Package 'kernelTDA'

April 17, 2020
Type Package
Title Statistical Learning with Kernel for Persistence Diagrams
License GPL-3
Version 1.0.0
Date 2020-04-15
Maintainer Tullia Padellini t.padellini@imperial.ac.uk

Description

Provides tools for exploiting topological information into standard statistical learning algorithms.
To this aim, this package contains the most popular kernels defined on the space of persis-
tence diagrams, and persistence images.
Moreover, it provides a solver for kernel Support Vector Machines problems, whose kernels are not necessarily positive semidefinite,
based on the C++ library 'LIBSVM' https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
Additionally, it allows to compute Wasserstein distance between persistence diagrams with an arbitrary ground metric,
building an R interface for the $\mathrm{C}++$ li-
brary 'HERA' https://bitbucket.org/grey_narn/hera/src/master/.
Imports Rcpp (>= 1.0.1), mvtnorm, Rdpack, methods, stats
Suggests TDA, knitr, rmarkdown, SparseM, Matrix, kernlab, viridis
LinkingTo Rcpp, RcppEigen, BH
RoxygenNote 7.0.2
RdMacros Rdpack
NeedsCompilation yes
Author Tullia Padellini [aut, cre],
Francesco Palini [aut],
Pierpaolo Brutti [ctb],
Chih-Chung Chang [ctb, cph] (LIBSVM C++ code),
Chih-Chen Lin [ctb, cph] (LIBSVM C++ code),
Michael Kerber [ctb, cph] (HERA C++ code),
Dmitriy Morozov [ctb, cph] (HERA C++ code),
Arnur Nigmetov [ctb, cph] (HERA C++ code)

Repository CRAN

Date/Publication 2020-04-17 18:00:02 UTC

R topics documented:

gaus.kernel 2
kernelTDA 3
krein.svm 3
krein.svm.default 4
lapl.kernel 6
pers.image 7
pf.kernel 8
pss.kernel 9
sw.kernel 10
wass.kernel 11
wasserstein.distance 12
Index 13
gaus.kernel Geodesic Gaussian Kernel (GGK)

Description

Computes the Geodesic Gaussian Kernel (GGK) between persistence diagrams.

Usage

gaus.kernel(d1, d2 = NULL, h, dimension)

Arguments

d1 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time) or a list of diagrams.
d2 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
h bandwidth of the kernel.
dimension The dimension of the topological feature (0 for connected components, 1 for cycles etc).

Value

If d 1 is a list of Persistence Diagrams, this function returns a matrix whose (i, j) entry is the GGK computed in (d1[[i]], d2[[j]]), otherwise it returns the value for the GGK computed in (d1, d2).

Author(s)

Tullia Padellini

References

Padellini T, Brutti P (2017). "Supervised Learning with Indefinite Topological Kernels." arXiv preprint arXiv:1709.07100.

Examples

```
diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
gaus.kernel(d1 = diag1, d2 = diag2, h = 1, dimension = 1)
```

kernelTDA kernelTDA: Kernels for Persistence Diagrams

Description

The kerenelTDA package provides implementation for the most common kernels defined in the space of Persistence Diagrams. These kernel can then be used in most kernel based method.
krein.svm Krein Support Vector Machine

Description

Solves a kernelized Support Vector Machine in the case where the kernel used may not be positive semidefinite.

Usage

krein.svm(kernelmat, ...)

Arguments

kernelmat the kernel matrix computed for all observations
... additional parameters, see krein.svm. default for more details on how to use this function

Details

This function implements the Krein Support Vector Machine solver as defined by Loosli et al. (2015). The implementation of the solver is a modified version of the popular C++ library 'LIBSVM', while the connection to ' R ' heavily relies on the ' R '-package $\mathbf{e} 1701$.

Value

An object of class krein. svm containing the fitted model, including:
SV a matrix containing the Support Vectors
index index of the resulting support vectors in the data matrix
coefs a matrix containing corresponding coefficients times the training labels
rho value of the (negative) intercept

Author(s)

Tullia Padellini, Francesco Palini, David Meyer. The included C++ library LIBSVM is authored by Chih-Chung Chang and Chih-Jen Lin)

References

Loosli G, Canu S, Ong CS (2015). "Learning SVM in Krein spaces." IEEE transactions on pattern analysis and machine intelligence, 38(6), 1204-1216.
Chang C, Lin C (2011). "LIBSVM: A library for support vector machines." ACM transactions on intelligent systems and technology (TIST), 2(3), 27.

