.LCC.data)

End(Not run)

read.tagged Import already tagged texts

Description

This function can be used on text files or matrices containing already tagged text material, e.g. the
results of TreeTagger[1].

Usage

read.tagged(file, lang = "kRp.env", encoding = NULL,
tagger = "TreeTagger", apply.sentc.end = TRUE, sentc.end = c(".",
"!", "?", ";", ":"), stopwords = NULL, stemmer = NULL,
rm.sgml = TRUE, doc_id = NA, add.desc = "kRp.env")

Arguments

file Either a matrix, a connection or a character vector. If the latter, that must be a
valid path to a file, containing the previously analyzed text. If it is a matrix, it
must contain three columns named "token", "tag", and "lemma", and only these
three columns are used.

lang A character string naming the language of the analyzed corpus. See kRp.POS.tags
for all supported languages. If set to "kRp.env" this is got from get.kRp.env.

encoding A character string defining the character encoding of the input file, like "Latin1"
or "UTF-8". If NULL, the encoding will either be taken from a preset (if defined
in TT.options), or fall back to "". Hence you can overwrite the preset encoding
with this parameter.

tagger The software which was used to tokenize and tag the text. Currently, TreeTagger
is the only supported tagger.

read.tagged 75

apply.sentc.end

Logical, whethter the tokens defined in sentc.end should be searched and set
to a sentence ending tag. You could call this a compatibility mode to make sure
you get the results you would get if you called treetag on the original file. If
set to FALSE, the tags will be imported as they are.

sentc.end A character vector with tokens indicating a sentence ending. This adds to given
results, it doesn’t replace them.

stopwords A character vector to be used for stopword detection. Comparison is done in
lower case. You can also simply set stopwords=tm::stopwords("en") to use
the english stopwords provided by the tm package.

stemmer A function or method to perform stemming. For instance, you can set stemmer=Snowball::SnowballStemmer
if you have the Snowball package installed (or SnowballC::wordStem). As of
now, you cannot provide further arguments to this function.

rm.sgml Logical, whether SGML tags should be ignored and removed from output.

doc_id Character string, optional identifier of the particular document. Will be added to
the desc slot.

add.desc Logical. If TRUE, the tag description (column "desc" of the data.frame) will be
added directly to the resulting object. If set to "kRp.env" this is fetched from
get.kRp.env. Only needed if tag=TRUE.

Details

Note that the value of lang must match a valid language supported by kRp.POS.tags. It will also
get stored in the resulting object and might be used by other functions at a later point.

Value

An object of class kRp.tagged. If debug=TRUE, prints internal variable settings and attempts to
return the original output if the TreeTagger system call in a matrix.

References

Schmid, H. (1994). Probabilistic part-of-speec tagging using decision trees. In International Con-
ference on New Methods in Language Processing, Manchester, UK, 44–49.

[1] http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.
html

See Also

treetag, freq.analysis, get.kRp.env, kRp.tagged

Examples

Not run:
tagged.results <- read.tagged("~/my.data/tagged_speech.txt", lang="en")

End(Not run)

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

76 readability

readability Measure readability

Description

These methods calculate several readability indices.

Usage

readability(txt.file, ...)

S4 method for signature 'kRp.taggedText'
readability(txt.file, hyphen = NULL,
index = c("ARI", "Bormuth", "Coleman", "Coleman.Liau", "Dale.Chall",
"Danielson.Bryan", "Dickes.Steiwer", "DRP", "ELF",
"Farr.Jenkins.Paterson", "Flesch", "Flesch.Kincaid", "FOG", "FORCAST",
"Fucks", "Harris.Jacobson", "Linsear.Write", "LIX", "nWS", "RIX", "SMOG",
"Spache", "Strain", "Traenkle.Bailer", "TRI", "Tuldava",
"Wheeler.Smith"), parameters = list(), word.lists = list(Bormuth =
NULL, Dale.Chall = NULL, Harris.Jacobson = NULL, Spache = NULL),
fileEncoding = "UTF-8", tagger = "kRp.env", force.lang = NULL,
sentc.tag = "sentc", nonword.class = "nonpunct", nonword.tag = c(),
quiet = FALSE, ...)

S4 method for signature 'character'
readability(txt.file, hyphen = NULL,
index = c("ARI", "Bormuth", "Coleman", "Coleman.Liau", "Dale.Chall",
"Danielson.Bryan", "Dickes.Steiwer", "DRP", "ELF",
"Farr.Jenkins.Paterson", "Flesch", "Flesch.Kincaid", "FOG", "FORCAST",
"Fucks", "Harris.Jacobson", "Linsear.Write", "LIX", "nWS", "RIX", "SMOG",
"Spache", "Strain", "Traenkle.Bailer", "TRI", "Tuldava",
"Wheeler.Smith"), parameters = list(), word.lists = list(Bormuth =
NULL, Dale.Chall = NULL, Harris.Jacobson = NULL, Spache = NULL),
fileEncoding = "UTF-8", tagger = "kRp.env", force.lang = NULL,
sentc.tag = "sentc", nonword.class = "nonpunct", nonword.tag = c(),
quiet = FALSE, ...)

S4 method for signature 'missing'
readability(txt.file, index)

S4 method for signature 'kRp.readability'
x[i]

S4 method for signature 'kRp.readability'
x[[i]]

readability 77

Arguments

txt.file Either an object of class kRp.tagged, kRp.txt.freq, kRp.analysis or kRp.txt.trans,
or a character vector which must be be a valid path to a file containing the text
to be analyzed. If the latter, force.lang must be set as well, and the language
specified must be supported by both treetag and hyphen

... Additional options for the specified tagger function

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally. All syllable handling will be skipped automatically if it’s not needed for
the selected indices.

index A character vector, indicating which indices should actually be computed. If set
to "all", then all available indices will be tried (meaning all variations of all
measures). If set to "fast", a subset of the default values is used that is known
to compute fast (currently, this only excludes "FOG"). You can also set it to
"validation" to get information on the current status of validation.

parameters A list with named magic numbers, defining the relevant parameters for each
index. If none are given, the default values are used.

word.lists A named list providing the word lists for indices which need one. If NULL or
missing, the indices will be skipped and a warning is giving. Actual word lists
can be provided as either a vector (or matrix or data.frame with only one col-
umn), or as a file name, where this file must contain one word per line. Alterna-
tively, you can provide the number of words which are not on the list, directly.

fileEncoding A character string naming the encoding of the word list files (if they are files).
"ISO_8859-1" or "UTF-8" should work in most cases.

tagger A character string pointing to the tokenizer/tagger command you want to use for
basic text analysis. Can be omitted if txt.file is already of class kRp.tagged-class.
Defaults to tagger="kRp.env" to get the settings by get.kRp.env. Set to
"tokenize" to use tokenize.

force.lang A character string defining the language to be assumed for the text, by force.

sentc.tag A character vector with POS tags which indicate a sentence ending. The default
value "sentc" has special meaning and will cause the result of kRp.POS.tags(lang, tags="sentc", list.tags=TRUE)
to be used.

nonword.class A character vector with word classes which should be ignored for readability
analysis. The default value "nonpunct" has special meaning and will cause the
result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used. Will only be of consequence if hyphen is not set!

nonword.tag A character vector with POS tags which should be ignored for readability anal-
ysis. Will only be of consequence if hyphen is not set!

quiet Logical. If FALSE, short status messages will be shown. TRUE will also suppress
all potential warnings regarding the validation status of measures.

x An object of class kRp.readability.

i Defines the row selector ([) or the name to match ([[).

78 readability

Details

In the following formulae, W stands for the number of words, St for the number of sentences, C
for the number of characters (usually meaning letters), Sy for the number of syllables, W3Sy for the
number of words with at least three syllables, W<3Sy for the number of words with less than three
syllables, W 1Sy for words with exactly one syllable, W6C for the number of words with at least six
letters, and W−WL for the number of words which are not on a certain word list (explained where
needed).

"ARI": Automated Readability Index:

ARI = 0.5× W

St
+ 4.71× C

W
− 21.43

If parameters is set to ARI="NRI", the revised parameters from the Navy Readability Indexes
are used:

ARINRI = 0.4× W

St
+ 6× C

W
− 27.4

If parameters is set to ARI="simple", the simplified formula is calculated:

ARIsimple =
W

St
+ 9× C

W

Wrapper function: ARI

"Bormuth": Bormuth Mean Cloze & Grade Placement:

BMC = 0.886593−
(
0.08364× C

W

)
+ 0.161911×

(
W−WL

W

)3

−0.21401×
(
W

St

)
+ 0.000577×

(
W

St

)2

−0.000005×
(
W

St

)3

Note: This index needs the long Dale-Chall list of 3000 familiar (english) words to compute
W−WL. That is, you must have a copy of this word list and provide it via the word.lists=list(Bormuth=<your.list>)
parameter!

