
Package ‘kmcudaR’
March 22, 2019

Type Package

Title 'Yingyang' K-Means and K-NN using NVIDIA CUDA

Version 1.1.0

Date 2019-03-18

Author Vadim Markovtsev, Charles Determan

Maintainer Charles Determan <cdetermanjr@gmail.com>

Description
K-means implementation is base on ``Yingyang K-Means: A Drop-In Replacement of the Clas-
sic K-Means with Consistent Speedup''. While it introduces some overhead and many condi-
tional clauses which are bad for CUDA, it still shows 1.6-2x speedup against the Lloyd algo-
rithm. K-nearest neighbors employ the same triangle inequality idea and require precalcu-
lated centroids and cluster assignments, similar to the flattened ball tree.

License Apache License (>= 2.0) | file LICENSE

Depends R (>= 3.3.2)

Imports Rcpp (>= 0.12.9)

LinkingTo Rcpp, RcppEigen

OS_type unix

Suggests testthat

RoxygenNote 6.1.1

SystemRequirements CUDA 8.0 tookit, OpenMP 4.0 capable compiler

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-03-22 10:00:07 UTC

R topics documented:
kmeans_cuda . 2
knn_cuda . 3

Index 4

1

2 kmeans_cuda

kmeans_cuda K-Means Clustering using CUDA

Description

Performs k-means clustering on a numeric matrix using a NVIDIA GPU via CUDA

Usage

kmeans_cuda(samples, clusters, tolerance = 0.01, init = "k-means++",
yinyang_t = 0.1, metric = "L2", average_distance = FALSE,
seed = NULL, device = 0L, verbosity = 0L)

Arguments

samples A numeric matrix
clusters the number of clusters
tolerance if the relative number of reassignments drops below this value the algorithm

stops
init A character vector or numeric matrix, sets the method for centroids initializa-

tion. Options include "k-means++", "afk-mc2", "random" or numeric matrix of
shape [clusters, number of features]. Default = "kmeans++"

yinyang_t numeric value defining relative number of cluster groups. Usually 0.1 but 0
disables Yinyang refinement.

metric Character vector specifying distance metric to use. The default is Euclidean
(L2), it can be changed to "cos" for Sphereical K-means with angular distance.
NOTE - the samples must be normalized in the latter case.

average_distance

logical indicating whether to calculate the average distance between cluster ele-
ments and the corresponding centroids. Useful for finding the best ’K’. Returned
as third list element

seed random generator seed for reproducible results [deprecated]
device integer defining device to use. 1 = first device, 2 = second device, 3 = first &

second devices, 0 = use all devices. Default = 0
verbosity Integer indicating amount of output to see. 0 = silence, 1 = progress logging, 2

= all output

Value

a list consisting of

centroids Cluster centroids
assignments integer vector of sample-cluster associations
average_distance

average distance between cluster elements

knn_cuda 3

knn_cuda K-Nearest Neighbor Classification using CUDA

Description

k-nearest neighbor classification using a NVIDIA GPU via CUDA backend

Usage

knn_cuda(k, samples, centroids, assignments, metric = "L2", device = 0,
verbosity = 0)

Arguments

k The number of neighbors to search for each sample

samples Numeric matrix

centroids Numeric matrix with precalculated clusters’ centroids

assignments integer vector with sample-cluster associations. Indices start from 1.

metric character name of the distance metric to use. The default is Euclidean (L2), it
can be changed to "cos" for Sphereical K-means with angular distance. NOTE -
the samples must be normalized in the latter case.

device integer defining device to use. 1 = first device, 2 = second device, 3 = first &
second devices, 0 = use all devices. Default = 0

verbosity Integer indicating amount of output to see. 0 = silence, 1 = progress logging, 2
= all output

Value

Integer matrix with neighbor indices of shape [nsamp, k].

Index

kmeans_cuda, 2
knn_cuda, 3

4

	kmeans_cuda
	knn_cuda
	Index