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2008). "Misc functions of the Department of Statistics (e1071), TU Wien." R package, 1, 5-24.

Examples

```
library(TDA)
set.seed(123)
foo.data = list()
for(i in 1:20){
foo = circleUnif(100)
foo.data[[i]] = ripsDiag(foo, 1,1)$diagram}
for(i in 21:40){
foo = cbind(runif(100), runif(100))
foo.data[[i]] = ripsDiag(foo, 1,1)$diagram
}
GSWkernel = gaus.kernel(foo.data, h =1, dimension = 1, q = 2)
GGKclass = krein.svm(kernelmat = GSWkernel, y = rep(c(1,2), c(20,20)))
```

krein.svm.default Krein Support Vector Machine

Description

Solves a kernelized Support Vector Machine in the case where the kernel used may not be positive semidefinite.

```
Usage
    ## Default S3 method:
    krein.svm(
        kernelmat = NULL,
        y = NULL,
        cost = 1,
        class.weights = NULL,
        cross = 0,
        probability = FALSE,
        fitted = TRUE,
        subset,
    )
```


Arguments

\(\left.\left.$$
\begin{array}{ll}\text { kernelmat } & \text { the kernel matrix computed for all observations } \\
\text { y } \\
\text { cost vector of labels } \\
\text { class.weights } \\
\text { cost of violating the constraint }\end{array}
$$\right] \begin{array}{l}a named vector of weights for the different classes, used for asymmetric class

sizes. Not all factor levels have to be supplied (default weight: 1). All compo-

nents have to be named. Specifying "inverse" will choose the weights inversely

proportional to the class distribution.

number of fold in a k-fold cross validation\end{array}\right]\)| logical indicating whether the model should allow for probability predictions |
| :--- |
| (default: FALSE). |
| probs |
| fitted |
| logical indicating whether the fitted values should be computed and included in |
| the model or not (default: TRUE) |

Details

This function implements the Krein Support Vector Machine solver as defined by Loosli et al. (2015). The implementation of the solver is a modified version of the popular C++ library 'LIBSVM', while the connection to ' R ' heavily relies on the ' R '-package $\mathbf{e 1 7 0 1}$.

Value

An object of class krein. svm containing the fitted model, including:
SV a matrix containing the Support Vectors
index index of the resulting support vectors in the data matrix
coefs a matrix containing corresponding coefficients times the training labels
rho value of the (negative) intercept

Author(s)

Tullia Padellini, Francesco Palini, David Meyer. The included C++ library LIBSVM is authored by Chih-Chung Chang and Chih-Jen Lin)

References

Loosli G, Canu S, Ong CS (2015). "Learning SVM in Krein spaces." IEEE transactions on pattern analysis and machine intelligence, 38(6), 1204-1216.
Chang C, Lin C (2011). "LIBSVM: A library for support vector machines." ACM transactions on intelligent systems and technology (TIST), 2(3), 27.

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2008). "Misc functions of the Department of Statistics (e1071), TU Wien." R package, 1, 5-24.

Examples

```
## DO NOT RUN:
# library(TDA)
# set.seed(123)
# foo.data = list()
# for(i in 1:20){
    foo = circleUnif(100)
    foo.data[[i]] = ripsDiag(foo, 1,1)$diagram}
    for(i in 21:40){
    foo = cbind(runif(100), runif(100))
    foo.data[[i]] = ripsDiag(foo, 1,1)$diagram
    }
GSWkernel = gaus.kernel(foo.data, h =1, dimension = 1, q = 2)
# GGKclass = krein.svm(kernelmat = GSWkernel, y = rep(c(1, 2), c(20,20)))
```

lapl.kernel Geodesic Laplacian Kernel (GLK)

Description

Computes the Geodesic Laplacian Kernel (GLK) between persistence diagrams.