BGP = 4.275 + 12.881×BMC − (34.934×B2
MC) + (20.388×B3

MC)

+(26.194C − 2.046C2
CS)− (11.767C3

CS)− (44.285×BMC × CCS)

+(97.620× (BMC × CCS)
2)− (59.538× (BMC × CCS)

3)

Where CCS represents the cloze criterion score (35% by default).
Wrapper function: bormuth

"Coleman": Coleman’s Readability Formulas:

C1 = 1.29×
(
100×W 1Sy

W

)
− 38.45

C2 = 1.16×
(
100×W 1Sy

W

)
+ 1.48×

(
100× St

W

)
− 37.95

readability 79

C3 = 1.07×
(
100×W 1Sy

W

)
+ 1.18×

(
100× St

W

)
+ 0.76×

(
100×Wpron

W

)
− 34.02

C4 = 1.04×
(
100×W 1Sy

W

)
+1.06×

(
100× St

W

)
+0.56×

(
100×Wpron

W

)
−0.36×

(
100×Wprep

W

)
−26.01

Where Wpron is the number of pronouns, and Wprep the number of prepositions.
Wrapper function: coleman

"Coleman.Liau": First estimates cloze percentage, then calculates grade equivalent:

CLECP = 141.8401− 0.214590× 100× C

W
+ 1.079812× 100× St

W

CLgrade = −27.4004×
CLECP

100
+ 23.06395

The short form is also calculated:

CLshort = 5.88× C

W
− 29.6× St

W
− 15.8

Wrapper function: coleman.liau

"Dale.Chall": New Dale-Chall Readability Formula. By default the revised formula (1995) is
calculated:

DCnew = 64− 0.95× 100×W−WL

W
− 0.69× W

St

This will result in a cloze score which is then looked up in a grading table. If parameters is
set to Dale.Chall="old", the original formula (1948) is used:

DCold = 0.1579× 100×W−WL

W
+ 0.0496× W

St
+ 3.6365

If parameters is set to Dale.Chall="PSK", the revised parameters by Powers-Sumner-Kearl
(1958) are used:

DCPSK = 0.1155× 100×W−WL

W
+ 0.0596× W

St
+ 3.2672

Note: This index needs the long Dale-Chall list of 3000 familiar (english) words to compute
W−WL. That is, you must have a copy of this word list and provide it via the word.lists=list(Dale.Chall=<your.list>)
parameter!
Wrapper function: dale.chall

"Danielson.Bryan":

DB1 =

(
1.0364× C

Bl

)
+

(
0.0194× C

St

)
− 0.6059

DB2 = 131.059−
(
10.364× C

Bl

)
−
(
0.194× C

St

)
Where Bl means blanks between words, which is not really counted in this implementation,
but estimated by words− 1. C is interpreted as literally all characters.
Wrapper function: danielson.bryan

80 readability

"Dickes.Steiwer": Dickes-Steiwer Handformel:

DS = 235.95993−
(
73.021× C

W

)
−
(
12.56438× W

St

)
− (50.03293× TTR)

Where TTR refers to the type-token ratio, which will be calculated case-insensitive by default.
Wrapper function: dickes.steiwer

"DRP": Degrees of Reading Power. Uses the Bormuth Mean Cloze Score:

DRP = (1−BMC)× 100

This formula itself has no parameters. Note: The Bormuth index needs the long Dale-Chall
list of 3000 familiar (english) words to compute W−WL. That is, you must have a copy of
this word list and provide it via the word.lists=list(Bormuth=<your.list>) parameter!
Wrapper function: DRP

"ELF": Fang’s Easy Listening Formula:

ELF =
W2Sy

St

Wrapper function: ELF

"Farr.Jenkins.Paterson": A simplified version of Flesch Reading Ease:

−31.517− 1.015× W

St
+ 1.599× W 1Sy

W

If parameters is set to Farr.Jenkins.Paterson="PSK", the revised parameters by Powers-
Sumner-Kearl (1958) are used:

8.4335 + 0.0923× W

St
− 0.0648× W 1Sy

W

Wrapper function: farr.jenkins.paterson

"Flesch": Flesch Reading Ease:

206.835− 1.015× W

St
− 84.6× Sy

W

Certain internationalisations of the parameters are also implemented. They can be used by
setting the Flesch parameter to one of the following language abbreviations.
"de" (Amstad’s Verständlichkeitsindex):

180− W

St
− 58.5× Sy

W

"es" (Fernandez-Huerta):

206.835− 1.02× W

St
− 60× Sy

W

"es-s" (Szigriszt):

206.835− W

St
− 62.3× Sy

W

readability 81

"nl" (Douma):

206.835− 0.93× W

St
− 77× Sy

W

"nl-b" (Brouwer Leesindex):

195− 2× W

St
− 67× Sy

W

"fr" (Kandel-Moles):

209− 1.15× W

St
− 68× Sy

W

If parameters is set to Flesch="PSK", the revised parameters by Powers-Sumner-Kearl (1958)
are used to calculate a grade level:

FleschPSK = 0.0778× W

St
+ 4.55× Sy

W
− 2.2029

Wrapper function: flesch

"Flesch.Kincaid": Flesch-Kincaid Grade Level:

0.39× W

St
+ 11.8× Sy

W
− 15.59

Wrapper function: flesch.kincaid

"FOG": Gunning Frequency of Gobbledygook:

FOG = 0.4×
(
W

St
+

100×W3Sy

W

)
If parameters is set to FOG="PSK", the revised parameters by Powers-Sumner-Kearl (1958)
are used:

FOGPSK = 3.0680 +

(
0.0877× W

St

)
+

(
0.0984× 100×W3Sy

W

)
If parameters is set to FOG="NRI", the new FOG count from the Navy Readability Indexes is
used:

FOGnew =

W<3Sy+(3∗W3Sy)
100×St

W

− 3

2

If the text was POS-tagged accordingly, proper nouns and combinations of only easy words
will not be counted as hard words, and the syllables of verbs ending in "-ed", "-es" or "-ing"
will be counted without these suffixes.
Due to the need to re-hyphenate combined words after splitting them up, this formula takes
considerably longer to compute than most others. If will be omitted if you set index="fast"
instead of the default.
Wrapper function: FOG

"FORCAST":

FORCAST = 20−
W 1Sy × 150

W

10

82 readability

If parameters is set to FORCAST="RGL", the parameters for the precise reading grade level are
used (see Klare, 1975, pp. 84–85):

FORCASTRGL = 20.43− 0.11×W 1Sy × 150

W

Wrapper function: FORCAST

"Fucks": Fucks’ Stilcharakteristik:
Fucks =

C

W
× W

St

This simple formula has no parameters.
Wrapper function: fucks

"Harris.Jacobson": Revised Harris-Jacobson Readability Formulas (Harris & Jacobson, 1974):
For primary-grade material:

HJ1 = 0.094× 100×W−WL

W
+ 0.168× W

St
+ 0.502

For material above third grade:

HJ2 = 0.140× 100×W−WL

W
+ 0.153× W

St
+ 0.560

For material below forth grade:

HJ3 = 0.158× W

St
+ 0.055× 100×W6C

W
+ 0.355

For material below forth grade:

HJ4 = 0.070× 100×W−WL

W
+ 0.125× W

St
+ 0.037× 100×W6C

W
+ 0.497

For material above third grade:

HJ5 = 0.118× 100×W−WL

W
+ 0.134× W

St
+ 0.032× 100×W6C

W
+ 0.424

Note: This index needs the short Harris-Jacobson word list for grades 1 and 2 (english) to
compute W−WL. That is, you must have a copy of this word list and provide it via the
word.lists=list(Harris.Jacobson=<your.list>) parameter!
Wrapper function: harris.jacobson

"Linsear.Write" (O’Hayre, undated, see Klare, 1975, p. 85):

LWraw =
100− 100×W<3Sy

W +
(
3× 100×W3Sy

W

)
100×St

W

LW (LWraw ≤ 20) =
LWraw − 2

2

LW (LWraw > 20) =
LWraw

2

Wrapper function: linsear.write

readability 83

"LIX" Björnsson’s Läsbarhetsindex. Originally proposed for Swedish texts, calculated by:

W

St
+

100×W7C

W

Texts with a LIX < 25 are considered very easy, around 40 normal, and > 55 very difficult to
read.
Wrapper function: LIX

"nWS": Neue Wiener Sachtextformeln (Bamberger & Vanecek, 1984):

nWS1 = 19.35× W3Sy

W
+ 0.1672× W

St
+ 12.97× W6C

W
− 3.27× W 1Sy

W
− 0.875

nWS2 = 20.07× W3Sy

W
+ 0.1682× W

St
+ 13.73× W6C

W
− 2.779

nWS3 = 29.63× W3Sy

W
+ 0.1905× W

St
− 1.1144

nWS4 = 27.44× W3Sy

W
+ 0.2656× W

St
− 1.693

Wrapper function: nWS

"RIX" Anderson’s Readability Index. A simplified version of LIX:

W7C

St

Texts with a RIX < 1.8 are considered very easy, around 3.7 normal, and > 7.2 very difficult
to read.
Wrapper function: RIX

"SMOG": Simple Measure of Gobbledygook. By default calculates formula D by McLaughlin (1969):

SMOG = 1.043×
√
W3Sy ×

30

St
+ 3.1291

If parameters is set to SMOG="C", formula C will be calculated:

SMOGC = 0.9986×
√
W3Sy ×

30

St
+ 5 + 2.8795

If parameters is set to SMOG="simple", the simplified formula is used:

SMOGsimple =

√
W3Sy ×

30

St
+ 3

If parameters is set to SMOG="de", the formula adapted to German texts ("Qu", Bamberger
& Vanecek, 1984, p. 78) is used:

SMOGde =

√
W3Sy ×

30

St
− 2

Wrapper function: SMOG

84 readability

"Spache": Spache Revised Formula (1974):

Spache = 0.121× W

St
+ 0.082× 100×W−WL

W
+ 0.659

If parameters is set to Spache="old", the original parameters (Spache, 1953) are used:

Spacheold = 0.141× W

St
+ 0.086× 100×W−WL

W
+ 0.839

Note: The revised index needs the revised Spache word list (see Klare, 1975, p. 73), and the
old index the short Dale-Chall list of 769 familiar (english) words to compute W−WL. That is,
you must have a copy of this word list and provide it via the word.lists=list(Spache=<your.list>)
parameter!
Wrapper function: spache

"Strain": Strain Index. This index was proposed in [1]:

Sy × 1

St/3
× 1

10

Wrapper function: strain

"Traenkle.Bailer": Tränkle-Bailer Formeln. These two formulas were the result of a re-examination
of the ones proposed by Dickes-Steiwer. They try to avoid the usage of the type-token ratio,
which is dependent on text length (Tränkle & Bailer, 1984):

TB1 = 224.6814−
(
79.8304× C

W

)
−
(
12.24032× W

St

)
−
(
1.292857× 100×Wprep

W

)

TB2 = 234.1063−
(
96.11069× C

W

)
−
(
2.05444× 100×Wprep

W

)
−
(
1.02805× 100×Wconj

W

)
Where Wprep refers to the number of prepositions, and Wconj to the number of conjunctions.
Wrapper function: traenkle.bailer

"TRI": Kuntzsch’s Text-Redundanz-Index. Intended mainly for German newspaper comments.

TRI =
(
0.449×W 1Sy

)
− (2.467× Ptn)− (0.937× Frg)− 14.417

Where Ptn is the number of punctuation marks and Frg the number of foreign words.
Wrapper function: TRI

"Tuldava": Tuldava’s Text Difficulty Formula. Supposed to be rather independent of specific lan-
guages (Grzybek, 2010).

TD =
Sy

W
× ln

(
W

St

)
Wrapper function: tuldava

"Wheeler.Smith": Intended for english texts in primary grades 1–4 (Wheeler & Smith, 1954):

WS =
W

St
× 10×W2Sy

W

If parameters is set to Wheeler.Smith="de", the calculation stays the same, but grade place-
ment is done according to Bamberger & Vanecek (1984), that is for german texts.
Wrapper function: wheeler.smith

readability 85

By default, if the text has to be tagged yet, the language definition is queried by calling get.kRp.env(lang=TRUE)
internally. Or, if txt has already been tagged, by default the language definition of that tagged ob-
ject is read and used. Set force.lang=get.kRp.env(lang=TRUE) or to any other valid value, if
you want to forcibly overwrite this default behaviour, and only then. See kRp.POS.tags for all
supported languages.

Value

An object of class kRp.readability.

Note

To get a printout of the default parameters like they’re set if no other parameters are specified,
call readability(parameters="dput"). In case you want to provide different parameters, you
must provide a complete set for an index, or special parameters that are mentioned in the index
descriptions above (e.g., "PSK", if appropriate).

References

Anderson, J. (1981). Analysing the readability of english and non-english texts in the classroom
with Lix. In Annual Meeting of the Australian Reading Association, Darwin, Australia.

Anderson, J. (1983). Lix and Rix: Variations on a little-known readability index. Journal of Read-
ing, 26(6), 490–496.

Bamberger, R. & Vanecek, E. (1984). Lesen–Verstehen–Lernen–Schreiben. Wien: Jugend und
Volk.

Coleman, M. & Liau, T.L. (1975). A computer readability formula designed for machine scoring,
Journal of Applied Psychology, 60(2), 283–284.

Dickes, P. & Steiwer, L. (1977). Ausarbeitung von Lesbarkeitsformeln für die deutsche Sprache.
Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 9(1), 20–28.

DuBay, W.H. (2004). The Principles of Readability. Costa Mesa: Impact Information. WWW:
http://www.impact-information.com/impactinfo/readability02.pdf; 22.03.2011.

Farr, J.N., Jenkins, J.J. & Paterson, D.G. (1951). Simplification of Flesch Reading Ease formula.
Journal of Applied Psychology, 35(5), 333–337.

Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32(3), 221–233.

Fucks, W. (1955). Der Unterschied des Prosastils von Dichtern und anderen Schriftstellern. Sprach-
forum, 1, 233–244.

Grzybek, P. (2010). Text difficulty and the Arens-Altmann law. In Peter Grzybek, Emmerich Kelih,
Ján Mačutek (Eds.), Text and Language. Structures – Functions – Interrelations. Quantitative
Perspectives. Wien: Praesens, 57–70.

Harris, A.J. & Jacobson, M.D. (1974). Revised Harris-Jacobson readability formulas. In 18th
Annual Meeting of the College Reading Association, Bethesda.

Klare, G.R. (1975). Assessing readability. Reading Research Quarterly, 10(1), 62–102.

McLaughlin, G.H. (1969). SMOG grading – A new readability formula. Journal of Reading, 12(8),
639–646.

http://www.impact-information.com/impactinfo/readability02.pdf

86 readability.num

Powers, R.D, Sumner, W.A, & Kearl, B.E. (1958). A recalculation of four adult readability formu-
las, Journal of Educational Psychology, 49(2), 99–105.

Smith, E.A. & Senter, R.J. (1967). Automated readability index. AMRL-TR-66-22. Wright-
Paterson AFB, Ohio: Aerospace Medical Division.

Spache, G. (1953). A new readability formula for primary-grade reading materials. The Elementary
School Journal, 53, 410–413.

Tränkle, U. & Bailer, H. (1984). Kreuzvalidierung und Neuberechnung von Lesbarkeitsformeln
für die deutsche Sprache. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie,
16(3), 231–244.

Wheeler, L.R. & Smith, E.H. (1954). A practical readability formula for the classroom teacher in
the primary grades. Elementary English, 31, 397–399.

[1] http://strainindex.wordpress.com/2007/09/25/hello-world/

Examples

Not run:
rdb.results <- readability(tagged.text)

there is [and [[methods for these objects
rdb.results[["ARI"]]

End(Not run)

readability.num Calculate readability

Description

This function is a stripped down version of readability. It does not analyze text, but directly takes
the values used by the formulae to calculate the readability measures.

Usage

readability.num(txt.features = list(sentences = NULL, words = NULL,
letters = c(all = 0, l5 = 0, l6 = 0), syllables = c(all = 0, s1 = 0, s2 =
0), punct = NULL, all.chars = NULL, prepositions = NULL, conjunctions =
NULL, pronouns = NULL, foreign = NULL, TTR = NULL, FOG.hard.words = NULL,
Bormuth.NOL = NULL, Dale.Chall.NOL = NULL, Harris.Jacobson.NOL = NULL,
Spache.NOL = NULL), index = c("ARI", "Bormuth", "Coleman",
"Coleman.Liau", "Dale.Chall", "Danielson.Bryan", "Dickes.Steiwer", "DRP",
"ELF", "Farr.Jenkins.Paterson", "Flesch", "Flesch.Kincaid", "FOG",
"FORCAST", "Fucks", "Harris.Jacobson", "Linsear.Write", "LIX", "nWS",
"RIX", "SMOG", "Spache", "Strain", "Traenkle.Bailer", "TRI", "Tuldava",
"Wheeler.Smith"), parameters = list(), ...)

http://strainindex.wordpress.com/2007/09/25/hello-world/

readability.num 87

Arguments

txt.features A named list with statistical information on the text, or an object of class kRp.readability
(only its desc slot will then be used). Valid values are:

sentences: The number of sentences.
words: The number of words.
letters: A named vector providing the number of letters. Must contain a

value called "all", the total number of letters, and several values called
"l<digit>", giving the number of words with <digit> letters. To calcu-
late all implemented measures with default parameters, you need at least
the values "l5" (words with five or less letters) and "l6" (words with six
letters).

syllables: Similar to letters, but providing the number of syllables. Must
contain a value called "all", the total number of syllables, and several
values called "s<digit>", giving the number of words with <digit> syl-
lables. To calculate all implemented measures with default parameters, you
need at least the values "s1" and "s2". Only needed to calculate measures
which need syllable count (see readability).

punct: The number of punctuation characters. Only needed to calculate "TRI".
all.chars: The number of all characters (including spaces). Only needed to

calculate Danielson.Bryan.
prepositions: The number of prepositions. Only needed to calculate "Coleman"

and "Traenkle.Bailer".
conjunctions: The number of conjunctions. Only needed to calculate "Traenkle.Bailer".
pronouns: The number of pronouns. Only needed to calculate "Coleman".
foreign: The number of foreign words. Only needed to calculate "TRI".
TTR: The type-token ratio. Only needed to calculate "Dickes.Steiwer".
FOG.hard.words: The number of hard words, counted according to FOG. Only

needed to calculate "FOG".
Bormuth.NOL: Number of words not on the Bormuth word list. Only needed to

calculate "Bormuth".
Dale.Chall.NOL: Number of words not on the Dale-Chall word list. Only

needed to calculate "Dale.Chall".
Harris.Jacobson.NOL: Number of words not on the Harris-Jacobson word

list. Only needed to calculate "Harris.Jacobson".
Spache.NOL: Number of words not on the Spache word list. Only needed to

calculate "Spache".

index A character vector, indicating which indices should actually be computed.

parameters A named list with magic numbers, defining the relevant parameters for each
index. If none are given, the default values are used.

... Additional options, see readability.

Examples

Not run:
test.features <- list(

88 RIX

sentences=18,
words=556,
letters=c(all=2918, l1=19, l2=92, l3=74, l4=80, l5=51, l6=49),
syllables=c(all=974, s1=316, s2=116),
punct=78,
all.chars=3553,
prepositions=74,
conjunctions=18,
pronouns=9,
foreign=0,
TTR=0.5269784,
Bormuth.NOL=192,
Dale.Chall.NOL=192,
Harris.Jacobson.NOL=240,
Spache.NOL=240)

should not calculate FOG, because FOG.hard.words is missing:
readability.num(test.features, index="all")

End(Not run)

RIX Readability: Anderson’s Readability Index (RIX)

Description

This is just a convenient wrapper function for readability.

Usage

RIX(txt.file, parameters = c(char = 6), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates the Readability Index (RIX) by Anderson, which is a simplified version of
the l\"asbarhetsindex (LIX) by Bj\"ornsson. In contrast to readability, which by default calculates
all possible indices, this function will only calculate the index value.

This formula doesn’t need syllable count.

S.ld 89

Value

An object of class kRp.readability.

References

Anderson, J. (1981). Analysing the readability of english and non-english texts in the classroom
with Lix. In Annual Meeting of the Australian Reading Association, Darwin, Australia.

Anderson, J. (1983). Lix and Rix: Variations on a little-known readability index. Journal of Read-
ing, 26(6), 490–496.

Examples

Not run:
RIX(tagged.text)

End(Not run)

S.ld Lexical diversity: Summer’s S

Description

This is just a convenient wrapper function for lex.div.

Usage

S.ld(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates Summer’s S. In contrast to lex.div, which by default calculates all possi-
ble measures and their progressing characteristics, this function will only calculate the S value, and
characteristics are off by default.

Value

An object of class kRp.TTR.

90 segment.optimizer

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
S.ld(tagged.text)

End(Not run)

segment.optimizer A function to optimize MSTTR segment sizes

Description

This function calculates an optimized segment size for MSTTR.

Usage

segment.optimizer(txtlgth, segment = 100, range = 20,
favour.min = TRUE)

Arguments

txtlgth Integer value, size of text in tokens.

segment Integer value, start value of the segment size.

range Integer value, range around segment to search for better fitting sizes.

favour.min Logical, whether as a last ressort smaller or larger segment sizes should be pref-
ered, if in doubt.