Usage

lapl.kernel(d1, d2 = NULL, h, dimension)

Arguments

d1
d2
h
dimension The dimension of the topological feature (0 for connected components, 1 for cycles etc)

Value

If d 1 is a list of Persistence Diagrams, this function returns a matrix whose (i, j) entry is the GLK computed in (d1[[i]], $\mathrm{d} 2[[\mathrm{j}]]$), otherwise it returns the value for the GLK computed in (d1, d2).

Author(s)

Tullia Padellini

References

Padellini T, Brutti P (2017). "Supervised Learning with Indefinite Topological Kernels." arXiv preprint arXiv:1709.07100.

Examples

```
diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
lapl.kernel(d1 = diag1, d2 = diag2, h = 1, dimension = 1)
```

```
pers.image Persistence Image
```


Description

Compute the Persistence Image for a given diagram, using piecewise linear weight functions and Gaussian baseline distribution.

Usage

pers.image(d1, nbins, dimension, h)

Arguments

d1 A persistence diagram, in the form of a matrix with 3 columns (first one is the dimension, second is the birth-time, last one is the death-time).
nbins Number of bins for the discretization of the Persistence Surface into the Persistence Image.
dimension Dimension of the topological features of interest (0 for connected components, 1 for cycles etc).
h Standard deviation of the Gaussian baseline used to compute the Persistence Surface.

Value

a nbins x nbins matrix containing the Persistence Image.

Author(s)

Tullia Padellini

References

Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S, Hanson E, Motta F, Ziegelmeier L (2017). "Persistence images: A stable vector representation of persistent homology." The Journal of Machine Learning Research, 18(1), 218-252.

Examples

```
diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
colnames(diag1) <- c("dimension", "birth", "death")
pi1 <- pers.image(d1 = diag1, nbins = 20, dimension = 1, h = 1)
image(pi1)
```

pf.kernel Persistence Fisher Kernel (PFK)

Description

Computes the Persistence Fisher Kernel (PFK) between persistence diagrams.

Usage

pf.kernel(d1, d2 = NULL, h, dimension, sigma)

Arguments

d1 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time) or a list of diagrams.
d2 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
h bandwidth of the PFK.
dimension The dimension of the topological feature (0 for connected components, 1 for cycles etc)
sigma standard deviation of the base Gaussian Kernel.

Value

If d 1 is a list of Persistence Diagrams, this function returns a matrix whose (i, j) entry is the PFK computed in (d1[[i]], d2[[j]]), otherwise it returns the value for the PFK computed in (d1, d2).

Author(s)

Tullia Padellini

References

Le T, Yamada M (2018). "Persistence fisher kernel: A riemannian manifold kernel for persistence diagrams." In Advances in Neural Information Processing Systems, 10007-10018.

Examples

```
diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
pf.kernel(d1 = diag1, d2 = diag2, h = 1, dimension = 1, sigma = 1)
```

```
pss.kernel

\section*{Description}

Computes the Persistence Scale Space Kernel (PSSK) between persistence diagrams

\section*{Usage}
pss.kernel(d1, d2 = NULL, h, dimension)

\section*{Arguments}
d1

\section*{d2}
h
dimension

A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time) or a list of diagrams
A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
bandwidth of the kernel.
The dimension of the topological feature ( 0 for connected components, 1 for cycles etc).

\section*{Value}

If d 1 is a list of Persistence Diagrams, this function returns a matrix whose \((\mathrm{i}, \mathrm{j})\) entry is the PSSK computed in ( \(\mathrm{d} 1[[\mathrm{i}]], \mathrm{d} 2[[\mathrm{j}]]\) ), otherwise it returns the value for the PSSK computed in (d1, d 2 ).

\section*{Author(s)}

Tullia Padellini

\section*{References}

Reininghaus J, Huber S, Bauer U, Kwitt R (2015). "A stable multi-scale kernel for topological machine learning." In Proceedings of the IEEE conference on computer vision and pattern recognition, 4741-4748.

\section*{Examples}
```

diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
pss.kernel(d1 = diag1, d2 = diag2, h = 1, dimension = 1)

```
sw.kernel

Persistence Sliced Wasserstein Kernel (SWK)

\section*{Description}

Computes the Persistence Sliced Wasserstein Kernel (SWK) between persistence diagrams.

\section*{Usage}
sw.kernel(d1, d2 = NULL, h, dimension, \(M=10\) )

\section*{Arguments}
d1 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time) or a list of diagrams
d2 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
h bandwidth of the kernel
dimension The dimension of the topological feature ( 0 for connected components, 1 for cycles etc)
M number of directions on which to approximate the Sliced Wasserstein Distance

\section*{Value}

If d 1 is a list of Persistence Diagrams, this function returns a matrix whose \((\mathrm{i}, \mathrm{j})\) entry is the SWK computed in (d1[[i]], d2[[j]]), otherwise it returns the value for the SWK computed in (d1, d2)

\section*{Author(s)}

Tullia Padellini

\section*{References}

Carriere M, Cuturi M, Oudot S (2017). "Sliced wasserstein kernel for persistence diagrams." In Proceedings of the 34th International Conference on Machine Learning-Volume 70, 664-673. JMLR. org.

\section*{Examples}
```

diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
sw.kernel(d1 = diag1, d2 = diag2, h = 1, dimension = 1)

```

\section*{Description}

Computes the L_infty q-Wasserstein Kernel (WK) between persistence diagrams.

\section*{Usage}
wass.kernel(d1, d2 = NULL, h, dimension, q)

\section*{Arguments}
d1 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time) or a list of diagrams
d2 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
h
bandwidth of the kernel.
dimension The dimension of the topological feature ( 0 for connected components, 1 for cycles etc).
q
order of the q-Wasserstein distance.

\section*{Value}

If d 1 is a list of Persistence Diagrams, this function returns a matrix whose ( \(\mathrm{i}, \mathrm{j}\) ) entry is the WK computed in ( \(\mathrm{d} 1[[\mathrm{i}]], \mathrm{d} 2[[\mathrm{j}]]\) ), otherwise it returns the value for the WK computed in (d1, d 2 ).

\section*{Author(s)}

Tullia Padellini

\section*{Examples}
```

diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
wass.kernel(d1 = diag1, d2 = diag2, h = 1, dimension = 1, q = 2)

```
```

wasserstein.distance L_pq-Wasserstein Distance

```

\section*{Description}

Compute the q-Wasserstein distance between persistence diagrams using an arbitrary L_p norm as ground metric.

\section*{Usage}
wasserstein.distance(d1, d2, dimension, q, p = 2)

\section*{Arguments}
d1 A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
d2
A persistence diagram (matrix with 3 col where the first one is the dimension, the second is the birth-time and the third is the death-time).
dimension Dimension of the topological features of interest ( 0 for connected components, 1 for cycles etc).
\(\mathrm{q} \quad\) Order of the q -Wasserstein distance.
\(\mathrm{p} \quad\) Order of the L_p norm to be used as a ground metric in the computation of the Wasserstein distance.

\section*{Details}

This function provides an R interface for the efficient C++ library 'HERA' by Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov (https://bitbucket.org/grey_narn/hera/src/master/).

\section*{Value}

The value for the L_p q-Wassesterstein between d 1 and d 2 .

\section*{Author(s)}

Tullia Padellini, Francesco Palini. The included C++ library is authored by Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov

\section*{References}

Kerber M, Morozov D, Nigmetov A (2017). "Geometry helps to compare persistence diagrams." Journal of Experimental Algorithmics (JEA), 22, 1-4.

\section*{Examples}
```

diag1 <- matrix(c(1,1,1,0,2,3,2,2.5,4), ncol = 3, byrow = FALSE)
diag2 <- matrix(c(1,1,0,1,1,2), ncol = 3, byrow = FALSE)
wasserstein.distance(diag1, diag2, dimension = 1, q = 1, p = 2)

```

\section*{Index}
gaus.kernel, 2
kernelTDA, 3
krein.svm, 3
krein.svm.default, 3, 4
lapl.kernel, 6
pers.image, 7
pf.kernel, 8
pss.kernel, 9
sw.kernel, 10
wass.kernel, 11
wasserstein.distance, 12```