Details

When calculating the mean segmental type-token ratio (MSTTR), tokens are divided into segments
of a given size and analyzed. If at the end text is left over which won’t fill another full segment, it is
discarded, i.e. information is lost. For interpretation it is debatable which is worse: Dropping more
or less actual token material, or variance in segment size between analyzed texts. If you’d prefer
the latter, this function might prove helpful.

Starting with a given text length, segment size and range to investigate, segment.optimizer it-
erates through possible segment values. It returns the segment size which would drop the fewest
tokens (zero, if you’re lucky). Should more than one value fulfill this demand, the one nearest to
the segment start value is taken. In cases, where still two values are equally far away from the start
value, it depends on the setting of favour.min if the smaller or larger segment size is returned.

set.kRp.env 91

Value

A numeric vector with two elements:

seg The optimized segment size

drop The number of tokens that would be dropped using this segment size

See Also

lex.div, MSTTR

Examples

segment.optimizer(2014, favour.min=FALSE)

set.kRp.env A function to set information on your koRpus environment

Description

The function set.kRp.env can be called before any of the analysing functions. It writes informa-
tion on your session environment regarding the koRpus package, e.g. path to a local TreeTagger
installation, to your global .Options.

Usage

set.kRp.env(..., validate = TRUE)

Arguments

... Named parameters to set in the koRpus environment. Valid arguments are:

TT.cmd A character string pointing to the tagger command you want to use for
basic text analysis, or "manual" if you want to set TT.options as well. Set
to "tokenize" to use tokenize.

lang A character string specifying a valid language.
TT.options A list with arguments to be used as TT.options by treetag.
hyph.cache.file A character string specifying a path to a file to use for storing

already hyphenated data, used by hyphen.
add.desc A logical value, whether tag descriptions should be added directly to

tagged text objects.

To explicitly unset a value again, set it to an empty character string (e.g., lang="").

validate Logical, if TRUE given paths will be checked for actual availablity, and the func-
tion will fail if files can’t be found.

92 set.lang.support

Details

To get the current settings, the function get.kRp.env should be used. For the most part, set.kRp.env
is a convenient wrapper for options. To permanently set some defaults, you could also add respec-
tive options calls to an .Rprofile file.

Note that you can also suppress the startup message informing about available.koRpus.lang and
install.koRpus.lang by adding noStartupMessage=TRUE to the options in .Rprofile.

Value

Returns an invisible NULL.

See Also

get.kRp.env

Examples

Not run:
set.kRp.env(TT.cmd="~/bin/treetagger/cmd/tree-tagger-german", lang="de")
get.kRp.env(TT.cmd=TRUE)

example for setting permanent default values in an .Rprofile file
options(

koRpus=list(
TT.cmd="manual",
TT.options=list(

path="~/bin/treetagger",
preset="de"),

lang="de",
noStartupMessage=TRUE

)
)
be aware that setting a permamnent default language without loading
the respective language support package might trigger errors

End(Not run)

set.lang.support Add support for new languages

Description

You can use this function to add new languages to be used with koRpus.

Usage

set.lang.support(target, value, merge = TRUE)

set.lang.support 93

Arguments

target One of "kRp.POS.tags", "treetag", or "hyphen", depending on what support is
to be added.

value A named list that upholds exactly the structure defined here for its respective
target.

merge Logical, only relevant for the "kRp.POS.tags" target. This argument controls
whether value will completely replace an already present tagset definition, or
merge all given tags (i.e., replace single tags with an updated definition or add
new tags).

Details

Language support in this package is designed to be extended easily. You could call it modular,
although it’s actually more "environemntal", but nevermind.

To add full new language support, say for Xyzedish, you basically have to call this function three
times (or at least twice, see hyphen section below) with different targets. If you would like to re-use
this language support, you should consider making it a package.

Be it a package or a script, it should contain all three calls to this function. If it succeeds, it will fill
an internal environment with the information you have defined.

The function set.language.support() gets called three times because there’s three functions of
koRpus that need language support:

• treetag() needs the preset information from its own start scripts

• kRp.POS.tags() needs to learn all possible POS tags that TreeTagger uses for the given lan-
guage

• hyphen() needs to know which language pattern tests are available as data files (which you
must provide also)

All the calls follow the same pattern – first, you name one of the three targets explained above, and
second, you provide a named list as the value for the respective target function.

"treetag"

The presets for the treetag() function are basically what the shell (GNU/Linux, MacOS) and batch
(Win) scripts define that come with TreeTagger. Look for scripts called "$TREETAGGER/cmd/tree-
tagger-xyzedish" and "$TREETAGGER\cmd\tree-tagger-xyzedish.bat", figure out which call re-
sembles which call and then define them in set.lang.support("treetag") accordingly.

Have a look at the commented template in your koRpus installation directory for an elaborate ex-
ample.

"kRp.POS.tags"

If Xyzedish is supported by TreeTagger, you should find a tagset definition for the language on its
homepage. treetag() needs to know all POS tags that TreeTagger might return, otherwise you will
get a self-explaining error message as soon as an unknown tag appears. Notice that this can still
happen after you implemented the full documented tag set: sometimes the contributed TreeTagger
parameter files added their own tags, e.g., for special punctuation. So please test your tag set well.

94 show,kRp.lang-method

As you can see in the template file, you will also have to add a global word class and an explaination
for each tag. The former is especially important for further steps like frequency analysis.

Again, please have a look at the commented template and/or existing language support files in the
package sources, most of it should be almost self-explaining.

"hyphen"

Using the target "hyphen" will cause a call to the equivalent of this function in the sylly package.
See the documentation of its set.hyph.support function for details.

Packaging

If you would like to create a proper language support package, you should only include the "treetag"
and "kRp.POS.tags" calls, and the hyphenation patterns should be loaded as a dependency to a
package called sylly.xx. You can generate such a sylly package rather quickly by using the private
function sylly:::sylly_langpack().

Examples

Not run:
set.lang.support("hyphen",

list("xyz"="xyz")
)

End(Not run)

show,kRp.lang-method Show methods for koRpus objects

Description

Show methods for S4 objects of classes kRp.lang, kRp.readability, kRp.corp.freq or kRp.TTR.

Usage

S4 method for signature 'kRp.lang'
show(object)

S4 method for signature 'kRp.TTR'
show(object)

S4 method for signature 'kRp.corp.freq'
show(object)

S4 method for signature 'kRp.readability'
show(object)

S4 method for signature 'kRp.taggedText'
show(object)

SMOG 95

Arguments

object An object of class kRp.lang, kRp.readability, kRp.corp.freq, or kRp.TTR.

See Also

kRp.lang, kRp.readability, kRp.corp.freq, kRp.TTR

Examples

Not run:
guess.lang("/home/user/data/some.txt", udhr.path="/home/user/data/udhr_txt/")

End(Not run)
Not run:
MTLD(tagged.txt)

End(Not run)
Not run:
flesch(tagged.txt)

End(Not run)

SMOG Readability: Simple Measure of Gobbledygook (SMOG)

Description

This is just a convenient wrapper function for readability.

Usage

SMOG(txt.file, hyphen = NULL, parameters = c(syll = 3, sqrt = 1.043,
fact = 30, const = 3.1291, sqrt.const = 0), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

96 spache

Details

This function calculates the Simple Measure of Gobbledygook (SMOG). In contrast to readability,
which by default calculates all possible indices, this function will only calculate the index value.

By default calculates formula D by McLaughlin (1969). If parameters is set to SMOG="C", formula
C will be calculated. If parameters is set to SMOG="simple", the simplified formula is used, and
if parameters="de", the formula adapted to German texts ("Qu", Bamberger & Vanecek, 1984, p.
78).

Value

An object of class kRp.readability.

References

Bamberger, R. & Vanecek, E. (1984). Lesen–Verstehen–Lernen–Schreiben. Wien: Jugend und
Volk.

McLaughlin, G.H. (1969). SMOG grading – A new readability formula. Journal of Reading, 12(8),
639–646.

Examples

Not run:
SMOG(tagged.text)

End(Not run)

spache Readability: Spache Formula

Description

This is just a convenient wrapper function for readability.

Usage

spache(txt.file, word.list, parameters = c(asl = 0.121, dword = 0.082,
const = 0.659), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

word.list A vector or matrix (with exactly one column) which defines familiar words. For
valid results the short Dale-Chall list with 769 easy words should be used.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

strain 97

Details

Calculates the Spache Formula. In contrast to readability, which by default calculates all possible
indices, this function will only calculate the index value.

By default the revised Spache formula is calculated. If parameters="old", the original parameters
are used.

This formula doesn’t need syllable count.

Value

An object of class kRp.readability.

Examples

Not run:
spache(tagged.text, word.list=spache.revised.wl)

End(Not run)

strain Readability: Strain Index

Description

This is just a convenient wrapper function for readability.

Usage

strain(txt.file, hyphen = NULL, parameters = c(sent = 3, const = 10),
...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates the Strain index. In contrast to readability, which by default calculates
all possible indices, this function will only calculate the index value.

98 summary

Value

An object of class kRp.readability.

Examples

Not run:
strain(tagged.text)

End(Not run)

summary Summary methods for koRpus objects

Description

Summary method for S4 objects of classes kRp.lang, kRp.readability, kRp.tagged, kRp.TTR
or kRp.txt.freq.

Usage

summary(object, ...)

S4 method for signature 'kRp.lang'
summary(object)

S4 method for signature 'kRp.TTR'
summary(object, flat = FALSE)

S4 method for signature 'kRp.readability'
summary(object, flat = FALSE)

S4 method for signature 'kRp.tagged'
summary(object)

S4 method for signature 'kRp.txt.freq'
summary(object)

Arguments

object An object of class, kRp.lang, kRp.readability, kRp.tagged, kRp.TTR, or
kRp.txt.freq.

... Further options, depending on the object class.

flat Logical, if TRUE only a named vector of main results is returned

See Also

kRp.lang, kRp.readability, kRp.tagged, kRp.TTR, kRp.txt.freq

taggedText 99

Examples

Not run:
summary(guess.lang("/home/user/data/some.txt", udhr.path="/home/user/data/udhr_txt/"))

End(Not run)
Not run:
summary(lex.div(tagged.txt))

End(Not run)
Not run:
summary(flesch(tagged.txt))

End(Not run)
Not run:
tagged.results <- treetag("~/my.data/sample_text.txt", treetagger="manual", lang="en",

TT.options=list(path="~/bin/treetagger", preset="en"))
summary(tagged.results)

End(Not run)
Not run:
summary(freq.analysis(tagged.txt))

End(Not run)

taggedText Getter/setter methods for koRpus objects

Description

These methods should be used to get or set values of tagged text objects generated by koRpus
functions like treetag() or tokenize().

Usage

taggedText(obj, add.desc = FALSE, doc_id = FALSE)

S4 method for signature 'kRp.taggedText'
taggedText(obj, add.desc = FALSE,
doc_id = FALSE)

taggedText(obj) <- value

S4 replacement method for signature 'kRp.taggedText'
taggedText(obj) <- value

S4 method for signature 'kRp.taggedText'
x[i, j]

100 taggedText

S4 replacement method for signature 'kRp.taggedText'
x[i, j] <- value

S4 method for signature 'kRp.taggedText'
x[[i]]

S4 replacement method for signature 'kRp.taggedText'
x[[i]] <- value

S4 method for signature 'kRp.taggedText'
describe(obj)

S4 replacement method for signature 'kRp.taggedText'
describe(obj) <- value

S4 method for signature 'kRp.taggedText'
language(obj)

S4 replacement method for signature 'kRp.taggedText'
language(obj) <- value

is.taggedText(obj)

fixObject(obj, doc_id = NA)

S4 method for signature 'kRp.taggedText'
fixObject(obj, doc_id = NA)

tif_as_tokens_df(tokens)

S4 method for signature 'kRp.taggedText'
tif_as_tokens_df(tokens)

Arguments

obj An arbitrary R object.

add.desc Logical, determines whether the desc column should be re-written with descrip-
tions for all POS tags.

doc_id Logical (except for fixObject), if TRUE the doc_id column will be a factor
with the respective value of the desc slot, i.\,e., the document ID will be pre-
served in the data.frame. If used with fixObject, can be a character string to
set the document ID manually (the default NA will preserve existing values and
not overwrite them).

value The new value to replace the current with.

x An object of class kRp.taggedText or kRp.hyphen.

i Defines the row selector ([) or the name to match ([[).

j Defines the column selector.

textFeatures 101

tokens An object of class kRp.tagged.

Details

• taggedText() returns the TT.res slot.

• describe() returns the desc slot.

• language() returns the lang slot.

• [/[[Can be used as a shortcut to index the results of taggedText().

• fixObject returns the same object upgraded to the object structure of this package version
(e.g., new columns, changed names, etc.).

• tif_as_tokens_df returns the TT.res slot in a TIF[1] compliant format, i.e., doc_id is not
a factor but a character vector.

References

[1] Text Interchange Formats (https://github.com/ropensci/tif)

Examples

Not run:
taggedText(tagged.txt)

End(Not run)

textFeatures Extract text features for authorship analysis

Description

This function combines several of koRpus’ methods to extract the 9-Feature Set for authorship
detection (Brannon, Afroz & Greenstadt, 2011; Brannon & Greenstadt, 2009).

Usage

textFeatures(text, hyphen = NULL)

Arguments

text An object of class kRp.tagged, kRp.txt.freq or kRp.analysis. Can also be
a list of these objects, if you want to analyze more than one text at once.

hyphen An object of class kRp.hyphen, if text has already been hyphenated. If text is
a list and hyphen is not NULL, it must also be a list with one object for each text,
in the same order.

https://github.com/ropensci/tif

102 textTransform

Value

A data.frame:

uniqWd Number of unique words (tokens)

cmplx Complexity (TTR)

sntCt Sentence count

sntLen Average sentence length

syllCt Average syllable count

charCt Character count (all characters, including spaces)

lttrCt Letter count (without spaces, punctuation and digits)

FOG Gunning FOG index

flesch Flesch Reading Ease index

References

Brennan, M., Afroz, S., & Greenstadt, R. (2011). Deceiving authorship detection. Presentation
at 28th Chaos Communication Congress (28C3), Berlin, Germany. Brennan, M. & Greenstadt,
R. (2009). Practical Attacks Against Authorship Recognition Techniques. In Proceedings of the
Twenty-First Conference on Innovative Applications of Artificial Intelligence (IAAI), Pasadena, CA.
Tweedie, F.J., Singh, S., & Holmes, D.I. (1996). Neural Network Applications in Stylometry: The
Federalist Papers. Computers and the Humanities, 30, 1–10.

Examples

Not run:
set.kRp.env(TT.cmd="manual", lang="en", TT.options=list(path="~/bin/treetagger",

preset="en"))
tagged.txt <- treetag("example_text.txt")
tagged.txt.features <- textFeatures(tagged.txt)

End(Not run)

textTransform Letter case transformation

Description

Transforms text in koRpus objects token by token.

Usage

textTransform(txt, scheme, p = 0.5, paste = FALSE)

S4 method for signature 'kRp.taggedText'
textTransform(txt, scheme, p = 0.5,
paste = FALSE)

tokenize 103

Arguments

txt An object of class kRp.txt.trans, kRp.tagged, kRp.txt.freq or kRp.analysis.

scheme One of the following character strings:

• "minor" Start each word with a lowercase letter.
• "all.minor" Forces all letters into lowercase.
• "major" Start each word with a uppercase letter.
• "all.major" Forces all letters into uppercase.
• "random" Randomly start words with uppercase or lowercase letters.
• "de.norm" German norm: All names, nouns and sentence beginnings start

with an uppercase letter, anything else with a lowercase letter.
• "de.inv" Inversion of "de.norm".
• "eu.norm" Usual European cases: Only names and sentence beginnings

start with an uppercase letter, anything else with a lowercase letter.
• "eu.inv" Inversion of "eu.norm".

p Numeric value between 0 and 1. Defines the probability for upper case letters
(relevant only if scheme="random").

paste Logical, see value section.

Details

This function is mainly intended to produce text material for experiments.

Value

By default an object of class kRp.txt.trans is returned. If paste=TRUE, returns an atomic charac-
ter vector (via kRp.text.paste).

Examples

Not run:
tagged.text.obj <- freq.analysis("/some/text.txt", corp.freq=my.LCC.data)
textTransform(tagged.text.obj, scheme="random", paste=TRUE)

End(Not run)

tokenize A simple tokenizer

Description

This tokenizer can be used to try replace TreeTagger. Its results are not as detailed when it comes
to word classes, and no lemmatization is done. However, for most cases this should suffice.

104 tokenize

Usage

tokenize(txt, format = "file", fileEncoding = NULL,
split = "[[:space:]]", ign.comp = "-", heuristics = "abbr",
heur.fix = list(pre = c("’", "'"), suf = c("’", "'")),
abbrev = NULL, tag = TRUE, lang = "kRp.env", sentc.end = c(".",
"!", "?", ";", ":"), detect = c(parag = FALSE, hline = FALSE),
clean.raw = NULL, perl = FALSE, stopwords = NULL, stemmer = NULL,
doc_id = NA, add.desc = "kRp.env")

Arguments

txt Either an open connection, the path to directory with txt files to read and tok-
enize, or a vector object already holding the text corpus.

format Either "file" or "obj", depending on whether you want to scan files or analyze
the given object.

fileEncoding A character string naming the encoding of all files.

split A regular expression to define the basic split method. Should only need refine-
ment for languages that don’t separate words by space.

ign.comp A character vector defining punctuation which might be used in composita that
should not be split.

heuristics A vector to indicate if the tokenizer should use some heuristics. Can be none,
one or several of the following:

• "abbr"Assume that "letter-dot-letter-dot" combinations are abbreviations
and leave them intact.

• "suf"Try to detect possesive suffixes like "’s", or shorting suffixes like "’ll"
and treat them as one token

• "pre"Try to detect prefixes like "s’" or "l’" and treat them as one token

Earlier releases used the names "en" and "fr" instead of "suf" and "pre".
They are still working, that is "en" is equivalent to "suf", whereas "fr" is now
equivalent to both "suf" and "pre" (and not only "pre" as in the past, which
was missing the use of suffixes in French).

heur.fix A list with the named vectors pre and suf. These will be used if heuristics
were set to use one of the presets that try to detect pre- and/or suffixes. Change
them if you document uses other characters than the ones defined by default.

abbrev Path to a text file with abbreviations to take care of, one per line. Note that this
file must have the same encoding as defined by fileEncoding.

tag Logical. If TRUE, the text will be rudimentarily tagged and returned as an object
of class kRp.tagged.

lang A character string naming the language of the analyzed text. If set to "kRp.env"
this is fetched from get.kRp.env. Only needed if tag=TRUE.

sentc.end A character vector with tokens indicating a sentence ending. Only needed if
tag=TRUE.

detect A named logical vector, indicating by the setting of parag and hline whether
tokenize should try to detect paragraphs and headlines.

tokenize 105

clean.raw A named list of character values, indicating replacements that should globally
be made to the text prior to tokenizing it. This is applied after the text was
converted into UTF-8 internally. In the list, the name of each element represents
a pattern which is replaced by its value if met in the text. Since this is done by
calling gsub, regular expressions are basically supported. See the perl attribute,
too.

perl Logical, only relevant if clean.raw is not NULL. If perl=TRUE, this is forwarded
to gsub to allow for perl-like regular expressions in clean.raw.

stopwords A character vector to be used for stopword detection. Comparison is done in
lower case. You can also simply set stopwords=tm::stopwords("en") to use
the english stopwords provided by the tm package.

stemmer A function or method to perform stemming. For instance, you can set SnowballC::wordStem
if you have the SnowballC package installed. As of now, you cannot provide
further arguments to this function.

doc_id Character string, optional identifier of the particular document. Will be added to
the desc slot, and as a factor to the "doc_id" column of the TT.res slot.

add.desc Logical. If TRUE, the tag description (column "desc" of the data.frame) will be
added directly to the resulting object. If set to "kRp.env" this is fetched from
get.kRp.env. Only needed if tag=TRUE.

Details

tokenize can try to guess what’s a headline and where a paragraph was inserted (via the detect
parameter). A headline is assumed if a line of text without sentence ending punctuation is found,
a paragraph if two blocks of text are separated by space. This will add extra tags into the text:
"<kRp.h>" (headline starts), "</kRp.h>" (headline ends) and "<kRp.p/>" (paragraph), respectively.
This can be useful in two cases: "</kRp.h>" will be treated like a sentence ending, which gives you
more control for automatic analyses. And adding to that, kRp.text.paste can replace these tags,
which probably preserves more of the original layout.

Value

If tag=FALSE, a character vector with the tokenized text. If tag=TRUE, returns an object of class
kRp.tagged.

Examples

Not run:
tokenized.obj <- tokenize("~/mydata/corpora/russian_corpus/")

character manipulation
this is useful if you know of problematic characters in your
raw text files, but don't want to touch them directly. you
don't have to, as you can substitute them, even using regular
expressions. a simple example: replace all single quotes by
double quotes througout the text:
tokenized.obj <- tokenize("~/my.data/speech.txt",

clean.raw=list("'"='\"')
)

106 traenkle.bailer

now replace all occurrances of the letter A followed
by two digits with the letter B, followed by the same
two digits:
tokenized.obj <- tokenize("~/my.data/speech.txt",

clean.raw=list("(A)([[:digit:]]{2})"="B\\2"),
perl=TRUE)

enabling stopword detection and stemming
if you also installed the packages tm and Snowball,
you can use some of their features with koRpus:
tokenized.obj <- tokenize("~/my.data/speech.txt",

stopwords=tm::stopwords("en"),
stemmer=SnowballC::wordStem)

removing all stopwords now is simple:
tokenized.noStopWords <- kRp.filter.wclass(tokenized.obj, "stopword")

End(Not run)

traenkle.bailer Readability: Traenkle-Bailer Formeln

Description

This is just a convenient wrapper function for readability.

Usage

traenkle.bailer(txt.file, TB1 = c(const = 224.6814, awl = 79.8304, asl =
12.24032, prep = 1.292857), TB2 = c(const = 234.1063, awl = 96.11069,
prep = 2.05444, conj = 1.02805), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

TB1 A numeric vector with named magic numbers for the first of the formulas.

TB2 A numeric vector with named magic numbers for the second of the formulas.

... Further valid options for the main function, see readability for details.

Details

This function calculates the two formulae by Tr\"ankle-Bailer, which are based on the Dickes-
Steiwer formulae. In contrast to readability, which by default calculates all possible indices, this
function will only calculate the index values.

This formula doesn’t need syllable count.

treetag 107

Value

An object of class kRp.readability.

Examples

Not run:
traenkle.bailer(tagged.text)

End(Not run)

treetag A function to call TreeTagger

Description

This function calls a local installation of TreeTagger[1] to tokenize and POS tag the given text.

Usage

treetag(file, treetagger = "kRp.env", rm.sgml = TRUE,
lang = "kRp.env", apply.sentc.end = TRUE, sentc.end = c(".", "!",
"?", ";", ":"), encoding = NULL, TT.options = NULL, debug = FALSE,
TT.tknz = TRUE, format = "file", stopwords = NULL,
stemmer = NULL, doc_id = NA, add.desc = "kRp.env")

Arguments

file Either a connection or a character vector, valid path to a file, containing the
text to be analyzed. If file is a connection, its contents will be written to a
temporary file, since TreeTagger can’t read from R connection objects.

treetagger A character vector giving the TreeTagger script to be called. If set to "kRp.env"
this is got from get.kRp.env. Only if set to "manual", it is assumend not to
be a wrapper script that can work the given text file, but that you would like to
manually tweak options for tokenizing and POS tagging yourself. In that case,
you need to provide a full set of options with the TT.options parameter.

rm.sgml Logical, whether SGML tags should be ignored and removed from output

lang A character string naming the language of the analyzed corpus. See kRp.POS.tags
and available.koRpus.langfor all supported languages. If set to "kRp.env"
this is fetched from get.kRp.env.

apply.sentc.end

Logical, whethter the tokens defined in sentc.end should be searched and set
to a sentence ending tag.

sentc.end A character vector with tokens indicating a sentence ending. This adds to Tree-
Taggers results, it doesn’t really replace them.

108 treetag

encoding A character string defining the character encoding of the input file, like "Latin1"
or "UTF-8". If NULL, the encoding will either be taken from a preset (if defined
in TT.options), or fall back to "". Hence you can overwrite the preset encoding
with this parameter.

TT.options A list of options to configure how TreeTagger is called. You have two basic
choices: Either you choose one of the pre-defined presets or you give a full set
of valid options:

• path Mandatory: The absolute path to the TreeTagger root directory. That
is where its subfolders bin, cmd and lib are located.

• preset Optional: If you choose one of the pre-defined presets of one of the
available language packages (like "de" for German, see available.koRpus.lang
for details), you can omit all the following elements, because they will be
filled with defaults. Of course this only makes sense if you have a work-
ing default installation. Note that since koRpus 0.07-1, UTF-8 is the global
default encoding.

• tokenizer Mandatory: A character string, naming the tokenizer to be
called. Interpreted relative to path/cmd/.

• tknz.opts Optional: A character string with the options to hand over
to the tokenizer. You don’t need to specify "-a" if abbrev is given. If
TT.tknz=FALSE, you can pass configurational options to tokenize by provin-
ding them as a named list (instead of a character string) here.

• pre.tagger Optional: A character string with code to be run before the
tagger. This code is used as-is, so you need make sure it includes the needed
pipe symbols.

• tagger Mandatory: A character string, naming the tagger-command to be
called. Interpreted relative to path/bin/.

• abbrev Optional: A character string, naming the abbreviation list to be
used. Interpreted relative to path/lib/.

• params Mandatory: A character string, naming the parameter file to be
used. Interpreted relative to path/lib/.

• lexicon Optional: A character string, naming the lexicon file to be used.
Interpreted relative to path/lib/.

• lookup Optional: A character string, naming the lexicon lookup command.
Interpreted relative to path/cmd/.

• filter Optional: A character string, naming the output filter to be used.
Interpreted relative to path/cmd/.

• no.unknown Optional: Logical, can be used to toggle the "-no-unknown"
option of TreeTagger (defaults to FALSE).

• splitter Optional: A character string, naming the splitter to be called
(before the tokenizer). Interpreted relative to path/cmd/.

• splitter.opts Optional: A character string with the options to hand over
to the splitter.

You can also set these options globally using set.kRp.env, and then force
treetag to use them by setting TT.options="kRp.env" here. Note: If you
use the treetagger setting from kRp.env and it’s set to TT.cmd="manual",
treetag will treat TT.options=NULL like TT.options="kRp.env" automati-
cally.

treetag 109

debug Logical. Especially in cases where the presets wouldn’t work as expected, this
switch can be used to examine the values treetag is assuming.

TT.tknz Logical, if FALSE TreeTagger’s tokenzier script will be replaced by koRpus’
function tokenize. To accomplish this, its results will be written to a temporal
file which is automatically deleted afterwards (if debug=FALSE). Note that this
option only has an effect if treetagger="manual".

format Either "file" or "obj", depending on whether you want to scan files or analyze
the text in a given object, like a character vector. If the latter, it will be written
to a temporary file (see file).

stopwords A character vector to be used for stopword detection. Comparison is done in
lower case. You can also simply set stopwords=tm::stopwords("en") to use
the english stopwords provided by the tm package.

stemmer A function or method to perform stemming. For instance, you can set SnowballC::wordStem
if you have the SnowballC package installed. As of now, you cannot provide
further arguments to this function.

doc_id Character string, optional identifier of the particular document. Will be added to
the desc slot, and as a factor to the "doc_id" column of the TT.res slot.

add.desc Logical. If TRUE, the tag description (column "desc" of the data.frame) will be
added directly to the resulting object. If set to "kRp.env" this is fetched from
get.kRp.env.

Details

Note that the value of lang must match a valid language supported by kRp.POS.tags. It will
also get stored in the resulting object and might be used by other functions at a later point. E.g.,
treetag is being called by freq.analysis, which will by default query this language definition,
unless explicitly told otherwise. The rationale behind this is to comfortably make it possible to have
tokenized and POS tagged objects of various languages around in your workspace, and not worry
about that too much.

Value

An object of class kRp.tagged. If debug=TRUE, prints internal variable settings and attempts to
return the original output if the TreeTagger system call in a matrix.

Author(s)

m.eik michalke <meik.michalke@hhu.de>, support for various laguages was contributed by Earl
Brown (Spanish), Alberto Mirisola (Italian) and Alexandre Brulet (French).

References

Schmid, H. (1994). Probabilistic part-of-speec tagging using decision trees. In International Con-
ference on New Methods in Language Processing, Manchester, UK, 44–49.

[1] http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

110 TRI

See Also

freq.analysis, get.kRp.env, kRp.tagged

Examples

Not run:
first way to invoke POS tagging, using a built-in preset:
tagged.results <- treetag("~/my.data/speech.txt", treetagger="manual", lang="en",

TT.options=list(path="~/bin/treetagger", preset="en"))
second way, use one of the batch scripts that come with TreeTagger:
tagged.results <- treetag("~/my.data/speech.txt",

treetagger="~/bin/treetagger/cmd/tree-tagger-english", lang="en")
third option, set the above batch script in an environment object first:
set.kRp.env(TT.cmd="~/bin/treetagger/cmd/tree-tagger-english", lang="en")
tagged.results <- treetag("~/my.data/speech.txt")

after tagging, use the resulting object with other functions in this package:
readability(tagged.results)
lex.div(tagged.results)

enabling stopword detection and stemming
if you also installed the packages tm and SnowballC,
you can use some of their features with koRpus:
set.kRp.env(TT.cmd="manual", lang="en", TT.options=list(path="~/bin/treetagger",

preset="en"))
tagged.results <- treetag("~/my.data/speech.txt",

stopwords=tm::stopwords("en"),
stemmer=SnowballC::wordStem)

removing all stopwords now is simple:
tagged.noStopWords <- kRp.filter.wclass(tagged.results, "stopword")

End(Not run)

TRI Readability: Kuntzsch’s Text-Redundanz-Index

Description

This is just a convenient wrapper function for readability.

Usage

TRI(txt.file, hyphen = NULL, parameters = c(syll = 1, word = 0.449,
pnct = 2.467, frgn = 0.937, const = 14.417), ...)

TTR 111

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates Kuntzsch’s Text-Redundanz-Index (text redundancy index). In contrast to
readability, which by default calculates all possible indices, this function will only calculate the
index value.

Value

An object of class kRp.readability.

Examples

Not run:
TRI(tagged.text)

End(Not run)

TTR Lexical diversity: Type-Token Ratio

Description

This is just a convenient wrapper function for lex.div.

Usage

TTR(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

112 tuldava

Details

This function calculates the classic type-token ratio (TTR). In contrast to lex.div, which by de-
fault calculates all possible measures and their progressing characteristics, this function will only
calculate the TTR value, and characteristics are off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
TTR(tagged.text)

End(Not run)

tuldava Readability: Tuldava’s Text Difficulty Formula

Description

This is just a convenient wrapper function for readability.

Usage

tuldava(txt.file, hyphen = NULL, parameters = c(syll = 1, word1 = 1,
word2 = 1, sent = 1), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates Tuldava’s Text Difficulty Formula. In contrast to readability, which by
default calculates all possible indices, this function will only calculate the index value.

types 113

Value

An object of class kRp.readability.

Note

This index originally has no parameter weights. To be able the use weights anyway, each parameter
of the formula is available and its weight set to 1 by default.

Examples

Not run:
tuldava(tagged.text)

End(Not run)

types Get types and tokens of a given text

Description

These methods return character vectors that return all types or tokens of a given text, where text can
either be a character vector itself, a previosly tokenized/tagged koRpus object, or an object of class
kRp.TTR.

Usage

types(txt, ...)

tokens(txt, ...)

S4 method for signature 'kRp.TTR'
types(txt, stats = FALSE)

S4 method for signature 'kRp.TTR'
tokens(txt)

S4 method for signature 'kRp.taggedText'
types(txt, case.sens = FALSE,
lemmatize = FALSE, corp.rm.class = "nonpunct", corp.rm.tag = c(),
stats = FALSE)

S4 method for signature 'kRp.taggedText'
tokens(txt, case.sens = FALSE,
lemmatize = FALSE, corp.rm.class = "nonpunct", corp.rm.tag = c())

S4 method for signature 'character'
types(txt, case.sens = FALSE, lemmatize = FALSE,

114 types

corp.rm.class = "nonpunct", corp.rm.tag = c(), stats = FALSE,
lang = NULL)

S4 method for signature 'character'
tokens(txt, case.sens = FALSE, lemmatize = FALSE,
corp.rm.class = "nonpunct", corp.rm.tag = c(), lang = NULL)

Arguments

txt An object of either class kRp.tagged, kRp.txt.freq, kRp.analysis, kRp.txt.trans,
kRp.TTR, or a character vector.

... Only used for the method generic.

stats Logical, whether statistics on the length in characters and frequency of types in
the text should also be returned.

case.sens Logical, whether types should be counted case sensitive. This option is available
for tagged text and character input only.

lemmatize Logical, whether analysis should be carried out on the lemmatized tokens rather
than all running word forms. This option is available for tagged text and char-
acter input only.

corp.rm.class A character vector with word classes which should be dropped. The default
value "nonpunct" has special meaning and will cause the result of kRp.POS.tags(lang, c("punct","sentc"), list.classes=TRUE)
to be used. This option is available for tagged text and character input only.

corp.rm.tag A character vector with POS tags which should be dropped. This option is
available for tagged text and character input only.

lang Set the language of a text, see the force.lang option of lex.div. This option
is available for character input only.

Value

A character vector. Fortypes and stats=TRUE a data.frame containing all types, their length (char-
acters) and frequency. The types result is always sorted by frequency, with more frequent types
coming first.

Note

If the input is of class kRp.TTR, the result will only be useful if lex.div or the respective wrap-
per function was called with keep.tokens=TRUE. Similarily, lemmatize can only work properly
if the input is a tagged text object with lemmata or you’ve properly set up the enviroment via
set.kRp.env. Calling these methods on kRp.TTR objects is just returning the respective part of its
tt slot.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR, lex.div

U.ld 115

Examples

Not run:
types(tagged.text)
tokens(tagged.text)

End(Not run)

U.ld Lexical diversity: Uber Index (U)

Description

This is just a convenient wrapper function for lex.div.

Usage

U.ld(txt, char = FALSE, ...)

Arguments

txt An object of either class kRp.tagged or kRp.analysis, containing the tagged
text to be analyzed.

char Logical, defining whether data for plotting characteristic curves should be cal-
culated.

... Further valid options for the main function, see lex.div for details.

Details

This function calculates the Uber Index (U). In contrast to lex.div, which by default calculates
all possible measures and their progressing characteristics, this function will only calculate the U
value, and characteristics are off by default.

Value

An object of class kRp.TTR.

See Also

kRp.POS.tags, kRp.tagged, kRp.TTR

Examples

Not run:
U.ld(tagged.text)

End(Not run)

116 wheeler.smith

wheeler.smith Readability: Wheeler-Smith Score

Description

This is just a convenient wrapper function for readability.

Usage

wheeler.smith(txt.file, hyphen = NULL, parameters = c(syll = 2), ...)

Arguments

txt.file Either an object of class kRp.tagged, a character vector which must be be a
valid path to a file containing the text to be analyzed, or a list of text features. If
the latter, calculation is done by readability.num.

hyphen An object of class kRp.hyphen. If NULL, the text will be hyphenated automati-
cally.

parameters A numeric vector with named magic numbers, defining the relevant parameters
for the index.

... Further valid options for the main function, see readability for details.

Details

This function calculates the Wheeler-Smith Score. In contrast to readability, which by default
calculates all possible indices, this function will only calculate the index value.

If parameters="de", the calculation stays the same, but grade placement is done according to
Bamberger & Vanecek (1984), that is for german texts.

Value

An object of class kRp.readability.

References

Bamberger, R. & Vanecek, E. (1984). Lesen–Verstehen–Lernen–Schreiben. Wien: Jugend und
Volk.

Wheeler, L.R. & Smith, E.H. (1954). A practical readability formula for the classroom teacher in
the primary grades. Elementary English, 31, 397–399.

Examples

Not run:
wheeler.smith(tagged.text)

End(Not run)

Index

∗Topic LD
C.ld, 9
CTTR, 15
HDD, 32
K.ld, 36
lex.div, 52
lex.div.num, 56
maas, 60
MATTR, 61
MSTTR, 62
MTLD, 63
R.ld, 68
S.ld, 89
segment.optimizer, 90
TTR, 111
types, 113
U.ld, 115

∗Topic classes
kRp.analysis,-class, 38
kRp.corp.freq,-class, 39
kRp.lang,-class, 41
kRp.readability,-class, 43
kRp.tagged,-class, 46
kRp.TTR,-class, 49
kRp.txt.freq,-class, 51
kRp.txt.trans,-class, 51

∗Topic corpora
read.BAWL, 69
read.corp.celex, 70
read.corp.custom, 71
read.corp.LCC, 72

∗Topic hyphenation
hyphen,kRp.taggedText-method, 33

∗Topic methods
correct.tag, 13
plot, 65
query, 66
show,kRp.lang-method, 94
summary, 98

∗Topic misc
freq.analysis, 26
get.kRp.env, 28
guess.lang, 29
kRp.filter.wclass, 40
kRp.POS.tags, 42
kRp.text.analysis, 47
kRp.text.paste, 48
read.tagged, 74
set.kRp.env, 91
textTransform, 102
tokenize, 103
treetag, 107

∗Topic plot
plot, 65

∗Topic readability
ARI, 6
bormuth, 8
coleman, 11
coleman.liau, 12
dale.chall, 16
danielson.bryan, 17
dickes.steiwer, 18
DRP, 19
ELF, 20
farr.jenkins.paterson, 21
flesch, 22
flesch.kincaid, 23
FOG, 24
FORCAST, 25
fucks, 27
harris.jacobson, 31
linsear.write, 58
LIX, 59
nWS, 64
readability, 76
RIX, 88
SMOG, 95
spache, 96

117

118 INDEX

strain, 97
traenkle.bailer, 106
TRI, 110
tuldava, 112
wheeler.smith, 116

.Options, 91

.Rprofile, 92
[,-methods (taggedText), 99
[,kRp.TTR,ANY-method (lex.div), 52
[,kRp.TTR-method (lex.div), 52
[,kRp.readability,ANY-method

(readability), 76
[,kRp.readability-method (readability),

76
[,kRp.taggedText,ANY,ANY-method

(taggedText), 99
[,kRp.taggedText-method (taggedText), 99
[<-,-methods (taggedText), 99
[<-,kRp.taggedText,ANY,ANY,ANY-method

(taggedText), 99
[<-,kRp.taggedText-method (taggedText),

99
[[,-methods (taggedText), 99
[[,kRp.TTR,ANY-method (lex.div), 52
[[,kRp.TTR-method (lex.div), 52
[[,kRp.readability,ANY-method

(readability), 76
[[,kRp.readability-method

(readability), 76
[[,kRp.taggedText,ANY-method

(taggedText), 99
[[,kRp.taggedText-method (taggedText),

99
[[<-,-methods (taggedText), 99
[[<-,kRp.taggedText,ANY,ANY-method

(taggedText), 99
[[<-,kRp.taggedText-method

(taggedText), 99

ARI, 6, 78
available.koRpus.lang, 7, 35, 42, 43, 92,

107, 108

bormuth, 8, 78

C.ld, 9, 54
clozeDelete, 10
clozeDelete,kRp.taggedText-method

(clozeDelete), 10

coleman, 11, 79
coleman.liau, 12, 79
correct.tag, 13
correct.tag,kRp.taggedText-method

(correct.tag), 13
cTest, 14
cTest,kRp.tagged-method (cTest), 14
CTTR, 15, 54

dale.chall, 16, 79
danielson.bryan, 17, 79
describe,-methods (taggedText), 99
describe,kRp.taggedText-method

(taggedText), 99
describe<-,-methods (taggedText), 99
describe<-,kRp.taggedText-method

(taggedText), 99
dickes.steiwer, 18, 80
DRP, 19, 80

ELF, 20, 80

farr.jenkins.paterson, 21, 22, 80
fixObject (taggedText), 99
fixObject,-methods (taggedText), 99
fixObject,kRp.taggedText-method

(taggedText), 99
flesch, 21, 22, 81
flesch.kincaid, 22, 23, 81
FOG, 24, 81
FORCAST, 25, 82
freq.analysis, 26, 51, 75, 109, 110
freq.analysis,character-method

(freq.analysis), 26
freq.analysis,kRp.taggedText-method

(freq.analysis), 26
fucks, 27, 82

get.kRp.env, 26, 27, 28, 43, 47, 48, 72, 74,
75, 77, 92, 104, 105, 107, 109, 110

getOption, 29
gsub, 105
guess.lang, 29, 41, 42

harris.jacobson, 31, 82
HDD, 32, 55
hyphen, 33, 77, 91
hyphen (hyphen,kRp.taggedText-method),

33

INDEX 119

hyphen,kRp.taggedText-method, 33
hyphen_c,kRp.taggedText-method

(hyphen,kRp.taggedText-method),
33

hyphen_df,kRp.taggedText-method
(hyphen,kRp.taggedText-method),
33

install.koRpus.lang, 7, 35, 43, 92
install.packages, 7, 35
is.taggedText (taggedText), 99

jumbleWords, 36

K.ld, 36, 55
koRpus (koRpus-package), 5
koRpus-deprecated, 37
koRpus-package, 5
kRp.analysis, 9, 13, 15, 26, 32, 33, 36, 47,

48, 52, 60–63, 68, 77, 89, 101, 103,
111, 114, 115

kRp.analysis,-class, 38
kRp.analysis-class

(kRp.analysis,-class), 38
kRp.cluster, 38
kRp.corp.freq, 26, 27, 47, 66, 67, 69–73, 94,

95
kRp.corp.freq,-class, 39
kRp.corp.freq-class

(kRp.corp.freq,-class), 39
kRp.filter.wclass, 40
kRp.hyph.pat, 33
kRp.hyphen, 34, 77, 101
kRp.lang, 30, 94, 95, 98
kRp.lang,-class, 41
kRp.lang-class (kRp.lang,-class), 41
kRp.POS.tags, 9, 13, 15, 27, 33, 37, 41, 42,

48, 56, 60–62, 64, 68, 74, 75, 85, 90,
107, 109, 112, 114, 115

kRp.readability, 6, 8, 11, 12, 16–25, 28, 31,
58, 59, 65, 85, 89, 94–98, 107, 111,
113, 116

kRp.readability,-class, 43
kRp.readability-class

(kRp.readability,-class), 43
kRp.tagged, 6, 8, 9, 11–13, 15–27, 31–33, 36,

37, 40, 41, 43, 47, 48, 52, 56, 58–66,
68, 75, 77, 88–90, 95–98, 101, 103,
105, 106, 109–112, 114–116

kRp.tagged,-class, 46
kRp.tagged-class (kRp.tagged,-class), 46
kRp.text.analysis, 38, 47, 69
kRp.text.paste, 48, 103, 105
kRp.text.transform (koRpus-deprecated),

37
kRp.TTR, 9, 15, 32, 33, 37, 56, 57, 60–64, 68,

89, 90, 94, 95, 98, 112, 114, 115
kRp.TTR,-class, 49
kRp.TTR-class (kRp.TTR,-class), 49
kRp.txt.freq, 13, 26, 27, 33, 47, 48, 52, 77,

98, 101, 103, 114
kRp.txt.freq,-class, 51
kRp.txt.freq-class

(kRp.txt.freq,-class), 51
kRp.txt.trans, 13, 26, 47, 48, 52, 77, 103,

114
kRp.txt.trans,-class, 51
kRp.txt.trans-class

(kRp.txt.trans,-class), 51
kRp_analysis (kRp.analysis,-class), 38
kRp_corp_freq (kRp.corp.freq,-class), 39
kRp_lang (kRp.lang,-class), 41
kRp_readability

(kRp.readability,-class), 43
kRp_tagged (kRp.tagged,-class), 46
kRp_TTR (kRp.TTR,-class), 49
kRp_txt_freq (kRp.txt.freq,-class), 51
kRp_txt_trans (kRp.txt.trans,-class), 51

language,-methods (taggedText), 99
language,kRp.taggedText-method

(taggedText), 99
language<-,-methods (taggedText), 99
language<-,kRp.taggedText-method

(taggedText), 99
lex.div, 9, 15, 32, 36, 37, 47–49, 52, 56, 57,

60–63, 68, 89, 91, 111, 112, 114, 115
lex.div,character-method (lex.div), 52
lex.div,kRp.taggedText-method

(lex.div), 52
lex.div,missing-method (lex.div), 52
lex.div.num, 56
linsear.write, 58, 82
LIX, 59, 83
log, 53, 57, 71

maas, 55, 60
manage.hyph.pat, 34

120 INDEX

MATTR, 54, 61
MSTTR, 54, 62, 90, 91
MTLD, 55, 63

nWS, 64, 83

options, 92

plot, 65
plot,kRp.tagged,missing-method (plot),

65

query, 66, 69
query,kRp.corp.freq-method (query), 66
query,kRp.tagged-method (query), 66

R.ld, 54, 68
rank, 39
read.BAWL, 69
read.corp.celex, 39, 70
read.corp.custom, 71
read.corp.custom,character-method

(read.corp.custom), 71
read.corp.custom,kRp.taggedText-method

(read.corp.custom), 71
read.corp.custom,list-method

(read.corp.custom), 71
read.corp.LCC, 39, 72
read.hyph.pat, 34
read.tagged, 74
readability, 6, 8, 11, 12, 16–25, 27, 28, 31,

43, 44, 58, 59, 64, 65, 76, 86–88,
95–97, 106, 110–112, 116

readability,character-method
(readability), 76

readability,kRp.taggedText-method
(readability), 76

readability,missing-method
(readability), 76

readability.num, 6, 8, 11, 12, 16–25, 27, 31,
58, 59, 64, 86, 88, 95–97, 106, 111,
112, 116

RIX, 83, 88

S.ld, 55, 89
segment.optimizer, 90
set.hyph.support, 94
set.kRp.env, 28, 29, 34, 48, 91, 108
set.lang.support, 7, 35, 92
show,-methods (show,kRp.lang-method), 94

show,kRp.corp.freq-method
(show,kRp.lang-method), 94

show,kRp.lang-method, 94
show,kRp.readability-method

(show,kRp.lang-method), 94
show,kRp.taggedText-method

(show,kRp.lang-method), 94
show,kRp.TTR-method

(show,kRp.lang-method), 94
SMOG, 83, 95
spache, 84, 96
strain, 84, 97
subset, 67
summary, 98
summary,kRp.lang-method (summary), 98
summary,kRp.readability-method

(summary), 98
summary,kRp.tagged-method (summary), 98
summary,kRp.TTR-method (summary), 98
summary,kRp.txt.freq-method (summary),

98

taggedText, 99
taggedText,-methods (taggedText), 99
taggedText,kRp.taggedText-method

(taggedText), 99
taggedText<- (taggedText), 99
taggedText<-,-methods (taggedText), 99
taggedText<-,kRp.taggedText-method

(taggedText), 99
textFeatures, 101
textTransform, 51, 102
textTransform,kRp.taggedText-method

(textTransform), 102
tif_as_tokens_df (taggedText), 99
tif_as_tokens_df,-methods (taggedText),

99
tif_as_tokens_df,kRp.taggedText-method

(taggedText), 99
tokenize, 26, 46, 47, 72, 77, 91, 103, 108, 109
tokens (types), 113
tokens,character-method (types), 113
tokens,kRp.taggedText-method (types),

113
tokens,kRp.TTR-method (types), 113
traenkle.bailer, 84, 106
treetag, 13, 46, 75, 77, 91, 107
TRI, 84, 110
TTR, 54, 111

INDEX 121

tuldava, 84, 112
types, 113
types,character-method (types), 113
types,kRp.taggedText-method (types), 113
types,kRp.TTR-method (types), 113

U.ld, 54, 115

wheeler.smith, 84, 116

	koRpus-package
	ARI
	available.koRpus.lang
	bormuth
	C.ld
	clozeDelete
	coleman
	coleman.liau
	correct.tag
	cTest
	CTTR
	dale.chall
	danielson.bryan
	dickes.steiwer
	DRP
	ELF
	farr.jenkins.paterson
	flesch
	flesch.kincaid
	FOG
	FORCAST
	freq.analysis
	fucks
	get.kRp.env
	guess.lang
	harris.jacobson
	HDD
	hyphen,kRp.taggedText-method
	install.koRpus.lang
	jumbleWords
	K.ld
	koRpus-deprecated
	kRp.analysis,-class
	kRp.cluster
	kRp.corp.freq,-class
	kRp.filter.wclass
	kRp.lang,-class
	kRp.POS.tags
	kRp.readability,-class
	kRp.tagged,-class
	kRp.text.analysis
	kRp.text.paste
	kRp.TTR,-class
	kRp.txt.freq,-class
	kRp.txt.trans,-class
	lex.div
	lex.div.num
	linsear.write
	LIX
	maas
	MATTR
	MSTTR
	MTLD
	nWS
	plot
	query
	R.ld
	read.BAWL
	read.corp.celex
	read.corp.custom
	read.corp.LCC
	read.tagged
	readability
	readability.num
	RIX
	S.ld
	segment.optimizer
	set.kRp.env
	set.lang.support
	show,kRp.lang-method
	SMOG
	spache
	strain
	summary
	taggedText
	textFeatures
	textTransform
	tokenize
	traenkle.bailer
	treetag
	TRI
	TTR
	tuldava
	types
	U.ld
	wheeler.smith
	Index

